1
|
Lanzafame LRM, Gulli C, Booz C, Vogl TJ, Saba L, Cau R, Toia P, Ascenti G, Gaeta M, Mazziotti S, D'Angelo T. Advancements in Computed Tomography Angiography for Pulmonary Embolism Assessment. Echocardiography 2025; 42:e70116. [PMID: 40028754 DOI: 10.1111/echo.70116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/03/2025] [Accepted: 02/21/2025] [Indexed: 03/05/2025] Open
Abstract
Pulmonary embolism (PE) is a critical condition stemming from venous thromboembolism, with potentially fatal outcomes. Computed tomography pulmonary angiography (CTPA) serves as the gold standard for diagnosing PE, offering unparalleled diagnostic accuracy, accessibility, and speed. Recent innovations, such as spectral CT systems and artificial intelligence (AI)-driven algorithms, have enhanced the diagnostic and prognostic capabilities of CTPA, enabling precise anatomical and functional assessments. This review highlights these technological advancements and their clinical implications.
Collapse
Affiliation(s)
- Ludovica R M Lanzafame
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, Messina, Italy
| | - Claudia Gulli
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, Messina, Italy
| | - Christian Booz
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Thomas J Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, Cagliari, Italy
| | - Riccardo Cau
- Department of Radiology, Azienda Ospedaliero Universitaria, Cagliari, Italy
| | - Patrizia Toia
- Department of Radiology, AOUP Paolo Giaccone, Palermo, Italy
| | - Giorgio Ascenti
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, Messina, Italy
| | - Michele Gaeta
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, Messina, Italy
| | - Silvio Mazziotti
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, Messina, Italy
| | - Tommaso D'Angelo
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, Messina, Italy
| |
Collapse
|
2
|
Steinmetz S, Mercado MAA, Altmann S, Sanner A, Kronfeld A, Frenzel M, Kim D, Groppa S, Uphaus T, Brockmann MA, Othman AE. Impact of deep Learning-enhanced contrast on diagnostic accuracy in stroke CT angiography. Eur J Radiol 2024; 181:111808. [PMID: 39520838 DOI: 10.1016/j.ejrad.2024.111808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/15/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE To examine the impact of deep learning-augmented contrast enhancement on image quality and diagnostic accuracy of poorly contrasted CT angiography in patients with suspected stroke. METHODS This retrospective single-centre study included 102 consecutive patients who underwent CT imaging for suspected stroke between 01/2021 and 12/2022, including whole brain volume perfusion CT (VPCT) and, specifically, a poorly contrasted CT angiography (defined as < 350HU in the proximal MCA). CT angiography imaging data was reconstructed using i.) an iterative reconstruction kernel (conventional CTA, c-CTA) as well as ii.) an iodine-based contrast boosting deep learning model (Deep Learning-enhanced CTA, DLe-CTA). For quantitative analysis, the slope, contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR) were determined. Qualitative image analysis was conducted by three readers, rating image quality and vessel-specific parameters on a 4-point Likert scale. Readers evaluated both datasets for cerebral vessel occlusion presence. VPCT served as the reference standard for calculating sensitivity and specificity. RESULTS 102 patients were evaluated (mean age 69 ± 13 years; 70 men). DLe-CTA outperformed c-CTA in quantitative (all items p < 0.001) and qualitative image analysis (all items p < 0.05). VPCT revealed 58/102 patients with vascular occlusion. DLe-CTA resulted in significantly higher sensitivity compared to c-CTA (p < 0.001); (all readers put together: c-CTA: 142/174 [81.6 %; 95 % CI: 75.0 %-87.1 %] vs. DLe-CTA 163/174 [94 %; 95 % CI: 89.0 %-96.8 %]). One false positive finding occurred on DLe-CTA (specificity 1/132) [99.2 %; 95 % CI: 95.9 %-100 %]. CONCLUSIONS Deep learning-augmented contrast enhancement improves the image quality and increases the sensitivity of detection vessel occlusions in poorly contrasted CTA.
