1
|
Mürtz P, Sprinkart AM, Block W, Luetkens JA, Attenberger U, Pieper CC. Combined diffusion and perfusion index maps from simplified intravoxel incoherent motion imaging enable visual assessment of breast lesions. Sci Rep 2025; 15:17388. [PMID: 40389518 PMCID: PMC12089374 DOI: 10.1038/s41598-025-01984-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 05/09/2025] [Indexed: 05/21/2025] Open
Abstract
The aim was to evaluate visual breast lesion assessment using single binary index maps (IDf) in comparison to the use of combined regions of interest (ROI) analysis of estimated diffusion coefficient (D') AND perfusion fraction (f'), which proved to be the best method in a previous simplified intravoxel incoherent motion DWI, if diffusion-weighted imaging (DWI) is used as stand-alone tool. IDf, was constructed voxel-wise from cut-off values of D' and f'. The cut-off values, the data of 105 malignant and 86 benign lesions and the ROIs were re-used. For visual assessment, IDf was displayed as two-colour b800 overlay with red representing "malignant" and green "benign" voxels. A lesion was rated as "malignant", if a red hot spot was found within translucent hyperintensity on b800, otherwise as "benign". Intraindividual comparison of quantitative analysis and visual assessment of IDf showed comparable accuracy, both to each other and to combined ROI-analysis of D' and f' maps (0.927 vs. 0.937, p = 0.157, and 0.921 vs. 0.937, p = 0.157, respectively). Thus, visual assessment of IDf can replace combined ROI analysis of D' and f' without loss in accuracy enabling a considerable facilitation in clinical routine.
Collapse
Affiliation(s)
- Petra Mürtz
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Alois M Sprinkart
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Wolfgang Block
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Department of Radiotherapy and Radiation Oncology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
- Department of Neuroradiology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Julian A Luetkens
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Ulrike Attenberger
- Department of Biomedical Imaging and Image-Guided Therapy, General Hospital of Vienna (AKH), Medical University of Vienna, Waehringer Guertel 18-20, Wien, Austria
| | - Claus C Pieper
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| |
Collapse
|
2
|
Goto M, Le Bihan D, Sakai K, Yamada K. Reduction of biopsy rate in BI-RADS4 breast lesions: potential of an abbreviated advanced DWI protocol. Eur Radiol 2025:10.1007/s00330-025-11604-2. [PMID: 40272489 DOI: 10.1007/s00330-025-11604-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/10/2025] [Accepted: 03/15/2025] [Indexed: 04/25/2025]
Abstract
OBJECTIVES This study compared the diagnostic performance of diffusion biomarkers estimated from an abbreviated diffusion-weighted imaging (DWI) protocol and assessed their potential to reduce unnecessary biopsies of benign BI-RADS 4 lesions identified on dynamic contrast-enhanced (DCE) MRI. METHODS A retrospective study was conducted from 2019 to 2023. All patients underwent abbreviated DWI at 3 T with four b-values (0 s/mm2, 200 s/mm2, 800 s/mm2, and 1500 s/mm2). Regions of interest were manually placed on DWI, and biomarkers, including the apparent diffusion coefficient (ADC0-800), perfusion fraction intravoxel incoherent motion, non-Gaussian diffusion (ADC0 and kurtosis [K]), signature index (S-index), and shifted ADC (sADC), were estimated. Diagnostic performance and the potential to reduce unnecessary biopsies were evaluated for each parameter. RESULTS In total, 168 female patients (mean age ± standard deviation, 56.2 ± 13.5 years) with 178 BI-RADS 4 lesions on DCE MRI were analyzed. The median ADC0-800, sADC, and ADC0 were significantly lower in malignant lesions, while S-index and K were significantly higher (all p ≤ 0.001). The diagnostic performance to reclassify lesions as benign or malignant was identical for ADC0-800 (area under the curve = 0.67), sADC (0.69), S-index (0.69), ADC0 (0.68), and K (0.66). Applying an ad-hoc threshold cutoff, all parameters reduced unnecessary biopsies (around 16%), while K resulted in a slightly higher reduction rate than ADC0-800 (20.5% vs 15.9%, p = 0.317) without reducing sensitivity. CONCLUSION Diffusion MRI biomarkers obtained using an abbreviated DWI protocol reduced unnecessary biopsies in BI-RADS 4 lesions, with K performing slightly better than ADC. KEY POINTS Question MRI BI-RADS category 4 includes a substantial number of benign lesions, and reducing unnecessary biopsies remains a critical clinical concern. Findings The parameters from abbreviated DWI show lesion differentiation comparable to ADC and have greater potential to reduce unnecessary biopsies. Clinical relevance This study underscores the potential of imaging biomarkers from abbreviated DWI for assessing breast MRI BI-RADS 4 lesions. These biomarkers may be comparable or superior to standard ADC in reducing unnecessary biopsies and could aid in improving patient management decisions.
Collapse
Affiliation(s)
- Mariko Goto
- Department of Radiology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Denis Le Bihan
- Department of Radiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Neurospin, CEA-Saclay, Paris-Saclay University, Gif-sur-Yvette, France
- National Institute for Physiological Sciences, Okazaki, Japan
| | - Koji Sakai
- Department of Radiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kei Yamada
- Department of Radiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
3
|
Li X, Jiang L, Gao J, Zheng D, Wang H, Chen M. MRI Features and Apparent Diffusion Coefficient Histogram-Based Nomogram for Classifying MRI-Only Suspicious Breast Lesions. Clin Breast Cancer 2025:S1526-8209(25)00094-1. [PMID: 40316457 DOI: 10.1016/j.clbc.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 03/26/2025] [Accepted: 04/02/2025] [Indexed: 05/04/2025]
Abstract
PURPOSE This study aimed to develop and validate a nomogram integrating clinicoradiologic features and apparent diffusion coefficient (ADC)-based histogram parameters for MRI-only suspicious lesions. METHODS Ninety patients with MRI-detected suspicious lesions, who underwent breast MRI between May 2017 and August 2023, were retrospectively included and randomly assigned to a training cohort (n = 62) and a validation cohort (n = 28). Clinical and MRI data for each patient were reviewed and analyzed. Mean ADC values were computed using small two-dimensional region of interest measurements from ADC maps, followed by histogram analysis of the ADC maps, yielding 17 extracted histogram parameters. Univariate and multivariate logistic regression analyses identified significant variables associated with malignancy, which were incorporated into the nomogram. The diagnostic performance of these variables and the nomogram was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC) and DeLong's test. RESULTS Univariate analysis revealed significant differences between malignant and benign groups in terms of margin, kinetic pattern, mean ADC, and four ADC histogram parameters (ADC energy, ADC entropy, ADC range, and ADC uniformity) (all P < .05). Multivariate analysis identified kinetic pattern (P = .005, odds ratio [OR] = 2.569) and ADC entropy (P = .003, OR = 6.687) as significant predictors of MRI-only suspicious lesion classification. The nomogram combining kinetic pattern and ADC entropy demonstrated a C-index of 0.820 (95% confidence interval [CI]: 0.714-0.927) in the training cohort and 0.728 (95% CI: 0.528-0.878) in the validation cohort. CONCLUSIONS This nomogram, integrating kinetic pattern and ADC entropy, provides a simple, noninvasive tool for classifying MRI-only suspicious lesions, offering superior performance compared to mean ADC values.
Collapse
Affiliation(s)
- Xue Li
- Department of Radiology, National Center of Gerontology, Beijing Hospital, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lei Jiang
- Department of Radiology, National Center of Gerontology, Beijing Hospital, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiayin Gao
- Department of Radiology, National Center of Gerontology, Beijing Hospital, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Dandan Zheng
- Clinical & Technical Support, Philips Healthcare, China
| | - Hong Wang
- Department of Radiology, National Center of Gerontology, Beijing Hospital, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Min Chen
- Department of Radiology, National Center of Gerontology, Beijing Hospital, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China; Clinical & Technical Support, Philips Healthcare, China.
| |
Collapse
|
4
|
Zhao S, Wang S, Li Y, Wu Y, Zhang M, Ning N, Liang H, Dong D, Yang J, Gao X, Guan H, Zhang L. Quantitative Parameters of Intravoxel Incoherent Movement Imaging and Dynamic Contrast Enhancement MRI for the Prediction of HER2-Zero, -Low, and -Positive Breast Cancers. Acad Radiol 2025; 32:1851-1860. [PMID: 39592385 DOI: 10.1016/j.acra.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024]
Abstract
RATIONALE AND OBJECTIVES To explore the predictive value of quantitative parameters from intravoxel incoherent movement (IVIM) imging and dynamic contrast enhancement MRI (DCE-MRI) for HER2 expression in breast cancer. MATERIALS AND METHODS This retrospective study included 167 women with breast cancer who underwent MRI from December 2019 to December 2023, categorized into 48 HER2-positive, 78 HER2-low and 41 HER2-zero cancers. All patients underwent IVIM imaging and DCE-MRI. Statistical analyses, including one-way ANOVA, Kruskal-Wallis test and χ2 test, were employed to compare clinical data, MRI features, and MRI quantitative parameters including standard ADC(ADC), pure diffusion coefficient(D), perfusion-related diffusion coefficient(D*), perfusion fraction(f), volume transfer constant(Ktrans), extravascular extracellular interstitial volume ratio(Ve) and rate constant(Kep) between the three groups. Multivariable logistic regression was used to identify independent predictors for distinguishing HER2 expressions. The diagnostic efficacy of significant IVIM and DCE parameters for different HER2 expressions was analyzed using receiver operator characteristic (ROC) curves. RESULTS Peritumoral edema, histological grade and Kep achieved an AUC of 0.86(95%CI:0.78,0.91) in distinguishing HER2-positive tumors from HER2-low expressing tumors and were independent predictors for differentiating these two groups. Among HER2-positive and -zero breast cancers, the combined model of D*, Ktrans and Kep had an AUC of 0.74(95%CI:0.63,0.82) for the prediction of HER2-positive versus HER2-zero cancers, and its prediction efficiency was not improved compared with that of a single parameter(P > .05). CONCLUSION Quantitative parameters from intravoxel incoherent movement imaging and dynamic contrast enhancement MRI can predict different HER2 expressions in breast cancer from different perspectives, with implications for therapy.
Collapse
Affiliation(s)
- Siqi Zhao
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, No 222 zhongshan Road, Xigang district, Dalian, Liaoning 116011, PR China (S.Z., S.W., Y.L., Y.W., M.Z., H.L., D.D., L.Z.).
| | - Shiyu Wang
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, No 222 zhongshan Road, Xigang district, Dalian, Liaoning 116011, PR China (S.Z., S.W., Y.L., Y.W., M.Z., H.L., D.D., L.Z.).
| | - Yuanfei Li
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, No 222 zhongshan Road, Xigang district, Dalian, Liaoning 116011, PR China (S.Z., S.W., Y.L., Y.W., M.Z., H.L., D.D., L.Z.).
| | - Yueqi Wu
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, No 222 zhongshan Road, Xigang district, Dalian, Liaoning 116011, PR China (S.Z., S.W., Y.L., Y.W., M.Z., H.L., D.D., L.Z.).
| | - Moyun Zhang
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, No 222 zhongshan Road, Xigang district, Dalian, Liaoning 116011, PR China (S.Z., S.W., Y.L., Y.W., M.Z., H.L., D.D., L.Z.).
| | - Ning Ning
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian, Liaoning 116001, PR China (N.N.).
| | - Hongbing Liang
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, No 222 zhongshan Road, Xigang district, Dalian, Liaoning 116011, PR China (S.Z., S.W., Y.L., Y.W., M.Z., H.L., D.D., L.Z.).
| | - Deshuo Dong
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, No 222 zhongshan Road, Xigang district, Dalian, Liaoning 116011, PR China (S.Z., S.W., Y.L., Y.W., M.Z., H.L., D.D., L.Z.).
| | - Jie Yang
- School of Public Health, Dalian Medical University, No. 9W. Lvshun South Road, Dalian, Liaoning Province 116044, PR China (J.Y.).
| | - Xue Gao
- Department of Pathology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, Liaoning 116011, PR China (X.G.).
| | - Haonan Guan
- GE Healthcare, MR Research China, Beijing 100176, PR China (H.G.).
| | - Lina Zhang
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, No 222 zhongshan Road, Xigang district, Dalian, Liaoning 116011, PR China (S.Z., S.W., Y.L., Y.W., M.Z., H.L., D.D., L.Z.).
| |
Collapse
|
5
|
Chen X, Zhang Y, Zheng H, Wu Z, Lin D, Li Y, Liu S, Chen Y, Zhang R, Song Y, Xue Y, Lin L. Histogram Analysis of Advanced Diffusion-weighted MRI Models for Evaluating the Grade and Proliferative Activity of Meningiomas. Acad Radiol 2025; 32:2171-2181. [PMID: 39572297 DOI: 10.1016/j.acra.2024.10.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/14/2024] [Accepted: 10/28/2024] [Indexed: 04/11/2025]
Abstract
RATIONALE AND OBJECTIVES To explore the value of diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), neurite orientation dispersion and density imaging (NODDI), and mean apparent propagator (MAP) magnetic resonance imaging histogram analysis in evaluating the grade and proliferative activity of meningiomas. MATERIALS AND METHODS A total of 134 meningioma patients were prospectively included and underwent magnetic resonance diffusion imaging. The whole-tumor histogram parameters were extracted from multiple functional maps. Mann-Whitney U test was used to compare the histogram parameters of high- and low-grade meningiomas. The receiver operating characteristic (ROC) curve and multiple logistic regression analysis were used to evaluate the diagnostic efficacy. The correlation between histogram parameters and the Ki-67 index was analyzed. The diffusion model was further validated with an independently validation set (n = 33). RESULTS Among single histogram parameters, the variance of NODDI-ISOVF (isotropic volume fraction) showed the highest AUC of 0.829 in grading meningiomas. For the combined models, the DKI model had the best performance in the diagnosis (AUC=0.925). Delong test showed the DKI combined model showed superior diagnostic performance to those of DTI, NODDI and MAP models (P < 0.05 for all). Moreover, moderate to weak correlations were found between various diffusion parameters and the Ki-67 labeling index (rho=0.20-0.45, P < 0.05 for all). In the validation set, the DKI model still showed higher performance (AUC, 0.85) than other diffusion models, thus demonstrating robustness. CONCLUSIONS Whole-tumor histogram analyses of DTI, DKI, NODDI, and MAP are useful for evaluating the grade and cellular proliferation of meningiomas. DKI combined model has higher diagnostic accuracy than DTI, NODDI and MAP in meningioma grading.
