1
|
Rankin AJ, Mangion K, Lees JS, Rutherford E, Gillis KA, Edy E, Dymock L, Treibel TA, Radjenovic A, Patel RK, Berry C, Roditi G, Mark PB. Myocardial changes on 3T cardiovascular magnetic resonance imaging in response to haemodialysis with fluid removal. J Cardiovasc Magn Reson 2021; 23:125. [PMID: 34758850 PMCID: PMC8580743 DOI: 10.1186/s12968-021-00822-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mapping of left ventricular (LV) native T1 is a promising non-invasive, non-contrast imaging biomarker. Native myocardial T1 times are prolonged in patients requiring dialysis, but there are concerns that the dialysis process and fluctuating fluid status may confound results in this population. We aimed to assess the changes in cardiac parameters on 3T cardiovascular magnetic resonance (CMR) before and after haemodialysis, with a specific focus on native T1 mapping. METHODS This is a single centre, prospective observational study in which maintenance haemodialysis patients underwent CMR before and after dialysis (both scans within 24 h). Weight measurement, bio-impedance body composition monitoring, haemodialysis details and fluid intake were recorded. CMR protocol included cine imaging and mapping native T1 and T2. RESULTS Twenty-six participants (16 male, 65 ± 9 years) were included in the analysis. The median net ultrafiltration volume on dialysis was 2.3 L (IQR 1.8, 2.5), resulting in a median weight reduction at post-dialysis scan of 1.35 kg (IQR 1.0, 1.9), with a median reduction in over-hydration (as measured by bioimpedance) of 0.75 L (IQR 0.5, 1.4). Significant reductions were observed in LV end-diastolic volume (- 25 ml, p = 0.002), LV stroke volume (- 13 ml, p = 0.007), global T1 (21 ms, p = 0.02), global T2 (- 1.2 ms, p = 0.02) following dialysis. There was no change in LV mass (p = 0.35), LV ejection fraction (p = 0.13) or global longitudinal strain (p = 0.22). On linear regression there was no association between baseline over-hydration (as defined by bioimpedance) and global native T1 or global T2, nor was there an association between the change in over-hydration and the change in these parameters. CONCLUSIONS Acute changes in cardiac volumes and myocardial native T1 are detectable on 3T CMR following haemodialysis with fluid removal. The reduction in global T1 suggests that the abnormal native T1 observed in patients on haemodialysis is not entirely due to myocardial fibrosis.
Collapse
Affiliation(s)
- Alastair J Rankin
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK.
| | - Kenneth Mangion
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | - Jennifer S Lees
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | - Elaine Rutherford
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | - Keith A Gillis
- Renal and Transplant Unit, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Elbert Edy
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | - Laura Dymock
- Clinical Research Imaging, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Thomas A Treibel
- Institute for Cardiovascular Sciences and Barts Heart Centre, University College London, London, UK
| | - Aleksandra Radjenovic
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | - Rajan K Patel
- Renal and Transplant Unit, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Colin Berry
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | - Giles Roditi
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
- Department of Radiology, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Patrick B Mark
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| |
Collapse
|
2
|
Aortic Stiffness and Heart Failure in Chronic Kidney Disease. CURRENT CARDIOVASCULAR IMAGING REPORTS 2020. [DOI: 10.1007/s12410-020-9534-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Abstract
Purpose of Review
To provide an update on the recent findings in the field of aortic stiffness and heart failure in patients with chronic kidney disease (CKD).
Recent Findings
Stratification of cardiovascular risk in CKD remains an open question. Recent reports suggest that aortic stiffness, an independent predictor of cardiovascular events in many patient populations, is also an important prognostic factor in CKD. Also, novel measures of myocardial tissue characterization, native T1 and T2 mapping techniques, have potential as diagnostic and prognostic factors in CKD.
Summary
Cardiovascular magnetic resonance has the ability to thoroughly evaluate novel imaging markers: aortic stiffness, native T1, and native T2. Novel imaging markers can be used for diagnostic and prognostic purposes as well as potential therapeutic targets in CKD population.
Collapse
|
4
|
Mangion K, McDowell K, Mark PB, Rutherford E. Characterizing Cardiac Involvement in Chronic Kidney Disease Using CMR-a Systematic Review. CURRENT CARDIOVASCULAR IMAGING REPORTS 2018; 11:2. [PMID: 29497467 PMCID: PMC5818546 DOI: 10.1007/s12410-018-9441-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE OF REVIEW The aim of the review was to identify and describe recent advances (over the last 3 years) in cardiac magnetic resonance (CMR) imaging in patients with chronic kidney disease (CKD). We conducted a literature review in line with current guidelines. RECENT FINDINGS The authors identified 22 studies. Patients with CKD had left ventricular global and regional dysfunction and adverse remodeling. Stress testing with CMR revealed a reduced stress-response in CKD patients. Native T1 relaxation times (as a surrogate markers of fibrosis) are elevated in CKD patients, proportional to disease duration. Patients with CKD have reduced strain magnitudes and reduced aortic distensibility. SUMMARY CMR has diagnostic utility to identify and characterize cardiac involvement in this patient group. A number of papers have described novel findings over the last 3 years, suggesting that CMR has potential to become more widely used in studies in this patient group.
Collapse
Affiliation(s)
- Kenneth Mangion
- Institute of Cardiovascular and Medical Sciences, BHF Cardiovascular Research Centre, University of Glasgow, BHF Building, 126 University Place, Glasgow, G12 8TA UK
| | - Kirsty McDowell
- Institute of Cardiovascular and Medical Sciences, BHF Cardiovascular Research Centre, University of Glasgow, BHF Building, 126 University Place, Glasgow, G12 8TA UK
| | - Patrick B. Mark
- Institute of Cardiovascular and Medical Sciences, BHF Cardiovascular Research Centre, University of Glasgow, BHF Building, 126 University Place, Glasgow, G12 8TA UK
- Glasgow Renal & Transplant Unit, NHS Greater Glasgow & Clyde, Queen Elizabeth University Hospital, Glasgow, UK
| | - Elaine Rutherford
- Institute of Cardiovascular and Medical Sciences, BHF Cardiovascular Research Centre, University of Glasgow, BHF Building, 126 University Place, Glasgow, G12 8TA UK
- Glasgow Renal & Transplant Unit, NHS Greater Glasgow & Clyde, Queen Elizabeth University Hospital, Glasgow, UK
| |
Collapse
|