Collapse
Affiliation(s)
- Xiaodan Chen
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou 350001, China (X.C., Y.Z., H.Z., D.L., Y.L., S.L., Y.C., R.Z., Y.X., L.L.); Department of Radiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China (X.C.); School of Medical Imaging, Fujian Medical University, Fuzhou 350004, China (X.C., Y.Z., Y.L., Y.X., L.L.)
| | - Yichao Zhang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou 350001, China (X.C., Y.Z., H.Z., D.L., Y.L., S.L., Y.C., R.Z., Y.X., L.L.); School of Medical Imaging, Fujian Medical University, Fuzhou 350004, China (X.C., Y.Z., Y.L., Y.X., L.L.)
| | - Hui Zheng
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou 350001, China (X.C., Y.Z., H.Z., D.L., Y.L., S.L., Y.C., R.Z., Y.X., L.L.)
| | - Zhitao Wu
- Department of Radiology, The Second Hospital of Nanping, Nanping 354200, China (Z.W.)
| | - Danjie Lin
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou 350001, China (X.C., Y.Z., H.Z., D.L., Y.L., S.L., Y.C., R.Z., Y.X., L.L.)
| | - Ye Li
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou 350001, China (X.C., Y.Z., H.Z., D.L., Y.L., S.L., Y.C., R.Z., Y.X., L.L.); School of Medical Imaging, Fujian Medical University, Fuzhou 350004, China (X.C., Y.Z., Y.L., Y.X., L.L.)
| | - Sihui Liu
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou 350001, China (X.C., Y.Z., H.Z., D.L., Y.L., S.L., Y.C., R.Z., Y.X., L.L.)
| | - Yizhu Chen
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou 350001, China (X.C., Y.Z., H.Z., D.L., Y.L., S.L., Y.C., R.Z., Y.X., L.L.)
| | - Rufei Zhang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou 350001, China (X.C., Y.Z., H.Z., D.L., Y.L., S.L., Y.C., R.Z., Y.X., L.L.)
| | - Yang Song
- MR Scientifc Marketing, Healthineers Ltd, Siemens, Shanghai, China (Y.S.)
| | - Yunjing Xue
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou 350001, China (X.C., Y.Z., H.Z., D.L., Y.L., S.L., Y.C., R.Z., Y.X., L.L.); School of Medical Imaging, Fujian Medical University, Fuzhou 350004, China (X.C., Y.Z., Y.L., Y.X., L.L.); Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou 350001, China (Y.X., L.L.)
| | - Lin Lin
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou 350001, China (X.C., Y.Z., H.Z., D.L., Y.L., S.L., Y.C., R.Z., Y.X., L.L.); School of Medical Imaging, Fujian Medical University, Fuzhou 350004, China (X.C., Y.Z., Y.L., Y.X., L.L.); Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou 350001, China (Y.X., L.L.).
| |
Collapse
|
6
|
Zhang N, Shao X, Xu L, Zhu W, Wang H, Luo R, Yang C, Ye X, Zeng M, Chen C, Yue X, Bi Z, Lu X. Three-dimensional turbo-spin-echo amide proton transfer-weighted and intravoxel incoherent motion imaging mri for triple-negative breast cancer: a comparison with molecular subtypes and histological grades. BMC Cancer 2025; 25:465. [PMID: 40082810 PMCID: PMC11907953 DOI: 10.1186/s12885-025-13879-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 03/06/2025] [Indexed: 03/16/2025] Open
Abstract
OBJECTIVE To investigate associations between breast cancer molecular subtype and intravoxel incoherent motion imaging (IVIM) and amide proton transfer-weighted (APTw). METHODS This prospective study involved 264 patients with suspected breast tumors who underwent both breast APTw and IVIM MRI. The maximum diameter of the tumor (Dmax), APT value, apparent diffusion coefficient (ADC), diffusion coefficient (D), pseudo diffusion coefficient (D*), and perfusion fraction (f) values along with histological subtype, grade, and prognostic factors (Ki-67, estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor-2 (HER-2), were compared. APT values about biological subtypes, Ki-67 labeling index, and nuclear grades (NGs) were further analyzed. RESULTS A total of 205 participants (mean age, 53 years, range 29-80) were included in the evaluation. The triple-negative breast cancer (TNBC) cancers showed significantly higher D* values than the Luminal B cancers (P = 0.002), while there was no difference in Dmax, ADC, D, and APT (P = 0.068,0.318,0.432,0.089). The TN-type cancers showed significantly higher APT values than the HER2-type cancers (P = 0.002). The area under the curve (AUC) obtained from APTw, IVIM, and Dmax was 0.874. The APT had a moderate positive correlation with the unclear grade (r = 0.473, P < 0.001), and the D* had a weak positive correlation with the Ki-67 labeling index(r = 0.160, P = 0.022). CONCLUSION The TN subtype of breast cancer is associated with APT value and D* from IVIM. The APTw may be a promising method for predicting TNBC molecular subtypes.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Radiology, Zhongshan Hospital of Fudan University, No180 Fenglin Road, Xuhui District, Shanghai, 200023, People's Republic of China
| | - Xiali Shao
- Department of Radiology, Zhongshan Hospital of Fudan University, No180 Fenglin Road, Xuhui District, Shanghai, 200023, People's Republic of China
| | - Lianyan Xu
- Department of Radiology, Zhongshan Hospital of Fudan University, No180 Fenglin Road, Xuhui District, Shanghai, 200023, People's Republic of China
| | - Wei Zhu
- Department of General Surgery, Zhongshan Hospital of Fudan University, No 180 Fenglin Road, Xuhui District, Shanghai, 200023, People's Republic of China
| | - Haiyu Wang
- Department of General Surgery, Zhongshan Hospital of Fudan University, No 180 Fenglin Road, Xuhui District, Shanghai, 200023, People's Republic of China
| | - Rongkui Luo
- Department of Pathology, Zhongshan Hospital of Fudan University, No180 Fenglin Road, Xuhui District, Shanghai, 200023, People's Republic of China
| | - Chun Yang
- Department of Radiology, Zhongshan Hospital of Fudan University, No180 Fenglin Road, Xuhui District, Shanghai, 200023, People's Republic of China
| | - Xiaodan Ye
- Department of Radiology, Zhongshan Hospital of Fudan University, No180 Fenglin Road, Xuhui District, Shanghai, 200023, People's Republic of China
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital of Fudan University, No180 Fenglin Road, Xuhui District, Shanghai, 200023, People's Republic of China
| | - Caizhong Chen
- Department of Radiology, Zhongshan Hospital of Fudan University, No180 Fenglin Road, Xuhui District, Shanghai, 200023, People's Republic of China
| | | | - Zhenghong Bi
- Department of Radiology, Zhongshan Hospital of Fudan University, No180 Fenglin Road, Xuhui District, Shanghai, 200023, People's Republic of China.
- Shanghai Geriatric Medical Center, No 2560 Chunshen Rd, Shanghai, 201104, China.
| | - Xin Lu
- Department of Radiology, Zhongshan Hospital of Fudan University, No180 Fenglin Road, Xuhui District, Shanghai, 200023, People's Republic of China.
- Shanghai Geriatric Medical Center, No 2560 Chunshen Rd, Shanghai, 201104, China.
| |
Collapse
|
7
|
Zhang L, Jin Z, Yang F, Guo Y, Liu Y, Chen M, Xu S, Lin Z, Sun P, Yang M, Zhang P, Tao K, Zhang T, Li X, Zheng C. Added value of histogram analysis of intravoxel incoherent motion and diffusion kurtosis imaging for the evaluation of complete response to neoadjuvant therapy in locally advanced rectal cancer. Eur Radiol 2025; 35:1669-1678. [PMID: 39297948 PMCID: PMC11835893 DOI: 10.1007/s00330-024-11081-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/05/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024]
Abstract
OBJECTIVE To evaluate how intravoxel incoherent motion (IVIM) and diffusion kurtosis imaging (DKI) histogram analysis contribute to assessing complete response (CR) to neoadjuvant therapy (NAT) in locally advanced rectal cancer (LARC). MATERIAL AND METHODS In this prospective study, participants with LARC, who underwent NAT and subsequent surgery, with adequate MR image quality, were enrolled from November 2021 to March 2023. Conventional MRI (T2WI and DWI), IVIM, and DKI were performed before NAT (pre-NAT) and within two weeks before surgery (post-NAT). Image evaluation was independently performed by two experienced radiologists. Pathological complete response (pCR) was used as the reference standard. An IVIM-DKI-added model (a combination of IVIM and DKI histogram parameters with T2WI and DWI) was constructed. Receiver operating characteristic (ROC) curves were generated to evaluate the diagnostic performance of conventional MRI and the IVIM-DKI-added model. RESULTS A total of 59 participants (median age: 58.00 years [IQR: 52.00, 62.00]; 38 [64%] men) were evaluated, including 21 pCR and 38 non-pCR cases. The histogram parameters of DKI, including skewness of kurtosis post-NAT (post-KSkewness) and root mean squared of change ratio of diffusivity (Δ%DDKI-root mean squared), were entered into the IVIM-DKI-added model. The area under the ROC curve (AUC) of the IVIM-DKI-added model for assessing CR to NAT was significantly higher than that of conventional MRI (0.855 [95% CI: 0.749-0.960] vs 0.685 [95% CI: 0.565-0.806], p < 0.001). CONCLUSION IVIM and DKI provide added value in the evaluation of CR to NAT in LARC. KEY POINTS Question The current conventional imaging evaluation system lacks adequacy for assessing CR to NAT in LARC. Findings Significantly improved diagnostic performance was observed with the histogram analysis of IVIM and DKI in conjunction with conventional MRI. Clinical relevance IVIM and DKI provide significant value in evaluating CR to NAT in LARC, which bears significant implications for reducing surgical complications and facilitating organ preservation.
Collapse
Affiliation(s)
- Lan Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China
| | - Ziwei Jin
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China
| | - Fan Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China
| | - Yiwan Guo
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China
| | - Yuan Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China
| | - Manman Chen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China
| | - Si Xu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China
| | - Zhenyu Lin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, Hubei, 430022, China
| | - Peng Sun
- Clinical and Technical Support, Philips Healthcare, Beijing, 100600, China
| | - Ming Yang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Peng Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Tao Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, Hubei, 430022, China
| | - Xin Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China.
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China.
| |
Collapse
|
8
|
Prinz D, Bartsch SJ, Ehret V, Friske J, Pinker K, Helbich TH. [Multiparametric magnetic resonance imaging of the breast : What can we expect from the future?]. RADIOLOGIE (HEIDELBERG, GERMANY) 2025; 65:162-169. [PMID: 39611894 PMCID: PMC11845421 DOI: 10.1007/s00117-024-01390-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND The combination of different MRI methods is described as multiparametric MRI (mpMRI) and plays a significant role in breast cancer diagnostics. Currently, mpMRI includes contrast-enhanced and diffusion-weighted MRI. For a more comprehensive characterization of the key processes involved in cancer development, additional MRI methods that capture functional processes at the cellular and molecular levels are necessary. In the context of preclinical studies, MRI methods that enable contrast-free evaluation of key processes at the metabolic and molecular levels are being developed for future clinical applications. OBJECTIVES What does multiparametric MRI in breast cancer look like in the future? METHODS Systematic literature analysis focusing on preclinical research with regard to mpMRI as well as development and modification of noninvasive MRI methods. RESULTS Some of the most promising MRI methods for the evaluation of breast cancer that can answer functional and metabolic questions are BOLD (blood oxygen level dependent), IVIM (intravoxel incoherent motion), DMI (deuterium metabolic imaging) and CEST (chemical exchange saturation transfer). A combination and, therefore, a multiparametric approach allows for a noninvasive differentiation of breast cancer subtypes and early detection of treatment response which is crucial for the future development of the disease. CONCLUSION Standardization of quantification methods as well as improvement and expansion of MRI methods enable such a multiparametric, functional, and metabolic evaluation of the tumor. Many of these are initially developed in preclinical settings before they can be translated into clinical practice.
Collapse
Affiliation(s)
- Daniela Prinz
- Division of Molecular and Structural Preclinical Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Wien, Österreich
| | - Silvester J Bartsch
- Division of Molecular and Structural Preclinical Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Wien, Österreich
| | - Viktoria Ehret
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Wien, Österreich
| | - Joachim Friske
- Division of Molecular and Structural Preclinical Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Wien, Österreich
| | - Katja Pinker
- Division of Molecular and Structural Preclinical Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Wien, Österreich
- Division of Breast Imaging, Department of Radiology, Columbia University Vagelos College of Physicians and Surgeons, New York, USA
| | - Thomas H Helbich
- Division of Molecular and Structural Preclinical Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Wien, Österreich.
| |
Collapse
|
9
|
He L, Li F, Qin Y, Li Y, Hu Q, Liu Z, Zhang Y, Ai T. Enhanced preoperative prediction of breast lesion pathology, prognostic biomarkers, and molecular subtypes using multiple models diffusion-weighted MR imaging. Sci Rep 2025; 15:4704. [PMID: 39922806 PMCID: PMC11807203 DOI: 10.1038/s41598-024-81713-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 11/28/2024] [Indexed: 02/10/2025] Open
Abstract
This study aims to comprehensively evaluate the clinical utility of five diffusion models, including conventional mono-exponential (Mono), intravoxel incoherent motion (IVIM), diffusion kurtosis imaging (DKI), stretched exponential (SEM), and continuous-time random-walk (CTRW), for preoperatively predicting of breast lesion pathology, prognostic biomarkers, and molecular subtypes. We retrospectively analyzed 132 patients with pathologically verified breast lesions (41 benign and 91 malignant) who underwent a full protocol preoperative breast MRI protocol, including a diffusion-weighted imaging (DWI) sequence with nine b values (0 to 2000 s/mm2) on a 3.0T MR scanner. The diffusion parameters from each model-Mono (ADC), IVIM (D, D*, f), DKI (MD, MK), SEM (DDC, α) and CTRW (Dm, α, β)-were quantitatively calculated and compared between benign and malignant breast lesions, as well as across different prognostic biomarker statuses in breast cancer, using Mann-Whitney U-tests. For molecular subtypes comparisons, we employed the Kruskal-Wallis test followed by Bonferroni. All parameters, except IVIM-D*, significantly differentiated benign from malignant lesions. Notably, IVIM-D and DKI-MK values were significantly different between estrogen receptor (ER)-positive and ER-negative tumors. Progesterone receptor (PR)-positive cancers exhibited lower Mono-ADC, IVIM-D, DKI-MD, SEM-DDC, CTRW-Dm, and CTRW-α values, alongside higher DKI-MK value compared to PR-negative cancers (p < 0.05). Significant differences in IVIM-D, IVIM-D*, and DKI-MK values were observed between human epidermal growth factor receptor 2 (HER2)-negative and HER2-positive tumors. Furthermore, higher SEM-α and CTRW-β values, along with lower DKI-MD and SEM-DDC values, were noted in the high Ki-67 expression group compared to the low Ki-67 group (p < 0.05). All five diffusion models proved valuable for breast cancer diagnosis, with the CTRW model exhibiting the highest diagnostic performance, although the difference was not statistically significant. The diffusion parameters derived from these models can effectively assist in distinguishing prognostic factors and molecular subtypes of breast cancer.
Collapse
Affiliation(s)
- Litong He
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, NO. 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, China
| | - Feng Li
- Department of Radiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, Hubei, China
| | - Yanjin Qin
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, 58th the Second Zhongshan Road, Guangzhou, 510080, China
| | - Yuling Li
- Department of General Practice, Joint Service of Chinese People's Liberation Army, No. 923 Hospital, Nanning, 530021, Guangxi, China
| | - Qilan Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, NO. 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, China
| | - Zhiqiang Liu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, NO. 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, China
| | - Yunfei Zhang
- MR Collaboration, Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Tao Ai
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, NO. 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, China.
| |
Collapse
|
10
|
Yang D, Ren Y, Wang G, Wang C. Diffusion-weighted imaging based on intravoxel incoherent motion: correlation with molecular prognostic factors and subtypes in breast cancer. Acta Radiol 2025; 66:35-41. [PMID: 39569544 DOI: 10.1177/02841851241296029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
BACKGROUND Intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI), which indicates biological tissue attributes, may be applied to accurately assess breast tumors. PURPOSE To analyze the IVIM parameters of different molecular prognostic factors and subtypes to find out whether there are any connections. MATERIAL AND METHODS A total of 181 patients enrolled in this retrospective study had preoperative magnetic resonance imaging (MRI) examinations, and pathologies were verified as breast cancers. Regions of interest were placed at all slices of the parameter maps (D, tissue diffusivity; ADC, apparent diffusion coefficient; f, perfusion fraction; and D*, pseudo-diffusivity maps) of IVIM and generated parameter values to be used for comparative analysis among molecular prognostic factors and subtypes. RESULTS D and ADC were greater in estrogen receptor (ER)-negative, human epidermal growth factor receptor 2 (HER2)-positive, and Ki67-low expression groups (all P values < 0.05). The progesterone receptor (PR)-negative group had a higher D value (P < 0.05). f was larger in the lymph node metastasis-negative group and the PR-positive group (P = 0.012 and 0.046, respectively). Among breast cancer subtypes, D and ADC were different between the HER2-overexpression and the Luminal B (HER2-negative) subtypes (P = 0.019 and 0.028, respectively). The difference in D between the luminal and non-luminal subtypes was statistically significant (P = 0.008). The triple-negative subtype significantly differs from the other subtypes in D* and f (P = 0.012 and 0.016, respectively). CONCLUSION IVIM-related metrics exhibited relationships with breast cancer molecular prognosis factors and subtypes.
Collapse
Affiliation(s)
- Dan Yang
- Department of Radiology, Xinyang Central Hospital, Henan, PR China
| | - Yike Ren
- Department of Radiology, Xinyang Central Hospital, Henan, PR China
| | - Guanying Wang
- Department of Radiology, Xinyang Central Hospital, Henan, PR China
| | - Chunhong Wang
- Department of Radiology, Xinyang Central Hospital, Henan, PR China
| |
Collapse
|
11
|
Biswas D, Hippe DS, Winter AM, Li I, Rahbar H, Partridge SC. Diffusion weighted imaging for improving the diagnostic performance of screening breast MRI: impact of apparent diffusion coefficient quantitation methods and cutoffs. Front Oncol 2024; 14:1437506. [PMID: 39759131 PMCID: PMC11695236 DOI: 10.3389/fonc.2024.1437506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Introduction Diffusion weighted MRI (DWI) has emerged as a promising adjunct to reduce unnecessary biopsies prompted by breast MRI through use of apparent diffusion coefficient (ADC) measures. The purpose of this study was to investigate the effects of different lesion ADC measurement approaches and ADC cutoffs on the diagnostic performance of breast DWI in a high-risk MRI screening cohort to identify the optimal approach for clinical incorporation. Methods Consecutive screening breast MRI examinations (August 2014-Dec 2018) that prompted a biopsy for a suspicious breast lesion (BI-RADS 4 or 5) were retrospectively evaluated. On DWI, ADC (b=0/100/600/800s/mm2) measures were calculated with three different techniques for defining lesion region-of-interest (ROI; single slice('2D'), whole volume('3D') and lowest ADC region('hotspot')). An optimal data-derived ADC cutoff for each technique was retrospectively identified to reduce benign biopsies while avoiding any false negatives, inherently producing cutoffs with 100% sensitivity in this particular cohort. Further, diagnostic performance of these measures was validated using two prespecified ADC cutoffs: 1.53x10-3mm2/s from the ECOG-ACRIN A6702 trial and 1.30x10-3mm2/s from the international EUSOBI group. Diagnostic performance was compared between ADC maps generated with 2(0/800s/mm2) and 4(0/100/600/800s/mm2) b-values. Benign biopsy reduction rate was calculated (number of benign lesions with ADC >cutoff)/(total number of benign lesions). Results 137 suspicious lesions (in 121 women, median age 44 years [range, 20-75yrs]) were detected on contrast-enhanced screening breast MRI and recommended for biopsy. Of those, 30(21.9%) were malignant and 107(78.1%) were benign. Hotspot ADC measures were significantly lower (p<0.001) than ADCs from both 2D and 3D ROI techniques. Applying the optimal data-derived ADC cutoffs resulted in comparable reduction in benign biopsies across ROI techniques (range:16.8% -17.8%). Applying the prespecified A6702 and EUSOBI cutoffs resulted in benign biopsy reduction rates of 11.2-19.6%(with 90.0-100% sensitivity) and 36.4-51.4%(with 70.0-83.3% sensitivity), respectively, across ROI techniques. ADC measures and benign biopsy reduction rates were similar when calculated with only 2 b-values (0,800 s/mm2) versus all 4 b-values. Discussion Our findings demonstrate that with appropriate ADC thresholds, comparable reduction in benign biopsies can be achieved using lesion ADC measurements computed from a variety of approaches. Choice of ADC cutoff depends on ROI approach and preferred performance tradeoffs (biopsy reduction vs sensitivity).
Collapse
Affiliation(s)
- Debosmita Biswas
- Department of Radiology, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Bioengineering, College of Engineering, University of Washington, Seattle, WA, United States
| | - Daniel S. Hippe
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Andrea M. Winter
- Department of Radiology, School of Medicine, University of Washington, Seattle, WA, United States
| | - Isabella Li
- Department of Radiology, School of Medicine, University of Washington, Seattle, WA, United States
| | - Habib Rahbar
- Department of Radiology, School of Medicine, University of Washington, Seattle, WA, United States
| | - Savannah C. Partridge
- Department of Radiology, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Bioengineering, College of Engineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
12
|
Zhang J, Zheng Y, Li L, Wang R, Jiang W, Ai K, Gan T, Wang P. Combination of IVIM with DCE-MRI for diagnostic and prognostic evaluation of breast cancer. Magn Reson Imaging 2024; 113:110204. [PMID: 38971263 DOI: 10.1016/j.mri.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/14/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
PURPOSE To identify the most effective combination of DCE-MRI (Ktrans,Kep) and IVIM (D,f) and analyze the correlations of these parameters with prognostic indicators (ER, PR, and HER2, Ki-67 index, axillary lymph node (ALN) and tumor size) to improve the diagnostic and prognostic efficiency in breast cancer. METHODS This is a prospective study. We performed T1WI, T2WI, IVIM, DCE-MRI at 3 T MRI examinations on benign and malignant breast lesions that met the inclusion criteria. We also collected pathological results of corresponding lesions, including ER, PR, and HER2, Ki-67 index, axillary lymph node (ALN) and tumor size. The diagnostic efficacy of DCE-MRI, IVIM imaging, and their combination for benign and malignant breast lesions was assessed. Correlations between the DCE-MRI and IVIM parameters and prognostic indicators were assessed. RESULTS Overall,59 female patients with 62 lesions (22 benign lesions and 40 malignant lesions) were included in this study. The malignant group showed significantly lower D values (p < 0.05) and significantly higher Ktrans, Kep, and f values (p < 0.05). The AUC values of DCE, IVIM, DCE + IVIM were 0.828, 0.882, 0.901. Ktrans, Kep, D and f values were correlated with the pathological grade (p < 0.05); Ktrans was negatively correlated with ER expression (r = -0.519, p < 0.05); Kep was correlated with PR expression and the Ki-67 index (r = -0.489, 0.330, p < 0.05); the DCE and IVIM parameters showed no significant correlations with the HER2 and ALN (p > 0.05). Tumor diameter was correlated with the Kep, D and f values (r = 0.246, -0.278, 0.293; p < 0.05). CONCLUSION IVIM and DCE-MRI allowed differential diagnosis of benign and malignant breast lesions, and their combination showed significantly better diagnostic efficiency. DCE- and IVIM-derived parameters showed correlations with some prognostic factors for breast cancer.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Magnetic Resonance, LanZhou University Second Hospital, Lanzhou 730030, China.
| | - Yurong Zheng
- Department of Magnetic Resonance, LanZhou University Second Hospital, Lanzhou 730030, China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Li Li
- Department of Magnetic Resonance, LanZhou University Second Hospital, Lanzhou 730030, China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Rui Wang
- Department of Magnetic Resonance, LanZhou University Second Hospital, Lanzhou 730030, China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Weilong Jiang
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Kai Ai
- Philips Healthcare, Xi'an, China
| | - Tiejun Gan
- Department of Magnetic Resonance, LanZhou University Second Hospital, Lanzhou 730030, China
| | - Pengfei Wang
- Department of Magnetic Resonance, LanZhou University Second Hospital, Lanzhou 730030, China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| |
Collapse
|
13
|
Lun H, Huang M, Zhao Y, Huang J, Li L, Cheng H, Leung Y, So H, Wong Y, Cheung C, So C, Chan L, Hu Q. Contrast-Enhanced Ultrasound-Based Radiomics for the Prediction of Axillary Lymph Nodes Status in Breast Cancer. Cancer Rep (Hoboken) 2024; 7:e70011. [PMID: 39423311 PMCID: PMC11488668 DOI: 10.1002/cnr2.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/24/2024] [Accepted: 08/11/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Breast cancer is the leading cause of cancer-related deaths in the female population. Axillary lymph nodes (ALN) are a group of the most common metastatic sites of breast cancer. Timely assessment of ALN status is of paramount clinical importance for medical decision making. AIMS To utilize contrast-enhanced ultrasound (CEUS)-based radiomics models for noninvasive pretreatment prediction of ALN status. METHODS AND RESULTS Clinical data and pretreatment CEUS images of primary breast tumors were retrospectively studied to build radiomics signatures for pretreatment prediction of nodal status between May 2015 and July 2021. The cases were divided into the training cohorts and test cohorts in a 9:1 ratio. The mRMR approach and stepwise forward logistic regression technique were used for feature selection, followed by the multivariate logistic regression technique for building radiomics signatures in the training cohort. The confusion matrix and receiver operating characteristic (ROC) analysis were used for accessing the prediction efficacy of the radiomics models. The radiomics models, which consist of six features, achieved predictive accuracy with the area under the ROC curve (AUC) of 0.713 in the test set for predicting lymph node metastasis. CONCLUSION The CEUS-based radiomics is promising to be developed as a reliable noninvasive tool for predicting ALN status.
Collapse
Affiliation(s)
- Haimei Lun
- Department of UltrasoundPeople's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical SciencesNanningGuangxiChina
| | - Mohan Huang
- Department of Health Technology and InformaticsHong Kong Polytechnic UniversityHong KongChina
| | - Yihong Zhao
- Department of UltrasoundPeople's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical SciencesNanningGuangxiChina
| | - Jingyu Huang
- Department of Ultrasound, Guangxi Hospital Division of The First Affiliated HospitalSun Yat‐sen UniversityNanningGuangxiChina
| | - Lingling Li
- Department of UltrasoundPeople's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical SciencesNanningGuangxiChina
| | - HoiYing Cheng
- Department of Health Technology and InformaticsHong Kong Polytechnic UniversityHong KongChina
| | - Yiki Leung
- Department of Health Technology and InformaticsHong Kong Polytechnic UniversityHong KongChina
| | - HongWai So
- Department of Health Technology and InformaticsHong Kong Polytechnic UniversityHong KongChina
| | - YuenChun Wong
- Department of Health Technology and InformaticsHong Kong Polytechnic UniversityHong KongChina
| | - ChakKwan Cheung
- Department of Health Technology and InformaticsHong Kong Polytechnic UniversityHong KongChina
| | - ChiWang So
- Department of Health Technology and InformaticsHong Kong Polytechnic UniversityHong KongChina
| | - Lawrence Wing Chi Chan
- Department of Health Technology and InformaticsHong Kong Polytechnic UniversityHong KongChina
| | - Qiao Hu
- Department of UltrasoundPeople's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical SciencesNanningGuangxiChina
| |
Collapse
|
14
|
Yang D, Ren Y, Wang C. Histogram analysis of intravoxel incoherent motion imaging: Correlation with molecular prognostic factors and combined subtypes of breast cancer. Magn Reson Imaging 2024; 111:210-216. [PMID: 38777242 DOI: 10.1016/j.mri.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/18/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE To look for links between diffusion and IVIM parameters and different molecular subtypes and prognostic factors through histogram analysis. MATERIALS AND METHODS A total of 139 patients with breast cancer who had pre-operative MRI examinations were enrolled in this retrospective study. Histograms of the diffusion and IVIM parameters were analyzed for the whole tumor, and an association was investigated between the parameters and the different molecular prognostic factors and subtypes using the nonparametric test, Spearman's rank correlation, and receiver operating characteristic (ROC) curve. RESULTS The histogram metrics of the diffusion and IVIM parameters were significantly different for molecular prognostic factors such as human epidermal receptor factor-2 (HER2), progesterone receptor, estrogen receptor, and ki-67. All histogram metrics displayed a poor correlation with all groups (r = -0.28-0.29). There were significant differences in the histogram metrics for the Luminal B-HER2 (-) vs. HER2-positive (non-luminal) subtypes in the mean and 10th percentile D, with the area under the curves (AUCs) of 0.742 and 0.700, respectively, and for the Luminal A and HER2-positive (non-luminal) subtypes in the 90th percentile and entropy of D*, with AUCs of 0.769 and 0.727, respectively. CONCLUSION The histogram metrics of IVIM parameters exhibited links with breast cancer prognosis factors and combined subtypes.
Collapse
Affiliation(s)
- Dan Yang
- Department of Radiology, Xinyang Central Hospital, No. 01 Xinyang Siyi Road, Xinyang 464000, Henan, China.
| | - Yike Ren
- Department of Radiology, Xinyang Central Hospital, No. 01 Xinyang Siyi Road, Xinyang 464000, Henan, China
| | - Chunhong Wang
- Department of Radiology, Xinyang Central Hospital, No. 01 Xinyang Siyi Road, Xinyang 464000, Henan, China
| |
Collapse
|
15
|
Iima M, Kataoka M, Honda M, Le Bihan D. Diffusion-Weighted MRI for the Assessment of Molecular Prognostic Biomarkers in Breast Cancer. Korean J Radiol 2024; 25:623-633. [PMID: 38942456 PMCID: PMC11214919 DOI: 10.3348/kjr.2023.1188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 02/28/2024] [Accepted: 04/11/2024] [Indexed: 06/30/2024] Open
Abstract
This study systematically reviewed the role of diffusion-weighted imaging (DWI) in the assessment of molecular prognostic biomarkers in breast cancer, focusing on the correlation of apparent diffusion coefficient (ADC) with hormone receptor status and prognostic biomarkers. Our meta-analysis includes data from 52 studies examining ADC values in relation to estrogen receptor (ER), progesterone receptor (PgR), human epidermal growth factor receptor 2 (HER2), and Ki-67 status. The results indicated significant differences in ADC values among different receptor statuses, with ER-positive, PgR-positive, HER2-negative, and Ki-67-positive tumors having lower ADC values compared to their negative counterparts. This study also highlights the potential of advanced DWI techniques such as intravoxel incoherent motion and non-Gaussian DWI to provide additional insights beyond ADC. Despite these promising findings, the high heterogeneity among the studies underscores the need for standardized DWI protocols to improve their clinical utility in breast cancer management.
Collapse
Affiliation(s)
- Mami Iima
- Department of Fundamental Development for Advanced Low Invasive Diagnostic Imaging, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Masako Kataoka
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Maya Honda
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Diagnostic Radiology, Kansai Electric Power Hospital, Osaka, Japan
| | - Denis Le Bihan
- NeuroSpin, Joliot Institute, Department of Fundamental Research, Commissariat à l'Energie Atomique (CEA)-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
16
|
Ba ZC, Zhang HX, Liu AY, Zhou XX, Liu L, Wang XY, Nanding A, Sang XQ, Kuai ZX. Combination of DCE-MRI and NME-DWI via Deep Neural Network for Predicting Breast Cancer Molecular Subtypes. Clin Breast Cancer 2024; 24:e417-e427. [PMID: 38555225 DOI: 10.1016/j.clbc.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND To explore whether the combination of dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) and nonmono-exponential (NME) model-based diffusion-weighted imaging (DWI) via deep neural network (DNN) can improve the prediction of breast cancer molecular subtypes compared to either imaging technique used alone. PATIENTS AND METHODS This prospective study examined 480 breast cancers in 475 patients undergoing DCE-MRI and NME-DWI at 3.0 T. Breast cancers were classified as follows: human epidermal growth factor receptor 2 enriched (HER2-enriched), luminal A, luminal B (HER2-), luminal B (HER2+), and triple-negative subtypes. A total of 20% cases were withheld as an independent test dataset, and the remaining cases were used to train DNN with an 80% to 20% training-validation split and 5-fold cross-validation. The diagnostic accuracies of DNN in 5-way subtype classification between the DCE-MRI, NME-DWI, and their combined multiparametric-MRI datasets were compared using analysis of variance with least significant difference posthoc test. Areas under the receiver-operating characteristic curves were calculated to assess the performances of DNN in binary subtype classification between the 3 datasets. RESULTS The 5-way classification accuracies of DNN on both DCE-MRI (0.71) and NME-DWI (0.64) were significantly lower (P < .05) than on multiparametric-MRI (0.76), while on DCE-MRI was significantly higher (P < .05) than on NME-DWI. The comparative results of binary classification between the 3 datasets were consistent with the 5-way classification. CONCLUSION The combination of DCE-MRI and NME-DWI via DNN achieved a significant improvement in breast cancer molecular subtype prediction compared to either imaging technique used alone. Additionally, DCE-MRI outperformed NME-DWI in differentiating subtypes.
Collapse
Affiliation(s)
- Zhi-Chang Ba
- Imaging Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hong-Xia Zhang
- Imaging Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ao-Yu Liu
- Imaging Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin-Xiang Zhou
- Imaging Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lu Liu
- Imaging Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin-Yi Wang
- Imaging Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Abiyasi Nanding
- Imaging Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xi-Qiao Sang
- Division of Respiratory Disease, Fourth Affiliated Hospital of Harbin Medical University, Yiyuan street No.37, Nangang District, Harbin, China.
| | - Zi-Xiang Kuai
- Imaging Center, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
17
|
Balaha HM, Ayyad SM, Alksas A, Shehata M, Elsorougy A, Badawy MA, Abou El-Ghar M, Mahmoud A, Alghamdi NS, Ghazal M, Contractor S, El-Baz A. Precise Prostate Cancer Assessment Using IVIM-Based Parametric Estimation of Blood Diffusion from DW-MRI. Bioengineering (Basel) 2024; 11:629. [PMID: 38927865 PMCID: PMC11200510 DOI: 10.3390/bioengineering11060629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/22/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Prostate cancer is a significant health concern with high mortality rates and substantial economic impact. Early detection plays a crucial role in improving patient outcomes. This study introduces a non-invasive computer-aided diagnosis (CAD) system that leverages intravoxel incoherent motion (IVIM) parameters for the detection and diagnosis of prostate cancer (PCa). IVIM imaging enables the differentiation of water molecule diffusion within capillaries and outside vessels, offering valuable insights into tumor characteristics. The proposed approach utilizes a two-step segmentation approach through the use of three U-Net architectures for extracting tumor-containing regions of interest (ROIs) from the segmented images. The performance of the CAD system is thoroughly evaluated, considering the optimal classifier and IVIM parameters for differentiation and comparing the diagnostic value of IVIM parameters with the commonly used apparent diffusion coefficient (ADC). The results demonstrate that the combination of central zone (CZ) and peripheral zone (PZ) features with the Random Forest Classifier (RFC) yields the best performance. The CAD system achieves an accuracy of 84.08% and a balanced accuracy of 82.60%. This combination showcases high sensitivity (93.24%) and reasonable specificity (71.96%), along with good precision (81.48%) and F1 score (86.96%). These findings highlight the effectiveness of the proposed CAD system in accurately segmenting and diagnosing PCa. This study represents a significant advancement in non-invasive methods for early detection and diagnosis of PCa, showcasing the potential of IVIM parameters in combination with machine learning techniques. This developed solution has the potential to revolutionize PCa diagnosis, leading to improved patient outcomes and reduced healthcare costs.
Collapse
Affiliation(s)
- Hossam Magdy Balaha
- Department of Bioengineering, J.B. Speed School of Engineering, University of Louisville, Louisville, KY 40292, USA
| | - Sarah M. Ayyad
- Computers and Control Systems Engineering Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed Alksas
- Department of Bioengineering, J.B. Speed School of Engineering, University of Louisville, Louisville, KY 40292, USA
| | - Mohamed Shehata
- Department of Bioengineering, J.B. Speed School of Engineering, University of Louisville, Louisville, KY 40292, USA
| | - Ali Elsorougy
- Radiology Department, Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed Ali Badawy
- Radiology Department, Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed Abou El-Ghar
- Radiology Department, Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt
| | - Ali Mahmoud
- Department of Bioengineering, J.B. Speed School of Engineering, University of Louisville, Louisville, KY 40292, USA
| | - Norah Saleh Alghamdi
- Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Mohammed Ghazal
- Electrical, Computer, and Biomedical Engineering Depatrment, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates
| | - Sohail Contractor
- Department of Radiology, University of Louisville, Louisville, KY 40202, USA
| | - Ayman El-Baz
- Department of Bioengineering, J.B. Speed School of Engineering, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
18
|
Zhao Z, Zhang J, Yuan S, Zhang H, Yin H, Wang G, Pan Y, Li Q. The value of whole tumor apparent diffusion coefficient histogram parameters in predicting meningiomas progesterone receptor expression. Neurosurg Rev 2024; 47:235. [PMID: 38795181 DOI: 10.1007/s10143-024-02482-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 05/27/2024]
Abstract
PURPOSE This study investigated the value of whole tumor apparent diffusion coefficient (ADC) histogram parameters and magnetic resonance imaging (MRI) semantic features in predicting meningioma progesterone receptor (PR) expression. MATERIALS AND METHODS The imaging, pathological, and clinical data of 53 patients with PR-negative meningiomas and 52 patients with PR-positive meningiomas were retrospectively reviewed. The whole tumor was outlined using Firevoxel software, and the ADC histogram parameters were calculated. The differences in ADC histogram parameters and MRI semantic features were compared between the two groups. The predictive values of parameters for PR expression were assessed using receiver operating characteristic curves. The correlation between whole-tumor ADC histogram parameters and PR expression in meningiomas was also analyzed. RESULTS Grading was able to predict the PR expression in meningiomas (p = 0.012), though the semantic features of MRI were not (all p > 0.05). The mean, Perc.01, Perc.05, Perc.10, Perc.25, and Perc.50 histogram parameters were able to predict meningioma PR expression (all p < 0.05). The predictive performance of the combined histogram parameters improved, and the combination of grade and histogram parameters provided the optimal predictive value, with an area under the curve of 0.849 (95%CI: 0.766-0.911) and sensitivity, specificity, ACC, PPV, and NPV of 73.08%, 81.13%, 77.14%, 79.20%, and 75.40%, respectively. The mean, Perc.01, Perc.05, Perc.10, Perc.25, and Perc.50 histogram parameters were positively correlated with PR expression (all p < 0.05). CONCLUSION Whole tumor ADC histogram parameters have additional clinical value in predicting PR expression in meningiomas.
Collapse
Affiliation(s)
- Zhiyong Zhao
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Institute of Neurology, Lanzhou University, Lanzhou, Gansu, China
| | - Jinglong Zhang
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Institute of Neurology, Lanzhou University, Lanzhou, Gansu, China
| | - Shuai Yuan
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Institute of Neurology, Lanzhou University, Lanzhou, Gansu, China
| | - He Zhang
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Institute of Neurology, Lanzhou University, Lanzhou, Gansu, China
| | - Hang Yin
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Institute of Neurology, Lanzhou University, Lanzhou, Gansu, China
| | - Gang Wang
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Institute of Neurology, Lanzhou University, Lanzhou, Gansu, China
| | - Yawen Pan
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China.
- Institute of Neurology, Lanzhou University, Lanzhou, Gansu, China.
| | - Qiang Li
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China.
- Institute of Neurology, Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
19
|
Zhou XX, Zhang L, Cui QX, Li H, Sang XQ, Zhang HX, Zhu YM, Kuai ZX. A Channel-Dimensional Feature-Reconstructed Deep Learning Model for Predicting Breast Cancer Molecular Subtypes on Overall b-Value Diffusion-Weighted MRI. J Magn Reson Imaging 2024; 59:1425-1435. [PMID: 37403945 DOI: 10.1002/jmri.28895] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Dynamic contrast-enhanced (DCE) MRI commonly outperforms diffusion-weighted (DW) MRI in breast cancer discrimination. However, the side effects of contrast agents limit the use of DCE-MRI, particularly in patients with chronic kidney disease. PURPOSE To develop a novel deep learning model to fully exploit the potential of overall b-value DW-MRI without the need for a contrast agent in predicting breast cancer molecular subtypes and to evaluate its performance in comparison with DCE-MRI. STUDY TYPE Prospective. SUBJECTS 486 female breast cancer patients (training/validation/test: 64%/16%/20%). FIELD STRENGTH/SEQUENCE 3.0 T/DW-MRI (13 b-values) and DCE-MRI (one precontrast and five postcontrast phases). ASSESSMENT The breast cancers were divided into four subtypes: luminal A, luminal B, HER2+, and triple negative. A channel-dimensional feature-reconstructed (CDFR) deep neural network (DNN) was proposed to predict these subtypes using pathological diagnosis as the reference standard. Additionally, a non-CDFR DNN (NCDFR-DNN) was built for comparative purposes. A mixture ensemble DNN (ME-DNN) integrating two CDFR-DNNs was constructed to identify subtypes on multiparametric MRI (MP-MRI) combing DW-MRI and DCE-MRI. STATISTICAL TESTS Model performance was evaluated using accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC). Model comparisons were performed using the one-way analysis of variance with least significant difference post hoc test and the DeLong test. P < 0.05 was considered significant. RESULTS The CDFR-DNN (accuracies, 0.79 ~ 0.80; AUCs, 0.93 ~ 0.94) demonstrated significantly improved predictive performance than the NCDFR-DNN (accuracies, 0.76 ~ 0.78; AUCs, 0.92 ~ 0.93) on DW-MRI. Utilizing the CDFR-DNN, DW-MRI attained the predictive performance equal (P = 0.065 ~ 1.000) to DCE-MRI (accuracies, 0.79 ~ 0.80; AUCs, 0.93 ~ 0.95). The predictive performance of the ME-DNN on MP-MRI (accuracies, 0.85 ~ 0.87; AUCs, 0.96 ~ 0.97) was superior to those of both the CDFR-DNN and NCDFR-DNN on either DW-MRI or DCE-MRI. DATA CONCLUSION The CDFR-DNN enabled overall b-value DW-MRI to achieve the predictive performance comparable to DCE-MRI. MP-MRI outperformed DW-MRI and DCE-MRI in subtype prediction. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Xin-Xiang Zhou
- Imaging Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lan Zhang
- Imaging Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Quan-Xiang Cui
- Imaging Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hui Li
- Imaging Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xi-Qiao Sang
- Division of Respiratory Disease, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong-Xia Zhang
- Imaging Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yue-Min Zhu
- CREATIS, CNRS UMR 5220-INSERM U1294-University Lyon 1-INSA Lyon-University Jean Monnet Saint-Etienne, Villeurbanne, France
| | - Zi-Xiang Kuai
- Imaging Center, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
20
|
Yu T, Li L, Shi J, Gong X, Cheng Y, Wang W, Cao Y, Cao M, Jiang F, Wang L, Wang X, Zhang J. Predicting histopathological types and molecular subtype of breast tumors: A comparative study using amide proton transfer-weighted imaging, intravoxel incoherent motion and diffusion kurtosis imaging. Magn Reson Imaging 2024; 105:37-45. [PMID: 37890802 DOI: 10.1016/j.mri.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/07/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
PURPOSE To evaluate the predictive performance of multiparameter and histogram features derived from amide proton transfer-weighted imaging (APTWI), intravoxel incoherent motion (IVIM) and diffusion kurtosis imaging (DKI) for histopathological types of breast tumors. METHODS Region of interest (ROI) was delineated by outlining the largest slice of the tumor on the false-color images of the DKI, IVIM and APTWI parameters, and extracted the histogram features. Receiver operating characteristic (ROC) curve was used to evaluate the performance of parameters in predicting benign and malignant breast lesions, molecular prognostic biomarkers, lymph node status, and subtypes of breast lesions. The Spearman correlation coefficient was used to determine the correlations between each parameter and clinical-pathological factors. RESULTS All 52 breast lesions were enrolled in this prospective study, including 8 benign lesions and 44 breast cancers. To diagnose malignant and benign breast lesions, the value of APT (min) performed best, with the AUC reaching 0.983. According to the different imaging methods, the APTWI performed best. To predict the positive status of ER, PR, Ki67, the value of Dapp (uniformity), Dapp (uniformity), f (entropy) performed best, with the AUC values reaching 0.743, 0.770, 0.848, respectively. For the identification of Luminal B, HER2-enriched, and TNBC breast cancers, Kapp (max), f (kurtosis), and Dapp (uniformity) performed best, with AUC values reaching 0.679, 0.826, 0.771, respectively. CONCLUSION This study found the APTWI, IVIM and DKI parameters could diagnose breast cancer. The histogram features of DKI and IVIM, based on tumor heterogeneity, may help to predict breast cancer subtypes.
Collapse
Affiliation(s)
- Tao Yu
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing 400030, China
| | - Lan Li
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing 400030, China
| | - Jinfang Shi
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing 400030, China
| | - Xueqin Gong
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing 400030, China
| | - Yue Cheng
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing 400030, China
| | - Wei Wang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing 400030, China
| | - Ying Cao
- School of Medicine, Chongqing University, Chongqing 400030, China
| | - Meimei Cao
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing 400030, China
| | - Fujie Jiang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing 400030, China
| | - Lu Wang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing 400030, China
| | - Xiaoxia Wang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing 400030, China
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing 400030, China.
| |
Collapse
|
21
|
Zhang L, Zhou XX, Liu L, Liu AY, Zhao WJ, Zhang HX, Zhu YM, Kuai ZX. Comparison of Dynamic Contrast-Enhanced MRI and Non-Mono-Exponential Model-Based Diffusion-Weighted Imaging for the Prediction of Prognostic Biomarkers and Molecular Subtypes of Breast Cancer Based on Radiomics. J Magn Reson Imaging 2023; 58:1590-1602. [PMID: 36661350 DOI: 10.1002/jmri.28611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Dynamic contrast-enhanced (DCE) MRI and non-mono-exponential model-based diffusion-weighted imaging (NME-DWI) that does not require contrast agent can both characterize breast cancer. However, which technique is superior remains unclear. PURPOSE To compare the performances of DCE-MRI, NME-DWI and their combination as multiparametric MRI (MP-MRI) in the prediction of breast cancer prognostic biomarkers and molecular subtypes based on radiomics. STUDY TYPE Prospective. POPULATION A total of 477 female patients with 483 breast cancers (5-fold cross-validation: training/validation, 80%/20%). FIELD STRENGTH/SEQUENCE A 3.0 T/DCE-MRI (6 dynamic frames) and NME-DWI (13 b values). ASSESSMENT After data preprocessing, high-throughput features were extracted from each tumor volume of interest, and optimal features were selected using recursive feature elimination method. To identify ER+ vs. ER-, PR+ vs. PR-, HER2+ vs. HER2-, Ki-67+ vs. Ki-67-, luminal A/B vs. nonluminal A/B, and triple negative (TN) vs. non-TN, the following models were implemented: random forest, adaptive boosting, support vector machine, linear discriminant analysis, and logistic regression. STATISTICAL TESTS Student's t, chi-square, and Fisher's exact tests were applied on clinical characteristics to confirm whether significant differences exist between different statuses (±) of prognostic biomarkers or molecular subtypes. The model performances were compared between the DCE-MRI, NME-DWI, and MP-MRI datasets using the area under the receiver-operating characteristic curve (AUC) and the DeLong test. P < 0.05 was considered significant. RESULTS With few exceptions, no significant differences (P = 0.062-0.984) were observed in the AUCs of models for six classification tasks between the DCE-MRI (AUC = 0.62-0.87) and NME-DWI (AUC = 0.62-0.91) datasets, while the model performances on the two imaging datasets were significantly poorer than on the MP-MRI dataset (AUC = 0.68-0.93). Additionally, the random forest and adaptive boosting models (AUC = 0.62-0.93) outperformed other three models (AUC = 0.62-0.90). DATA CONCLUSION NME-DWI was comparable with DCE-MRI in predictive performance and could be used as an alternative technique. Besides, MP-MRI demonstrated significantly higher AUCs than either DCE-MRI or NME-DWI. EVIDENCE LEVEL 2. TECHNICAL EFFICACY Stage 2.
Collapse
Affiliation(s)
- Lan Zhang
- Imaging Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin-Xiang Zhou
- Imaging Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lu Liu
- Imaging Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ao-Yu Liu
- Imaging Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wen-Juan Zhao
- Imaging Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hong-Xia Zhang
- Imaging Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yue-Min Zhu
- CREATIS, CNRS UMR 5220-INSERM U1206-University Lyon 1-INSA Lyon-University Jean Monnet Saint-Etienne, Lyon, France
| | - Zi-Xiang Kuai
- Imaging Center, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
22
|
Honda M, Iima M, Kataoka M, Fukushima Y, Ota R, Ohashi A, Toi M, Nakamoto Y. Biomarkers Predictive of Distant Disease-free Survival Derived from Diffusion-weighted Imaging of Breast Cancer. Magn Reson Med Sci 2023; 22:469-476. [PMID: 35922924 PMCID: PMC10552669 DOI: 10.2463/mrms.mp.2022-0060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/12/2022] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To investigate whether intravoxel incoherent motion (IVIM) and/or non-Gaussian diffusion parameters are associated with distant disease-free survival (DDFS) in patients with invasive breast cancer. METHODS From May 2013 to March 2015, 101 patients (mean age 60.0, range 28-88) with invasive breast cancer were evaluated prospectively. IVIM parameters (flowing blood volume fraction [fIVIM] and pseudodiffusion coefficient [D*]) and non-Gaussian diffusion parameters (theoretical apparent diffusion coefficient [ADC] at a b value of 0 s/mm2 [ADC0] and kurtosis [K]) were estimated using a diffusion-weighted imaging series of 16 b values up to 2500 s/mm2. Shifted ADC values (sADC200-1500) and standard ADC values (ADC0-800) were also calculated. The Kaplan-Meier method was used to generate survival analyses for DDFS, which were compared using the log-rank test. Univariable Cox proportional hazards models were used to assess any associations between each parameter and distant metastasis-free survival. RESULTS The median observation period was 80 months (range, 35-92 months). Among the 101 patients, 12 (11.9%) developed distant metastasis, with a median time to metastasis of 79 months (range, 10-92 months). Kaplan-Meier analysis showed that DDFS was significantly shorter in patients with K > 0.98 than in those with K ≤ 0.98 (P = 0.04). Cox regression analysis showed a marginal statistical association between K and distant metastasis-free survival (P = 0.05). CONCLUSION Non-Gaussian diffusion may be associated with prognosis in invasive breast cancer. A higher K may be a marker to help identify patients at an elevated risk of distant metastasis, which could guide subsequent treatment.
Collapse
Affiliation(s)
- Maya Honda
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
- Department of Diagnostic Radiology, Kansai Electric Power Hospital, Osaka, Osaka, Japan
| | - Mami Iima
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Kyoto, Japan
| | - Masako Kataoka
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Yasuhiro Fukushima
- Department of Applied Medical Imaging, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Rie Ota
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Akane Ohashi
- Department of Translational Medicine, Diagnostic Radiology, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Masakazu Toi
- Department of Breast Surgery, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| |
Collapse
|
23
|
Ba R, Wang X, Zhang Z, Li Q, Sun Y, Zhang J, Wu D. Diffusion-time dependent diffusion MRI: effect of diffusion-time on microstructural mapping and prediction of prognostic features in breast cancer. Eur Radiol 2023; 33:6226-6237. [PMID: 37071169 DOI: 10.1007/s00330-023-09623-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 12/14/2022] [Accepted: 02/14/2023] [Indexed: 04/19/2023]
Abstract
OBJECTIVES This study aimed to evaluate the effect of achievable td on the accuracy of microstructural mapping based on simulation and patient experiments, and investigate the feasibility of td-dMRI in distinguishing prognostic factors in breast cancer patients. METHODS Simulation was performed using different td settings. Patients with breast cancer were enrolled prospectively between November 2020 and January 2021, who underwent oscillating and pulsed gradient encoded dMRI on a 3-T scanner using short-/long-td protocol with oscillating frequency up to 50/33 Hz. Data were fitted with a two-compartment model to estimate cell diameter (d), intracellular fraction (fin), and diffusivities. Estimated microstructural markers were used to differentiate immunohistochemical receptor status and the presence of lymph node (LN), which were correlated with histopathological measurements. RESULTS Simulation results showed that d fitted from the short-td protocol significantly reduced estimation error than those from long-td (2.07 ± 1.51% versus 3.05 ± 1.92%, p < 0.0001) while the estimation error of fin was robust to different protocols. Among a total of 37 breast cancer patients, the estimated d was significantly higher in HER2-positive and LN-positive (p < 0.05) groups compared to their negative counterparts only using the short-td protocol. Histopathological validation in a subset of 6 patients with whole slide images showed the estimated d was highly correlated with measurements from H&E staining (r = 0.84, p = 0.03) only using the short-td protocol. CONCLUSIONS The results indicated the necessity of short-td for accurate microstructural mapping in breast cancer. The current td-dMRI with a total acquisition time of 4.5 min showed its potential in the diagnosis of breast cancer. KEY POINTS • Short td is important for accurate microstructural mapping in breast cancer using the td-dMRI technique, based on simulation and histological validation. • The 4.5-min td-dMRI protocol showed potential clinical value for breast cancer, given the difference in cell diameter between HER2/LN positive and negative groups.
Collapse
Affiliation(s)
- Ruicheng Ba
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Room 525, Zhou Yiqing Building, Yuquan Campus, Hangzhou, 310027, China
| | - Xiaoxia Wang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Zelin Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Room 525, Zhou Yiqing Building, Yuquan Campus, Hangzhou, 310027, China
| | - Qing Li
- MR Collaborations, Siemens Healthineers Ltd., Shanghai, China
| | - Yi Sun
- MR Collaborations, Siemens Healthineers Ltd., Shanghai, China
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Room 525, Zhou Yiqing Building, Yuquan Campus, Hangzhou, 310027, China.
| |
Collapse
|
24
|
Qin Y, Tang C, Hu Q, Yi J, Yin T, Ai T. Assessment of Prognostic Factors and Molecular Subtypes of Breast Cancer With a Continuous-Time Random-Walk MR Diffusion Model: Using Whole Tumor Histogram Analysis. J Magn Reson Imaging 2023; 58:93-105. [PMID: 36251468 DOI: 10.1002/jmri.28474] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The continuous-time random-walk (CTRW) diffusion model to evaluate breast cancer prognosis is rarely reported. PURPOSE To investigate the correlations between apparent diffusion coefficient (ADC) and CTRW-specific parameters with prognostic factors and molecular subtypes of breast cancer. STUDY TYPE Retrospective. POPULATION One hundred fifty-seven women (median age, 50 years; range, 26-81 years) with histopathology-confirmed breast cancer. FIELD STRENGTH/SEQUENCE Simultaneous multi-slice readout-segmented echo-planar imaging at 3.0T. ASSESSMENT The histogram metrics of ADC, anomalous diffusion coefficient (D), temporal diffusion heterogeneity (α), and spatial diffusion heterogeneity (β) were calculated for whole-tumor volume. Associations between histogram metrics and prognostic factors (estrogen receptor [ER], progesterone receptor [PR], human epidermal growth factor receptor 2 [HER2], and Ki-67 proliferation index), axillary lymph node metastasis (ALNM), and tumor grade were assessed. The performance of histogram metrics, both alone and in combination, for differentiating molecular subtypes (HER2-positive, Luminal or triple negative) was also assessed. STATISTICAL TESTS Comparisons were made using Mann-Whitney test between different prognostic factor statuses and molecular subtypes. Receiver operating characteristic curve analysis was used to assess the performance of mean and median histogram metrics in differentiating the molecular subtypes. A P value <0.05 was considered statistically significant. RESULTS The histogram metrics of ADC, D, and α differed significantly between ER-positive and ER-negative status, and between PR-positive and PR-negative status. The histogram metrics of ADC, D, α, and β were also significantly different between the HER2-positive and HER2-negative subgroups, and between ALNM-positive and ALNM-negative subgroups. The histogram metrics of α and β significantly differed between high and low Ki-67 proliferation subgroups, and between histological grade subgroups. The combination of αmean and βmean achieved the highest performance (AUC = 0.702) to discriminate the Luminal and HER2-positive subtypes. DATA CONCLUSION Whole-tumor histogram analysis of the CTRW model has potential to provide additional information on the prognosis and intrinsic subtyping classification of breast cancer. EVIDENCE LEVEL 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Yanjin Qin
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Caili Tang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qilan Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingru Yi
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Yin
- MR Collaborations, Siemens Healthineers Ltd., Chengdu, China
| | - Tao Ai
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Zhang S, Guo Q, Yang Y, Feng H, Zhao Y, Guo P, Li D, Du X, Song Q. Feasibility Study of 3D FACT and IVIM Sequences in the Evaluation of Female Osteoporosis. Bioengineering (Basel) 2023; 10:710. [PMID: 37370641 DOI: 10.3390/bioengineering10060710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The aim of this study is to search for the predictive value of 3D fat analysis and calculation technique (FACT) and intravoxel incoherent motion (IVIM) parameters in identifying osteoporosis in women. METHODS We enrolled 48 female subjects who underwent 3.0 T MRI, including 3D FACT and IVIM sequences. Bone mineral density (BMD) values and Fracture Risk Assessment (FRAX) scores were obtained. Proton density fat fraction (PDFF) in the bone marrow and the real diffusion (D) value of intervertebral discs were measured on 3D FACT and IVIM images, respectively. Accuracy and bias were assessed by linear regression analysis and Bland-Altman plots. Intraclass correlation coefficients were used to assess the measurements' reproducibility. Spearman's rank correlation was applied to explore the correlation. MRI-based parameters were tested for significant differences among the three groups using ANOVA analyses. A receiver operating characteristic (ROC) analysis was performed. RESULTS The PDFF of the vertebral body showed a negative correlation with BMD (R = -0.393, p = 0.005) and a positive correlation with the FRAX score (R = 0.706, p < 0.001). The D value of intervertebral discs showed a positive correlation with BMD (R = 0.321, p = 0.024) and a negative correlation with the FRAX score (R = -0.334, p = 0.019). The area under the curve values from the ROC analysis showed that the 3D FACT and IVIM sequences could accurately differentiate between normal and osteoporosis (AUC = 0.88 using the PDFF; AUC = 0.77 using the D value). The PDFF value demonstrated a sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of 78.6%, 89.5%, 84.6%, and 85.0%, respectively, in its ability to predict osteoporosis. The D value had a sensitivity, specificity, PPV, and NPV of 63.16%, 92.9%, 65.0%, and 77.8%, respectively, for predicting osteoporosis. CONCLUSIONS The 3D FACT- and IVIM-measured PDFF and D values are promising biomarkers in the assessment of bone quality and fracture risk.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Qianrui Guo
- Department of Nuclear Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yang Yang
- Beijing United Imaging Research Institute of Intelligent Imaging, Beijing 100094, China
| | - Hongbo Feng
- Department of Nuclear Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yan Zhao
- Department of Information Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Peng Guo
- Department of Nuclear Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Di Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xuemei Du
- Department of Nuclear Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Qingwei Song
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
26
|
Pavilla A, Gambarota G, Signaté A, Arrigo A, Saint-Jalmes H, Mejdoubi M. Intravoxel incoherent motion and diffusion kurtosis imaging at 3T MRI: Application to ischemic stroke. Magn Reson Imaging 2023; 99:73-80. [PMID: 36669596 DOI: 10.1016/j.mri.2023.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/25/2022] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
BACKGROUND AND PURPOSE The DKI-IVIM model that incorporates DKI (diffusional kurtosis imaging) into the IVIM (Intravoxel Incoherent Motion) concept was investigated to assess its utility for both enhanced diffusion characterization and perfusion measurements in ischemic stroke at 3 T. METHODS Fifteen stroke patients (71 ± 11 years old) were enrolled and DKI-IVIM analysis was performed using 9 b-values from 0 to 1500 s/mm2 chosen with the Cramer-Rao-Lower-Bound optimization approach. Pseudo-diffusion coefficient D*, perfusion fraction f, blood flow-related parameter fD*, the diffusion coefficient D and an additional parameter, the kurtosis, K were determined in the ischemic lesion and controlateral normal tissue based on a region of interest approach. The apparent diffusion coefficient (ADC) and arterial spin labelling (ASL) cerebral blood flow (CBF) parameters were also assessed and parametric maps were obtained for all parameters. RESULTS Significant differences were observed for all diffusion parameters with a significant decrease for D (p < 0.0001), ADC (p < 0.0001), and a significant increase for K (p < 0.0001) in the ischemic lesions of all patients. f decreased significantly in these regions (p = 0.0002). The fD* increase was not significant (p = 0.56). The same significant differences were found with a motion correction except for fD* (p = 0.47). CBF significantly decreased in the lesions. ADC was significantly positively correlated with D (p < 0.0001) and negatively with K (p = 0.0002); K was also negatively significantly correlated with D (p = 0.01). CONCLUSIONS DKI-IVIM model enables for simultaneous cerebral perfusion and enhanced diffusion characterization in an acceptable clinically acquisition time for the ischemic stroke diagnosis with the additional kurtosis factor estimation, that may better reflect the microstructure heterogeneity.
Collapse
Affiliation(s)
- Aude Pavilla
- Univ-Rennes, INSERM, LTSI - UMR 1099, F-35000 Rennes, France; Département de Neuroradiologie, CHU Martinique, F-97261 Fort de France, France.
| | | | - Aissatou Signaté
- Département de Neuroradiologie, CHU Martinique, F-97261 Fort de France, France
| | - Alessandro Arrigo
- Département de Neuroradiologie, CHU Martinique, F-97261 Fort de France, France
| | | | - Mehdi Mejdoubi
- Département de Neuroradiologie, CHU Martinique, F-97261 Fort de France, France
| |
Collapse
|
27
|
Yao FF, Zhang Y. A review of quantitative diffusion-weighted MR imaging for breast cancer: Towards noninvasive biomarker. Clin Imaging 2023; 98:36-58. [PMID: 36996598 DOI: 10.1016/j.clinimag.2023.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/03/2023] [Accepted: 03/21/2023] [Indexed: 04/01/2023]
Abstract
Quantitative diffusion-weighted imaging (DWI) is an important adjunct to conventional breast MRI and shows promise as a noninvasive biomarker of breast cancer in multiple clinical scenarios, from the discrimination of benign and malignant lesions, prediction, and evaluation of treatment response to a prognostic assessment of breast cancer. Various quantitative parameters are derived from different DWI models based on special prior knowledge and assumptions, have different meanings, and are easy to confuse. In this review, we describe the quantitative parameters derived from conventional and advanced DWI models commonly used in breast cancer and summarize the promising clinical applications of these quantitative parameters. Although promising, it is still challenging for these quantitative parameters to become clinically useful noninvasive biomarkers in breast cancer, as multiple factors may result in variations in quantitative parameter measurements. Finally, we briefly describe some considerations regarding the factors that cause variations.
Collapse
Affiliation(s)
- Fei-Fei Yao
- Department of MRI in the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China.
| | - Yan Zhang
- Department of MRI in the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
28
|
Romeo V, Helbich TH, Pinker K. Breast PET/MRI Hybrid Imaging and Targeted Tracers. J Magn Reson Imaging 2023; 57:370-386. [PMID: 36165348 PMCID: PMC10074861 DOI: 10.1002/jmri.28431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 01/20/2023] Open
Abstract
The recent introduction of hybrid positron emission tomography/magnetic resonance imaging (PET/MRI) as a promising imaging modality for breast cancer assessment has prompted fervent research activity on its clinical applications. The current knowledge regarding the possible clinical applications of hybrid PET/MRI is constantly evolving, thanks to the development and clinical availability of hybrid scanners, the development of new PET tracers and the rise of artificial intelligence (AI) techniques. In this state-of-the-art review on the use of hybrid breast PET/MRI, the most promising advanced MRI techniques (diffusion-weighted imaging, dynamic contrast-enhanced MRI, magnetic resonance spectroscopy, and chemical exchange saturation transfer) are discussed. Current and experimental PET tracers (18 F-FDG, 18 F-NaF, choline, 18 F-FES, 18 F-FES, 89 Zr-trastuzumab, choline derivatives, 18 F-FLT, and 68 Ga-FAPI-46) are described in order to provide an overview on their molecular mechanisms of action and corresponding clinical applications. New perspectives represented by the use of radiomics and AI techniques are discussed. Furthermore, the current strengths and limitations of hybrid PET/MRI in the real world are highlighted. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Valeria Romeo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Thomas H Helbich
- Division of General and Pediatric Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Wien, Austria
| | - Katja Pinker
- Division of General and Pediatric Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Wien, Austria.,Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
29
|
Si L, Liu X, Li X, Yang K, Wang L. Diffusion kurtosis imaging and intravoxel incoherent motion imaging parameters in breast lesions: Effect of radiologists' experience and region-of-interest selection. Eur J Radiol 2023; 158:110633. [PMID: 36470051 DOI: 10.1016/j.ejrad.2022.110633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE To investigate the influence of ROI placement methods and radiologists' experience on diffusion kurtosis imaging (DKI) and intravoxel incoherent motion (IVIM) parameters' diagnostic performance in differentiating benign and malignant lesions based on the mass and non-mass enhancement (NME). METHODS We evaluated 138 lesions in 131 patients retrospectively. The IVIM and DKI parameter values were measured by three radiologists with different experiences independently using two different ROI placement methods. IVIM parameters include diffusion coefficient (ADCstand), true diffusion coefficient (ADCslow), pseudo-diffusion coefficient (ADCfast) and perfusion fraction (f). DKI parameters include mean diffusivity (MD) and mean kurtosis (MK). Each radiologist measured the lesions twice with a 3-month interval. We utilized intra-class correlation (ICC) to determine the inter- and intra-reader agreement for mass and NME, respectively. ROC analysis compared the diagnostic performance of parameters between different radiologists, ROI methods, and between mass and NME. RESULTS In mass lesions, inter- and intra-observer agreement were perfect for all parameters (ICC: 0.800-989). In NME, the inter-observer agreement was substantial to perfect for all parameters(ICC: 0.703-877), the intra-observer agreement of the senior and intermediate radiologists was substantial to perfect(ICC: 0.748-931) and the intra-observer agreement of the junior radiologist was moderate to substantial(ICC: 0.569-784). The diagnostic performance of ADCslow (Z = 2.209, P = 0.023), MD (mean diffusivity) (Z = 2.887, P = 0.004), and MK (mean kurtosis) (Z = 2.080, P = 0.038) in the small ROI measured by the senior radiologist was better than that of the junior radiologist for NME. The diagnostic performance of ADCslow in the large ROI measured by the senior radiologist (Z = 2.281, P = 0.023) and intermediate radiologist (Z = 2.867, P = 0.0041) was better than the junior radiologist for mass lesions. The diagnostic performance of ADCslow, ADCstand, MD, and MK did not show a significant difference between the two ROI placement methods (P > 0.05). CONCLUSION The observers' experience can influence the ROI selection and the diagnostic performance of ADCslow, ADCstand, MD, and MK measured using different methods show equal diagnostic performance.
Collapse
Affiliation(s)
- Lifang Si
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, People's Republic of China
| | - Xiaojuan Liu
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, People's Republic of China.
| | - Xinyue Li
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, People's Republic of China
| | - Kaiyan Yang
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, People's Republic of China
| | - Li Wang
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, People's Republic of China
| |
Collapse
|
30
|
Qin Y, Wu F, Hu Q, He L, Huo M, Tang C, Yi J, Zhang H, Yin T, Ai T. Histogram analysis of multi-model high-resolution diffusion-weighted MRI in breast cancer: correlations with molecular prognostic factors and subtypes. Front Oncol 2023; 13:1139189. [PMID: 37188173 PMCID: PMC10175778 DOI: 10.3389/fonc.2023.1139189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Objective To investigate the correlations between quantitative diffusion parameters and prognostic factors and molecular subtypes of breast cancer, based on a single fast high-resolution diffusion-weighted imaging (DWI) sequence with mono-exponential (Mono), intravoxel incoherent motion (IVIM), diffusion kurtosis imaging (DKI) models. Materials and Methods A total of 143 patients with histopathologically verified breast cancer were included in this retrospective study. The multi-model DWI-derived parameters were quantitatively measured, including Mono-ADC, IVIM-D, IVIM-D*, IVIM-f, DKI-Dapp, and DKI-Kapp. In addition, the morphologic characteristics of the lesions (shape, margin, and internal signal characteristics) were visually assessed on DWI images. Next, Kolmogorov-Smirnov test, Mann-Whitney U test, Spearman's rank correlation, logistic regression, receiver operating characteristic (ROC) curve, and Chi-squared test were utilized for statistical evaluations. Results The histogram metrics of Mono-ADC, IVIM-D, DKI-Dapp, and DKI-Kapp were significantly different between estrogen receptor (ER)-positive vs. ER-negative groups, progesterone receptor (PR)-positive vs. PR-negative groups, Luminal vs. non-Luminal subtypes, and human epidermal receptor factor-2 (HER2)-positive vs. non-HER2-positive subtypes. The histogram metrics of Mono-ADC, DKI-Dapp, and DKI-Kapp were also significantly different between triple-negative (TN) vs. non-TN subtypes. The ROC analysis revealed that the area under the curve considerably improved when the three diffusion models were combined compared with every single model, except for distinguishing lymph node metastasis (LNM) status. For the morphologic characteristics of the tumor, the margin showed substantial differences between ER-positive and ER-negative groups. Conclusions Quantitative multi-model analysis of DWI showed improved diagnostic performance for determining the prognostic factors and molecular subtypes of breast lesions. The morphologic characteristics obtained from high-resolution DWI can be identifying ER statuses of breast cancer.
Collapse
Affiliation(s)
- Yanjin Qin
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Wu
- Department of Radiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Qilan Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Litong He
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Huo
- Department of Radiology, Xiantao First People’s Hospital Affiliated to Yangtze University, Xiantao, China
| | - Caili Tang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingru Yi
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiting Zhang
- Magnetic Resonance (MR) Scientific Marketing, Siemens Healthineers Ltd., Wuhan, China
| | - Ting Yin
- Magnetic Resonance (MR) Collaborations, Siemens Healthineers Ltd., Chengdu, China
| | - Tao Ai
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Tao Ai,
| |
Collapse
|
31
|
Iima M, Le Bihan D. The road to breast cancer screening with diffusion MRI. Front Oncol 2023; 13:993540. [PMID: 36895474 PMCID: PMC9989267 DOI: 10.3389/fonc.2023.993540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/10/2023] [Indexed: 02/23/2023] Open
Abstract
Breast cancer is the leading cause of cancer in women with a huge medical, social and economic impact. Mammography (MMG) has been the gold standard method until now because it is relatively inexpensive and widely available. However, MMG suffers from certain limitations, such as exposure to X-rays and difficulty of interpretation in dense breasts. Among other imaging methods, MRI has clearly the highest sensitivity and specificity, and breast MRI is the gold standard for the investigation and management of suspicious lesions revealed by MMG. Despite this performance, MRI, which does not rely on X-rays, is not used for screening except for a well-defined category of women at risk, because of its high cost and limited availability. In addition, the standard approach to breast MRI relies on Dynamic Contrast Enhanced (DCE) MRI with the injection of Gadolinium based contrast agents (GBCA), which have their own contraindications and can lead to deposit of gadolinium in tissues, including the brain, when examinations are repeated. On the other hand, diffusion MRI of breast, which provides information on tissue microstructure and tumor perfusion without the use of contrast agents, has been shown to offer higher specificity than DCE MRI with similar sensitivity, superior to MMG. Diffusion MRI thus appears to be a promising alternative approach to breast cancer screening, with the primary goal of eliminating with a very high probability the existence of a life-threatening lesion. To achieve this goal, it is first necessary to standardize the protocols for acquisition and analysis of diffusion MRI data, which have been found to vary largely in the literature. Second, the accessibility and cost-effectiveness of MRI examinations must be significantly improved, which may become possible with the development of dedicated low-field MRI units for breast cancer screening. In this article, we will first review the principles and current status of diffusion MRI, comparing its clinical performance with MMG and DCE MRI. We will then look at how breast diffusion MRI could be implemented and standardized to optimize accuracy of results. Finally, we will discuss how a dedicated, low-cost prototype of breast MRI system could be implemented and introduced to the healthcare market.
Collapse
Affiliation(s)
- Mami Iima
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Clinical Innovative Medicine, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| | - Denis Le Bihan
- NeuroSpin, Joliot Institute, Department of Fundamental Research, Commissariat á l'Energie Atomique (CEA)-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
32
|
Sahib MA, Arvin A, Ahmadinejad N, Bustan RA, Dakhil HA. Assessment of intravoxel incoherent motion MR imaging for differential diagnosis of breast lesions and evaluation of response: a systematic review. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2022. [DOI: 10.1186/s43055-022-00770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The current study aimed to assess the performance for quantitative differentiation and evaluation of response in categorized observations from intravoxel incoherent motion analyses of patients based on breast tumors. To assess the presence of heterogeneity, the Cochran's Q tests for heterogeneity with a significance level of P < 0.1 and I2 statistic with values > 75% were used. A random-effects meta-analysis model was used to estimate pooled sensitivity and specificity. The standardized mean difference (SMD) and 95% confidence intervals of the true diffusivity (D), pseudo-diffusivity (D*), perfusion fraction (f) and apparent diffusion coefficient (ADC) were calculated, and publication bias was evaluated using the Begg's and Egger's tests and also funnel plot. Data were analyzed by STATA v 16 (StataCorp, College Station).
Results
The pooled D value demonstrated good measurement performance showed a sensitivity 86%, specificity 86%, and AUC 0.91 (SMD − 1.50, P < 0.001) in the differential diagnosis of breast lesions, which was comparable to that of the ADC that showed a sensitivity of 76%, specificity 79%, and AUC 0.85 (SMD 1.34, P = 0.01), then by the f it showed a sensitivity 80%, specificity 76%, and AUC 0.85 (SMD 0.89, P = 0.001), and D* showed a sensitivity 84%, specificity 59%, and AUC 0.71 (SMD − 0.30, P = 0.20).
Conclusion
The estimated sensitivity and specificity in the current meta-analysis were acceptable. So, this approach can be used as a suitable method in the differentiation and evaluation response of breast tumors.
Collapse
|
33
|
Bortolotto C, Stella GM, Messana G, Lo Tito A, Podrecca C, Nicora G, Bellazzi R, Gerbasi A, Agustoni F, Grimm R, Zacà D, Filippi AR, Bottinelli OM, Preda L. Correlation between PD-L1 Expression of Non-Small Cell Lung Cancer and Data from IVIM-DWI Acquired during Magnetic Resonance of the Thorax: Preliminary Results. Cancers (Basel) 2022; 14:5634. [PMID: 36428726 PMCID: PMC9688282 DOI: 10.3390/cancers14225634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
This study aims to investigate the correlation between intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) parameters in magnetic resonance imaging (MRI) and programmed death-ligand 1 (PD-L1) expression in non-small cell lung cancer (NSCLC). Twenty-one patients diagnosed with stage III NSCLC from April 2021 to April 2022 were included. The tumors were distinguished into two groups: no PD-L1 expression (<1%), and positive PD-L1 expression (≥1%). Conventional MRI and IVIM-DWI sequences were acquired with a 1.5-T system. Both fixed-size ROIs and freehand segmentations of the tumors were evaluated, and the data were analyzed through a software using four different algorithms. The diffusion (D), pseudodiffusion (D*), and perfusion fraction (pf) were obtained. The correlation between IVIM parameters and PD-L1 expression was studied with Pearson correlation coefficient. The Wilcoxon−Mann−Whitney test was used to study IVIM parameter distributions in the two groups. Twelve patients (57%) had PD-L1 ≥1%, and 9 (43%) <1%. There was a statistically significant correlation between D* values and PD-L1 expression in images analyzed with algorithm 0, for fixed-size ROIs (189.2 ± 65.709 µm²/s × 104 in no PD-L1 expression vs. 122.0 ± 31.306 µm²/s × 104 in positive PD-L1 expression, p = 0.008). The values obtained with algorithms 1, 2, and 3 were not significantly different between the groups. The IVIM-DWI MRI parameter D* can reflect PD-L1 expression in NSCLC.
Collapse
Affiliation(s)
- Chandra Bortolotto
- Diagnostic Imaging and Radiotherapy Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Radiology Institute, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giulia Maria Stella
- Unit of Respiratory Diseases, Department of Medical Sciences and Infective Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Gaia Messana
- Diagnostic Imaging and Radiotherapy Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Antonio Lo Tito
- Diagnostic Imaging and Radiotherapy Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Chiara Podrecca
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy
| | - Giovanna Nicora
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy
| | - Riccardo Bellazzi
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy
| | - Alessia Gerbasi
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy
| | - Francesco Agustoni
- Department of Medical Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Robert Grimm
- MR Application Predevelopment, Siemens Healthcare GmbH, 91052 Erlangen, Germany
| | | | - Andrea Riccardo Filippi
- Diagnostic Imaging and Radiotherapy Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Department of Radiation Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Olivia Maria Bottinelli
- Diagnostic Imaging and Radiotherapy Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Lorenzo Preda
- Diagnostic Imaging and Radiotherapy Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Radiology Institute, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
34
|
Qin Y, Tang C, Hu Q, Zhang Y, Yi J, Dai Y, Ai T. Quantitative Assessment of Restriction Spectrum MR Imaging for the Diagnosis of Breast Cancer and Association With Prognostic Factors. J Magn Reson Imaging 2022; 57:1832-1841. [PMID: 36205354 DOI: 10.1002/jmri.28468] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Restriction spectrum imaging (RSI) is an advanced quantitative diffusion-weighted magnetic resonance imaging (DWI) technique to assess breast cancer. PURPOSE To investigate the ability of RSI to differentiate the benign and malignant breast lesions and the association with prognostic factors of breast cancer. STUDY TYPE Retrospective. POPULATION Seventy women (mean age, 49.6 ± 12.3 years) with 56 malignant and 19 benign breast lesions. FIELD STRENGTH/SEQUENCE 3-T; RSI-based DWI sequence with echo-planar imaging technique. ASSESSMENT The apparent diffusion coefficient (ADC) and RSI parameters (restricted diffusion f1 , hindered diffusion f2 , free diffusion f3 , and signal fractions f1 f2 ) were calculated by two readers for the whole lesion volume and compared between the benign and malignant groups and the subgroups with different statuses of prognostic factors in breast cancer. STATISTICAL TESTS Mann-Whitney U test or Student's t-test was applied to compare the quantitative parameters between the different groups. Intraclass correlation coefficient (ICC) was used to assess readers' reproducibility. Binary logistic regression was used to combine parameters. Area under the curve (AUC) of receiver operating characteristic curve analysis was used to evaluate the diagnostic performance of parameters to distinguish benign from malignant breast lesions. A P-value <0.05 was considered statistically significant. RESULTS Malignant breast lesions showed significantly lower ADC and f3 values, and significantly higher f1 and f1 f2 values than the benign lesions, with AUC of 0.951, 0.877, 0.868, and 0.860, respectively. When RSI-derived parameters and ADC were combined, the diagnostic performance was superior to either single parameter (AUC = 0.973). The f3 value was significantly differed between estrogen receptor (ER)-positive and ER-negative tumors. The ADC, f1 , f3 , and f1 f2 values were significantly different progesterone receptor (PR)-positive and PR-negative status. DATA CONCLUSION The RSI-derived parameters (f1 , f3 , and f1 f2 ) may facilitate the differential diagnosis between benign and malignant breast lesions. LEVEL OF EVIDENCE 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Yanjin Qin
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Caili Tang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qilan Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunfei Zhang
- MR Collaboration, Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Jingru Yi
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongming Dai
- MR Collaboration, Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Tao Ai
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Mürtz P, Tsesarskiy M, Sprinkart AM, Block W, Savchenko O, Luetkens JA, Attenberger U, Pieper CC. Simplified intravoxel incoherent motion DWI for differentiating malignant from benign breast lesions. Eur Radiol Exp 2022; 6:48. [PMID: 36171532 PMCID: PMC9519819 DOI: 10.1186/s41747-022-00298-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/27/2022] [Indexed: 11/27/2022] Open
Abstract
Background To evaluate simplified intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) for differentiating malignant versus benign breast lesions as (i) stand-alone tool and (ii) add-on to dynamic contrast-enhanced magnetic resonance imaging. Methods 1.5-T DWI data (b = 0, 50, 250, 800 s/mm2) were retrospectively analysed for 126 patients with malignant or benign breast lesions. Apparent diffusion coefficient (ADC) ADC (0, 800) and IVIM-based parameters D1′ = ADC (50, 800), D2′ = ADC (250, 800), f1′ = f (0, 50, 800), f2′ = f (0, 250, 800) and D*′ = D* (0, 50, 250, 800) were voxel-wise calculated without fitting procedures. Regions of interest were analysed in vital tumour and perfusion hot spots. Beside the single parameters, the combined use of D1′ with f1′ and D2′ with f2′ was evaluated. Lesion differentiation was investigated for lesions (i) with hyperintensity on DWI with b = 800 s/mm2 (n = 191) and (ii) with suspicious contrast-enhancement (n = 135). Results All lesions with suspicious contrast-enhancement appeared also hyperintense on DWI with b = 800 s/mm2. For task (i), best discrimination was reached for the combination of D1′ and f1′ using perfusion hot spot regions-of-interest (accuracy 93.7%), which was higher than that of ADC (86.9%, p = 0.003) and single IVIM parameters D1′ (88.0%) and f1′ (87.4%). For task (ii), best discrimination was reached for single parameter D1′ using perfusion hot spot regions-of-interest (92.6%), which were slightly but not significantly better than that of ADC (91.1%) and D2′ (88.1%). Adding f1′ to D1′ did not improve discrimination. Conclusions IVIM analysis yielded a higher accuracy than ADC. If stand-alone DWI is used, perfusion analysis is of special relevance.
Collapse
Affiliation(s)
- Petra Mürtz
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Mark Tsesarskiy
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Alois M Sprinkart
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Wolfgang Block
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.,Department of Radiotherapy and Radiation Oncology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.,Department of Neuroradiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Oleksandr Savchenko
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Julian A Luetkens
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Ulrike Attenberger
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Claus C Pieper
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| |
Collapse
|
36
|
T1 and ADC histogram parameters may be an in vivo biomarker for predicting the grade, subtype, and proliferative activity of meningioma. Eur Radiol 2022; 33:258-269. [PMID: 35953734 DOI: 10.1007/s00330-022-09026-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/05/2022] [Accepted: 07/09/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To investigate the value of histogram analysis of T1 mapping and diffusion-weighted imaging (DWI) in predicting the grade, subtype, and proliferative activity of meningioma. METHODS This prospective study comprised 69 meningioma patients who underwent preoperative MRI including T1 mapping and DWI. The histogram metrics, including mean, median, maximum, minimum, 10th percentiles (C10), 90th percentiles (C90), kurtosis, skewness, and variance, of T1 and apparent diffusion coefficient (ADC) values were extracted from the whole tumour and peritumoural oedema using FeAture Explorer. The Mann-Whitney U test was used for comparison between low- and high-grade tumours. Receiver operating characteristic (ROC) curve and logistic regression analyses were performed to identify the differential diagnostic performance. The Kruskal-Wallis test was used to further classify meningioma subtypes. Spearman's rank correlation coefficients were calculated to analyse the correlations between histogram parameters and Ki-67 expression. RESULTS High-grade meningiomas showed significantly higher mean, maximum, C90, and variance of T1 (p = 0.001-0.009), lower minimum, and C10 of ADC (p = 0.013-0.028), compared to low-grade meningiomas. For all histogram parameters, the highest individual distinctive power was T1 C90 with an AUC of 0.805. The best diagnostic accuracy was obtained by combining the T1 C90 and ADC C10 with an AUC of 0.864. The histogram parameters differentiated 4/6 pairs of subtype pairs. Significant correlations were identified between Ki-67 and histogram parameters of T1 (C90, mean) and ADC (C10, kurtosis, variance). CONCLUSION T1 and ADC histogram parameters may represent an in vivo biomarker for predicting the grade, subtype, and proliferative activity of meningioma. KEY POINTS • The histogram parameter based on T1 mapping and DWI is useful to preoperatively evaluate the grade, subtype, and proliferative activity of meningioma. • The combination of T1 C90 and ADC C10 showed the best performance for differentiating low- and high-grade meningiomas.
Collapse
|
37
|
Mendez AM, Fang LK, Meriwether CH, Batasin SJ, Loubrie S, Rodríguez-Soto AE, Rakow-Penner RA. Diffusion Breast MRI: Current Standard and Emerging Techniques. Front Oncol 2022; 12:844790. [PMID: 35880168 PMCID: PMC9307963 DOI: 10.3389/fonc.2022.844790] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
The role of diffusion weighted imaging (DWI) as a biomarker has been the subject of active investigation in the field of breast radiology. By quantifying the random motion of water within a voxel of tissue, DWI provides indirect metrics that reveal cellularity and architectural features. Studies show that data obtained from DWI may provide information related to the characterization, prognosis, and treatment response of breast cancer. The incorporation of DWI in breast imaging demonstrates its potential to serve as a non-invasive tool to help guide diagnosis and treatment. In this review, current technical literature of diffusion-weighted breast imaging will be discussed, in addition to clinical applications, advanced techniques, and emerging use in the field of radiomics.
Collapse
Affiliation(s)
- Ashley M. Mendez
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Lauren K. Fang
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Claire H. Meriwether
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Summer J. Batasin
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Stéphane Loubrie
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Ana E. Rodríguez-Soto
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Rebecca A. Rakow-Penner
- Department of Radiology, University of California San Diego, La Jolla, CA, United States,Department of Bioengineering, University of California San Diego, La Jolla, CA, United States,*Correspondence: Rebecca A. Rakow-Penner,
| |
Collapse
|
38
|
Lundholm L, Montelius M, Jalnefjord O, Forssell-Aronsson E, Ljungberg M. VERDICT MRI for radiation treatment response assessment in neuroendocrine tumors. NMR IN BIOMEDICINE 2022; 35:e4680. [PMID: 34957637 DOI: 10.1002/nbm.4680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Noninvasive methods to study changes in tumor microstructure enable early assessment of treatment response and thus facilitate personalized treatment. The aim of this study was to evaluate the diffusion MRI model, Vascular, Extracellular and Restricted Diffusion for Cytometry in Tumors (VERDICT), for early response assessment to external radiation treatment and to compare the results with those of more studied sets of parameters derived from diffusion-weighted MRI data. Mice xenografted with human small intestine tumors were treated with external radiation treatment, and diffusion MRI experiments were performed on the day before and up to 2 weeks after treatment. The diffusion models VERDICT, ADC, IVIM, and DKI were fitted to MRI data, and the treatment response of each tumor was calculated based on pretreatment tumor growth and post-treatment tumor volume regression. Linear regression and correlation analysis were used to evaluate each model and their respective parameters for explaining the treatment response. VERDICT analysis showed significant changes from day -1 to day 3 for the intracellular and extracellular volume fraction, as well as the cell radius index (p < 0.05; Wilcoxon signed-rank test). The strongest correlation between the diffusion model parameters and the tumor treatment response was seen for the ADC, kurtosis-corrected diffusion coefficient, and intracellular volume fraction on day 3 (τ = 0.47, 0.52, and -0.49, respectively, p < 0.05; Kendall rank correlation coefficient). Of all the tested models, VERDICT held the strongest explanatory value for the tumor treatment response on day 3 (R2 = 0.75, p < 0.01; linear regression). In conclusion, VERDICT has potential for early assessment of external radiation treatment and may provide further insights into the underlying biological effects of radiation on tumor tissue. In addition, the results suggest that the time window for assessment of treatment response using dMRI may be narrow.
Collapse
Affiliation(s)
- Lukas Lundholm
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mikael Montelius
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Oscar Jalnefjord
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, MRI Center, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, MRI Center, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Maria Ljungberg
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, MRI Center, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
39
|
Egnell L, Jerome NP, Andreassen MMS, Bathen TF, Goa PE. Effects of echo time on IVIM quantifications of locally advanced breast cancer in clinical diffusion-weighted MRI at 3 T. NMR IN BIOMEDICINE 2022; 35:e4654. [PMID: 34967468 DOI: 10.1002/nbm.4654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/21/2021] [Accepted: 10/10/2021] [Indexed: 06/14/2023]
Abstract
PURPOSE The purpose of this study was to investigate the effects of echo time dependence in IVIM quantification of the pseudo-diffusion fraction in breast cancer and whether correcting for the echo time dependence offers added clinical value. MATERIALS AND METHODS Fifteen patients with biopsy-proven breast cancer underwent a 3 T MRI examination with an extended DWI protocol at two different echo times (TE = 53 ms, b = 0, 50 s/mm2 ; TE = 77 ms, b = 0, 50, 120, 200, 400, 700 s/mm2 ). Volumes of interest were delineated around the tumors. In addition, simulated MRI data were generated for different levels of signal-to-noise ratio and two values for the blood T2 relaxation time (T2p = 100 ms and 150 ms). The pseudo-diffusion signal fraction was estimated from the simulated and in vivo tumor data using both the standard IVIM model and an extended IVIM model that accounts for the echo time dependence arising from distinct transverse relaxation times. RESULTS Simulations showed that the standard IVIM model overestimated the pseudo-diffusion fraction by 25% (T2p = 100 ms) and 60 % (T2p = 150 ms) (p < 0.0001 at SNR = 50). In vivo, the estimated apparent T2 value at b = 50 s/mm2 was around 8% lower than at b = 0 s/mm2 (p = 0.01) demonstrating a removal of the signal contribution from blood with long T2 associated with pseudo-diffusion. Using two different fixed values for T2p = 100, 150 ms, the pseudo-diffusion fraction was 15% and 46% higher in the standard model compared with the echo-time-corrected model (p < 0.01). CONCLUSION The standard IVIM model was found to overestimate the pseudo-diffusion fraction by 15% to 46% compared with the echo-time-corrected model in breast tumor DWI data acquired at 3 T. Our results suggest that a corrected model may give more accurate results in terms of signal fractions, but may not justify the added time needed to acquire the additional data in terms of clinical value.
Collapse
Affiliation(s)
- Liv Egnell
- Department of Physics, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Radiology and Nuclear Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Neil P Jerome
- Clinic of Radiology and Nuclear Medicine, St. Olav's University Hospital, Trondheim, Norway
- Department of Circulation and Medical Imaging, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Maren M S Andreassen
- Department of Circulation and Medical Imaging, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Tone F Bathen
- Clinic of Radiology and Nuclear Medicine, St. Olav's University Hospital, Trondheim, Norway
- Department of Circulation and Medical Imaging, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Pål Erik Goa
- Department of Physics, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Radiology and Nuclear Medicine, St. Olav's University Hospital, Trondheim, Norway
| |
Collapse
|
40
|
Goto M, Le Bihan D, Sakai K, Yamada K. The diffusion MRI signature index is highly correlated with immunohistochemical status and molecular subtype of invasive breast carcinoma. Eur Radiol 2022; 32:4879-4888. [PMID: 35394179 DOI: 10.1007/s00330-022-08562-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/01/2021] [Accepted: 01/04/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To evaluate the relationship of the signature index (S-index), an advanced diffusion MRI marker, and the immunohistochemical (IHC) status, proliferation rate, and molecular subtype of invasive breast cancers. METHODS A retrospective study of patients with invasive carcinoma was conducted between 2017 and 2021. All patients underwent dynamic contrast-enhanced MRI and DWI using a 3-T system. For DWI, three b values (0, 200, and 1500 s/mm2) were used to derive the S-index. Three-dimensional ROIs were manually placed over the whole tumor on DWI. Mean and 85th percentile S-index values were compared to the IHC status, proliferation rate, and molecular subtypes of lesions. RESULTS The study included 153 patients (mean age, 60 ± 13 years) with 160 invasive carcinomas. S-index values were significantly higher in estrogen receptor-positive (mean, p = .005; 85th percentile, p < .001) and progesterone receptor-positive (mean, p = .003; 85th percentile, p < .001) tumors, and significantly lower in human epidermal growth factor receptor 2 (HER2) - positive tumors (mean, p = .023; 85th percentile, p < .001). Mean and 85th percentile S-index values were significantly different among breast cancer subtypes (mean, p = .015; 85th percentile, p = .002), and the AUC of these values for the prediction of IHC status were 0.64 and 0.66 for HER2, and 0.70 and 0.74 for hormone receptors, respectively. CONCLUSIONS The DWI S-index showed significantly higher values in invasive carcinomas with immunohistochemical status associated with good prognosis, suggesting its usefulness as a noninvasive imaging biomarker to estimate IHC status and orient treatment. KEY POINTS • The signature index, an advanced diffusion MRI marker, showed good discrimination of immunohistochemical status in invasive breast carcinomas. • The signature index has the potential to differentiate noninvasively invasive breast carcinoma subtypes and appears as an imaging biomarker of prognostic factors and molecular phenotypes.
Collapse
Affiliation(s)
- Mariko Goto
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi Hirokoji, Kamigyoku, Kyoto, 602-8566, Japan.
| | - Denis Le Bihan
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi Hirokoji, Kamigyoku, Kyoto, 602-8566, Japan.,Neurospin, CEA-Saclay, Paris-Saclay University, Gif-sur-Yvette, France.,National Institute for Physiological Sciences, Okazaki, Japan
| | - Koji Sakai
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi Hirokoji, Kamigyoku, Kyoto, 602-8566, Japan
| | - Kei Yamada
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi Hirokoji, Kamigyoku, Kyoto, 602-8566, Japan
| |
Collapse
|
41
|
Bougias H, Stogiannos N. Breast MRI: Where are we currently standing? J Med Imaging Radiat Sci 2022; 53:203-211. [DOI: 10.1016/j.jmir.2022.03.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/22/2022] [Accepted: 03/31/2022] [Indexed: 01/07/2023]
|
42
|
Kazama T, Takahara T, Hashimoto J. Breast Cancer Subtypes and Quantitative Magnetic Resonance Imaging: A Systemic Review. Life (Basel) 2022; 12:life12040490. [PMID: 35454981 PMCID: PMC9028183 DOI: 10.3390/life12040490] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/20/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Magnetic resonance imaging (MRI) is the most sensitive imaging modality for breast cancer detection. This systematic review investigated the role of quantitative MRI features in classifying molecular subtypes of breast cancer. We performed a literature search of articles published on the application of quantitative MRI features in invasive breast cancer molecular subtype classification in PubMed from 1 January 2002 to 30 September 2021. Of the 1275 studies identified, 106 studies with a total of 12,989 patients fulfilled the inclusion criteria. Bias was assessed based using the Quality Assessment of Diagnostic Studies. All studies were case-controlled and research-based. Most studies assessed quantitative MRI features using dynamic contrast-enhanced (DCE) kinetic features and apparent diffusion coefficient (ADC) values. We present a summary of the quantitative MRI features and their correlations with breast cancer subtypes. In DCE studies, conflicting results have been reported; therefore, we performed a meta-analysis. Significant differences in the time intensity curve patterns were observed between receptor statuses. In 10 studies, including a total of 1276 lesions, the pooled difference in proportions of type Ⅲ curves (wash-out) between oestrogen receptor-positive and -negative cancers was not significant (95% confidence interval (CI): [−0.10, 0.03]). In nine studies, including a total of 1070 lesions, the pooled difference in proportions of type 3 curves between human epidermal growth factor receptor 2-positive and -negative cancers was significant (95% CI: [0.01, 0.14]). In six studies including a total of 622 lesions, the pooled difference in proportions of type 3 curves between the high and low Ki-67 groups was significant (95% CI: [0.17, 0.44]). However, the type 3 curve itself is a nonspecific finding in breast cancer. Many studies have examined the relationship between mean ADC and breast cancer subtypes; however, the ADC values overlapped significantly between subtypes. The heterogeneity of ADC using kurtosis or difference, diffusion tensor imaging parameters, and relaxation time was reported recently with promising results; however, current evidence is limited, and further studies are required to explore these potential applications.
Collapse
Affiliation(s)
- Toshiki Kazama
- Department of Diagnostic Radiology, Tokai University School of Medicine, Isehara 259-1193, Japan;
- Correspondence: ; Tel.: +81-463-93-1121
| | - Taro Takahara
- Department of Biomedical Engineering, Tokai University School of Engineering, Hiratsuka 259-1207, Japan;
| | - Jun Hashimoto
- Department of Diagnostic Radiology, Tokai University School of Medicine, Isehara 259-1193, Japan;
| |
Collapse
|
43
|
Yang M, Liu H, Dai Q, Yao L, Zhang S, Wang Z, Li J, Duan Q. Treatment Response Prediction Using Ultrasound-Based Pre-, Post-Early, and Delta Radiomics in Neoadjuvant Chemotherapy in Breast Cancer. Front Oncol 2022; 12:748008. [PMID: 35198437 PMCID: PMC8859469 DOI: 10.3389/fonc.2022.748008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/10/2022] [Indexed: 12/21/2022] Open
Abstract
Objective To develop and validate a radiomics nomogram based on pre-treatment, early treatment ultrasound (US) radiomics features combined with clinical characteristics for early prediction of response to neoadjuvant chemotherapy (NAC) in breast cancer. Method A total of 217 patients with histological results of breast cancer receiving four to eight cycles of NAC before surgery from January 2018 to December 2020 were enrolled. Patients from the study population were randomly separated into a training set (n = 152) and a validation set (n = 65) at a ratio of 7:3. A total of 788 radiomics features were extracted from each region of interest in the US image at pre-treatment baseline (radiomic signature, RS1), early treatment (after completion of two cycles of NAC, RS2) and delta radiomics (calculated between the pre-treatment and post-treatment features, Delta RS). The Max-Relevance and Min-Redundancy (mRMR) and the least absolute shrinkage and selection operator (LASSO) regression were applied for feature selection. The predictive nomogram was built based on the radiomics signature combined with clinicopathological risk factors. Discrimination, calibration, and prediction performance were further evaluated in the validation set. Results Of the 217 breast masses, 127 (58.5%) were responsive to NAC and 90 (41.5%) were non-responsive. Following feature selection, nine features in RS1, 11 features in RS2, and eight features in Delta RS remained. With multivariate analysis, the RS1, RS2, Delta RS, and Ki-67 expression were independently associated with breast NAC response. However, the performance of the Delta RS (AUCDelta RS = 0.743) was not higher than RS1 (AUCRS1 = 0.722, PDelta vs RS1 = 0.086) and RS2 (AUCRS2 = 0.811, PDelta vs RS2 =0.173) with the Delong test. The nomogram incorporating RS1, RS2, and Ki-67 expression showed better predictive ability for NAC response with an area under the curve (AUC) of 0.866 in validation cohorts than either the single RS1 (AUC 0.725) or RS2 (AUC 0.793) or Ki-67 (AUC 0.643). Conclusion The nomogram incorporating pre-treatment and early-treatment US radiomics features and Ki-67 expression showed good performance in terms of NAC response in breast cancer, thereby providing valuable information for individual treatment and timely adjustment of chemotherapy regimens.
Collapse
Affiliation(s)
- Min Yang
- Department of Medical Imaging, the Affiliated Tumor Hospital of Guizhou Medical University, Guiyang, China
| | - Huan Liu
- Department of Advanced Application Team, GE Healthcare, Shanghai, China
| | - Qingli Dai
- Department of Medical Imaging, the Affiliated Tumor Hospital of Guizhou Medical University, Guiyang, China
| | - Ling Yao
- Department of Medical Imaging, the Affiliated Tumor Hospital of Guizhou Medical University, Guiyang, China
| | - Shun Zhang
- Department of Medical Imaging, the Affiliated Tumor Hospital of Guizhou Medical University, Guiyang, China
| | - Zhihong Wang
- Department of Breast Surgery, the Affiliated Tumor Hospital of Guizhou Medical University, Guiyang, China
| | - Jing Li
- Department of Medical Imaging, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qinghong Duan
- Department of Medical Imaging, the Affiliated Tumor Hospital of Guizhou Medical University, Guiyang, China
- *Correspondence: Qinghong Duan,
| |
Collapse
|
44
|
Kim YS, Lee SE, Chang JM, Kim SY, Bae YK. Ultrasonographic morphological characteristics determined using a deep learning-based computer-aided diagnostic system of breast cancer. Medicine (Baltimore) 2022; 101:e28621. [PMID: 35060538 PMCID: PMC8772632 DOI: 10.1097/md.0000000000028621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/23/2021] [Indexed: 01/05/2023] Open
Abstract
To investigate the correlations between ultrasonographic morphological characteristics quantitatively assessed using a deep learning-based computer-aided diagnostic system (DL-CAD) and histopathologic features of breast cancer.This retrospective study included 282 women with invasive breast cancer (<5 cm; mean age, 54.4 [range, 29-85] years) who underwent surgery between February 2016 and April 2017. The morphological characteristics of breast cancer on B-mode ultrasonography were analyzed using DL-CAD, and quantitative scores (0-1) were obtained. Associations between quantitative scores and tumor histologic type, grade, size, subtype, and lymph node status were compared.Two-hundred and thirty-six (83.7%) tumors were invasive ductal carcinoma, 18 (6.4%) invasive lobular carcinoma, and 28 (9.9%) micropapillary, apocrine, and mucinous. The mean size was 1.8 ± 1.0 (standard deviation) cm, and 108 (38.3%) cases were node positive. Irregular shape score was associated with tumor size (P < .001), lymph nodes status (P = .001), and estrogen receptor status (P = .016). Not-circumscribed margin (P < .001) and hypoechogenicity (P = .003) scores correlated with tumor size, and non-parallel orientation score correlated with histologic grade (P = .024). Luminal A tumors exhibited more irregular features (P = .048) with no parallel orientation (P = .002), whereas triple-negative breast cancer showed a rounder/more oval and parallel orientation.Quantitative morphological characteristics of breast cancers determined using DL-CAD correlated with histopathologic features and could provide useful information about breast cancer phenotypes.
Collapse
Affiliation(s)
- Young Seon Kim
- Department of Radiology, Yeungnam University Hospital, Yeungnam University College of Medicine, Daegu, South Korea
| | - Seung Eun Lee
- Department of Radiology, Yeungnam University Hospital, Yeungnam University College of Medicine, Daegu, South Korea
| | - Jung Min Chang
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea
| | - Soo-Yeon Kim
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea
| | - Young Kyung Bae
- Department of Pathology, Yeungnam University Hospital, Yeungnam University College of Medicine, Daegu, South Korea
| |
Collapse
|
45
|
Lallemand F, Leroi N, Blacher S, Bahri MA, Balteau E, Coucke P, Noël A, Plenevaux A, Martinive P. Tumor Microenvironment Modifications Recorded With IVIM Perfusion Analysis and DCE-MRI After Neoadjuvant Radiotherapy: A Preclinical Study. Front Oncol 2021; 11:784437. [PMID: 34993143 PMCID: PMC8724034 DOI: 10.3389/fonc.2021.784437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Neoadjuvant radiotherapy (NeoRT) improves tumor local control and facilitates tumor resection in many cancers. Some clinical studies demonstrated that both timing of surgery and RT schedule influence tumor dissemination, and subsequently patient overall survival. Previously, we developed a pre-clinical model demonstrating the impact of NeoRT schedule and timing of surgery on metastatic spreading. We report on the impact of NeoRT on tumor microenvironment by MRI. METHODS According to our NeoRT model, MDA-MB 231 cells were implanted in the flank of SCID mice. Tumors were locally irradiated (PXI X-Rad SmART) with 2x5Gy and then surgically removed at different time points after RT. Diffusion-weighted (DW) and Dynamic contrast enhancement (DCE) MRI images were acquired before RT and every 2 days between RT and surgery. IntraVoxel Incoherent Motion (IVIM) analysis was used to obtain information on intravascular diffusion, related to perfusion (F: perfusion factor) and subsequently tumor vessels perfusion. For DCE-MRI, we performed semi-quantitative analyses. RESULTS With this experimental model, a significant and transient increase of the perfusion factor F [50% of the basal value (n=16, p<0.005)] was observed on day 6 after irradiation as well as a significant increase of the WashinSlope with DCE-MRI at day 6 (n=13, p<0.05). Using immunohistochemistry, a significant increase of perfused vessels was highlighted, corresponding to the increase of perfusion in MRI at this same time point. Moreover, Tumor surgical resection during this peak of vascularization results in an increase of metastasis burden (n=10, p<0.05). CONCLUSION Significant differences in perfusion-related parameters (F and WashinSlope) were observed on day 6 in a neoadjuvant radiotherapy model using SCID mice. These modifications are correlated with an increase of perfused vessels in histological analysis and also with an increase of metastasis spreading after the surgical procedure. This experimental observation could potentially result in a way to personalize treatment, by modulating the time of surgery guided on MRI functional data, especially tumor perfusion.
Collapse
Affiliation(s)
- François Lallemand
- Department of Radiotherapy-Oncology, Centre Hospitalier Universitaire (CHU) de Liège, University of Liège (ULg), Liège, Belgium
- Laboratory of Tumor and Development Biology, University of Liège (ULg), Liège, Belgium
- GIGA-Cyclotron Research Centre-in vivo Imaging, University of Liège, Liège, Belgium
| | - Natacha Leroi
- Laboratory of Tumor and Development Biology, University of Liège (ULg), Liège, Belgium
| | - Silvia Blacher
- Laboratory of Tumor and Development Biology, University of Liège (ULg), Liège, Belgium
| | - Mohamed Ali Bahri
- GIGA-Cyclotron Research Centre-in vivo Imaging, University of Liège, Liège, Belgium
| | - Evelyne Balteau
- GIGA-Cyclotron Research Centre-in vivo Imaging, University of Liège, Liège, Belgium
| | - Philippe Coucke
- Department of Radiotherapy-Oncology, Centre Hospitalier Universitaire (CHU) de Liège, University of Liège (ULg), Liège, Belgium
| | - Agnès Noël
- Laboratory of Tumor and Development Biology, University of Liège (ULg), Liège, Belgium
| | - Alain Plenevaux
- GIGA-Cyclotron Research Centre-in vivo Imaging, University of Liège, Liège, Belgium
| | - Philippe Martinive
- Laboratory of Tumor and Development Biology, University of Liège (ULg), Liège, Belgium
- Department of Radiotherapy-Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
46
|
Galati F, Trimboli RM, Pediconi F. Special Issue "Advances in Breast MRI". Diagnostics (Basel) 2021; 11:diagnostics11122297. [PMID: 34943534 PMCID: PMC8700161 DOI: 10.3390/diagnostics11122297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022] Open
Affiliation(s)
- Francesca Galati
- Department of Radiological, Oncological and Pathological Sciences, Sapienza—University of Rome, 00161 Rome, Italy;
| | | | - Federica Pediconi
- Department of Radiological, Oncological and Pathological Sciences, Sapienza—University of Rome, 00161 Rome, Italy;
- Correspondence: ; Tel.: +39-06-4455602; Fax: +39-06-490243
| |
Collapse
|
47
|
Galati F, Moffa G, Pediconi F. Breast imaging: Beyond the detection. Eur J Radiol 2021; 146:110051. [PMID: 34864426 DOI: 10.1016/j.ejrad.2021.110051] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 07/23/2021] [Accepted: 11/15/2021] [Indexed: 12/23/2022]
Abstract
Breast cancer is a heterogeneous disease nowadays, including different biological subtypes with a variety of possible treatments, which aim to achieve the best outcome in terms of response to therapy and overall survival. In recent years breast imaging has evolved considerably, and the ultimate goal is to predict these strong phenotypic differences noninvasively. Indeed, breast cancer multiparametric studies can highlight not only qualitative imaging parameters, as the presence/absence of a likely malignant finding, but also quantitative parameters, suggesting clinical-pathological features through the evaluation of imaging biomarkers. A further step has been the introduction of artificial intelligence and in particular radiogenomics, that investigates the relationship between breast cancer imaging characteristics and tumor molecular, genomic and proliferation features. In this review, we discuss the main techniques currently in use for breast imaging, their respective fields of use and their technological and diagnostic innovations.
Collapse
Affiliation(s)
- Francesca Galati
- Department of Radiological, Oncological and Pathological Sciences, "Sapienza" - University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy.
| | - Giuliana Moffa
- Department of Radiological, Oncological and Pathological Sciences, "Sapienza" - University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy
| | - Federica Pediconi
- Department of Radiological, Oncological and Pathological Sciences, "Sapienza" - University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy.
| |
Collapse
|
48
|
Toward an Intravoxel Incoherent Motion 2-in-1 Magnetic Resonance Imaging Sequence for Ischemic Stroke Diagnosis? An Initial Clinical Experience With 1.5T Magnetic Resonance. J Comput Assist Tomogr 2021; 46:110-115. [DOI: 10.1097/rct.0000000000001243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Feng W, Gao Y, Lu XR, Xu YS, Guo ZZ, Lei JQ. Correlation between molecular prognostic factors and magnetic resonance imaging intravoxel incoherent motion histogram parameters in breast cancer. Magn Reson Imaging 2021; 85:262-270. [PMID: 34740800 DOI: 10.1016/j.mri.2021.10.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 07/26/2021] [Accepted: 10/17/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To explore the efficacy of the quantitative parameter histogram analysis of intravoxel incoherent motion (IVIM) for different molecular prognostic factors of breast cancer. MATERIALS AND METHODS A total of 72 patients with breast cancer who were confirmed by surgical pathology and underwent preoperative magnetic resonance imaging (MRI) were analyzed retrospectively. A region of interest (ROI) was drawn in each slice of the IVIM images. Whole-tumor histogram parameters were obtained with Firevoxel's software by accumulating all ROIs. Next, Kolmogorov-Smirnov test, Student's t-test, Mann-Whitney U test, receiver operating characteristic curve analysis and spearman rank correlation analysis were used to assess the relationship between histogram parameters and molecular prognostic factors of breast cancer. RESULTS Among estrogen receptor (ER)-negative ROCs, the apparent diffusion coefficient (ADC) 10th percentile had the highest ROC of 0.792, with a cut-off value of 0.788 × 10-3 mm2/s, and sensitivity and specificity of 0.714 and 0.867, respectively. The negative correlation between lymph node metastasis status and ADC standard deviation was significant (ρ = -0.44, the correlation coefficients was represented by ρ). Positive correlations were observed between hormonal expression of ER and progesterone receptor (PR) with heterogeneity metrics of ADC or perfusion fraction (f), such as ADC inhomogeneity (ρ = 0.37, ρ = 0.29) and f skewness (ρ = 0.32, ρ = 0.28). Negative correlations were observed with numerical metrics, such as the ADC median (ρ = -0.31, ρ = -0.34) and f 45th percentile (ρ = -0.35, ρ = -0.28). The positive correlations between human epidermal receptor factor-2 (HER2) and pseudo-diffusivity (Dp) numerical metrics, Ki-67 expression, and heterogeneity metrics of Dp were high. CONCLUSIONS The ADC 10th percentile had the largest area under the curve in the ER-negative ROC analysis, and the ADC standard deviation was the most valuable in the correlation analysis of lymph node metastasis. Whole-lesion quantitative histogram parameters of IVIM could, therefore, provide a scientific basis for radiomics to further guide clinical practice in the prognosis of breast cancer.
Collapse
Affiliation(s)
- Wen Feng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, China; Department of Radiology, the First hospital of Lanzhou University, Lanzhou 730000, Gansu, China
| | - Ya Gao
- Department of Radiology, the First hospital of Lanzhou University, Lanzhou 730000, Gansu, China
| | - Xing-Ru Lu
- Department of Radiology, the First hospital of Lanzhou University, Lanzhou 730000, Gansu, China
| | - Yong-Sheng Xu
- Department of Radiology, the First hospital of Lanzhou University, Lanzhou 730000, Gansu, China
| | - Zhuan-Zhuan Guo
- Department of Radiology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shanxi, China
| | - Jun-Qiang Lei
- Department of Radiology, the First hospital of Lanzhou University, Lanzhou 730000, Gansu, China.
| |
Collapse
|
50
|
Lee YJ, Kim SH, Kang BJ, Son YH, Grimm R. Associations between angiogenic factors and intravoxel incoherent motion-derived parameters in diffusion-weighted magnetic resonance imaging of breast cancer. Medicine (Baltimore) 2021; 100:e27495. [PMID: 34731130 PMCID: PMC8519258 DOI: 10.1097/md.0000000000027495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 09/23/2021] [Indexed: 01/05/2023] Open
Abstract
Intravoxel incoherent motion (IVIM) diffusion-weighted magnetic resonance imaging (MRI) can be used to estimate perfusion-related parameters, but these parameters may differ, based on the curve-fitting algorithm used for IVIM. Microvessel density (MVD) and vascular endothelial growth factor (VEGF) status are used as angiogenic factors in breast cancer. We aimed to investigate the relationship between MVD, VEGF, and intravoxel incoherent motion (IVIM)-derived parameters, obtained by 4 curve-fitting algorithms, in patients with invasive breast cancers.This retrospective study investigated IVIM-derived parameters, D (ie, tissue diffusivity), D∗ (ie, pseudodiffusivity), and f (ie, perfusion fraction), of 55 breast cancers, using 10 b values (range, 0-800 s/mm2) and 4 curve-fitting algorithms: algorithm 1, linear fitting of D and f first, followed by D∗; algorithm 2, linear fitting of D and f and nonlinear fitting of D∗; algorithm 3, linear fitting of D and f, linear fitting of D∗, and ignoring D contribution for low b values; and algorithm 4, full nonlinear fitting of D, f, and D∗. We evaluated whole-tumor histograms of D, f, and D∗ for their association with MVD and VEGF.D∗10, D∗25, D∗50, D∗mean, D∗75, D∗90, f10, and f25, derived using algorithm 3, were associated with VEGF expression (P = .043, P = 0.012, P = .019, P = .024, P = .044, P = .041, P = .010, and P = .005, respectively). However, no correlation existed between MVD and IVIM-derived parameters.Perfusion-related IVIM parameters obtained by curve-fitting algorithm 3 may reflect VEGF expression.
Collapse
Affiliation(s)
- Youn Joo Lee
- Department of Radiology, Daejeon St. Mary's Hospital, Daejeon
| | - Sung Hun Kim
- Seoul St. Mary's Hospital, The Catholic University of Korea, Republic of Korea
| | - Bong Joo Kang
- Seoul St. Mary's Hospital, The Catholic University of Korea, Republic of Korea
| | | | | |
Collapse
|