Collapse
Affiliation(s)
- Sebastian Steinmetz
- Department of Neuroradiology, University Medical Center Mainz, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Mario Alberto Abello Mercado
- Department of Neuroradiology, University Medical Center Mainz, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Sebastian Altmann
- Department of Neuroradiology, University Medical Center Mainz, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Antoine Sanner
- Technical University of Darmstadt, Karolinenpl. 5, 64289 Darmstadt, Germany
| | - Andrea Kronfeld
- Department of Neuroradiology, University Medical Center Mainz, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Marius Frenzel
- Department of Neuroradiology, University Medical Center Mainz, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Dongok Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul, Republic of Korea
| | - Sergiu Groppa
- Department of Neurology, University Medical Center Mainz, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Timo Uphaus
- Department of Neurology, University Medical Center Mainz, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Marc A Brockmann
- Department of Neuroradiology, University Medical Center Mainz, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Ahmed E Othman
- Department of Neuroradiology, University Medical Center Mainz, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
3
|
D'Angelo T, Mastrodicasa D, Lanzafame LRM, Yel I, Koch V, Gruenewald LD, Sharma SP, Ascenti V, Micari A, Blandino A, Vogl TJ, Mazziotti S, Budde RPJ, Booz C. Optimization of window settings for coronary arteries assessment using spectral CT-derived virtual monoenergetic imaging. LA RADIOLOGIA MEDICA 2024; 129:999-1007. [PMID: 38935247 PMCID: PMC11252218 DOI: 10.1007/s11547-024-01835-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
PURPOSE To determine the optimal window setting for virtual monoenergetic images (VMI) reconstructed from dual-layer spectral coronary computed tomography angiography (DE-CCTA) datasets. MATERIAL AND METHODS 50 patients (30 males; mean age 61.1 ± 12.4 years who underwent DE-CCTA from May 2021 to June 2022 for suspected coronary artery disease, were retrospectively included. Image quality assessment was performed on conventional images and VMI reconstructions at 70 and 40 keV. Objective image quality was assessed using contrast-to-noise ratio (CNR). Two independent observers manually identified the best window settings (B-W/L) for VMI 70 and VMI 40 visualization. B-W/L were then normalized with aortic attenuation using linear regression analysis to obtain the optimized W/L (O-W/L) settings. Additionally, subjective image quality was evaluated using a 5-point Likert scale, and vessel diameters were measured to examine any potential impact of different W/L settings. RESULTS VMI 40 demonstrated higher CNR values compared to conventional and VMI 70. B-W/L settings identified were 1180/280 HU for VMI 70 and 3290/900 HU for VMI 40. Subsequent linear regression analysis yielded O-W/L settings of 1155/270 HU for VMI 70 and 3230/880 HU for VMI 40. VMI 40 O-W/L received the highest scores for each parameter compared to conventional (all p < 0.0027). Using O-W/L settings for VMI 70 and VMI 40 did not result in significant differences in vessel measurements compared to conventional images. CONCLUSION Optimization of VMI requires adjustments in W/L settings. Our results recommend W/L settings of 1155/270 HU for VMI 70 and 3230/880 HU for VMI 40.
Collapse
Affiliation(s)
- Tommaso D'Angelo
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital "Policlinico G. Martino", Via Consolare Valeria 1, 98100, Messina, Italy.
- Department of Radiology and Nuclear Medicine, Erasmus MC, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| | - Domenico Mastrodicasa
- Department of Radiology, Stanford University School of Medicine, 453 Quarry Rd, MC 5659, Palo Alto, CA 94304-5659, USA
| | - Ludovica R M Lanzafame
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital "Policlinico G. Martino", Via Consolare Valeria 1, 98100, Messina, Italy
| | - Ibrahim Yel
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Vitali Koch
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Leon D Gruenewald
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Simran P Sharma
- Department of Radiology and Nuclear Medicine, Erasmus MC, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Velio Ascenti
- Department of Radiology, Policlinico Universitario Ospedale Maggiore, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Antonino Micari
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital "Policlinico G. Martino", Via Consolare Valeria 1, 98100, Messina, Italy
| | - Alfredo Blandino
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital "Policlinico G. Martino", Via Consolare Valeria 1, 98100, Messina, Italy
| | - Thomas J Vogl
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Silvio Mazziotti
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital "Policlinico G. Martino", Via Consolare Valeria 1, 98100, Messina, Italy
| | - Ricardo P J Budde
- Department of Radiology and Nuclear Medicine, Erasmus MC, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Christian Booz
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| |
Collapse
|
4
|
Gliner-Ron M, Sosna J, Leichter I, Goldberg SN, Shaham D, Cohen D, Malul Y, Romman Z, Lev-Cohain N. Evaluation of the Pulmonary Arteries on CTPA With Dual Energy CT: Objective Analysis and Subjective Preferences in a Multireader Study. J Thorac Imaging 2024; 39:201-207. [PMID: 38664903 DOI: 10.1097/rti.0000000000000782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
PURPOSE To perform qualitative and quantitative evaluation of low-monoenergetic images (50 KeV) compared with conventional images (120 kVp) in pulmonary embolism (PE) studies and to determine the extent and clinical relevance of these differences as well as radiologists' preferences. MATERIALS AND METHODS One hundred fifty CT examinations for PE detection conducted on a single-source dual-energy CT were retrospectively evaluated. Attenuation, contrast-to-noise-ratio, and signal-to-noise-ratio were obtained in a total of 8 individual pulmonary arteries on each exam-including both central (450/1200=37.5%) and peripheral (750/1200=62.5%) locations. Results were compared between the conventional and low-monoenergetic images. For quality assessment, 41 images containing PE were presented side-by-side as pairs of slices in both conventional and monoenergetic modes and evaluated for ease in embolus detection by 9 radiologists: cardiothoracic specialists (3), noncardiothoracic specialists (3), and residents (3). Paired samples t tests, a-parametric Wilcoxon test, McNemar test, and kappa statistics were performed. RESULTS Monoenergetic images had an overall statistically significant increased average ratio of 2.09 to 2.26 ( P <0.05) for each measured vessel attenuation, with an increase in signal-to-noise ratio (23.82±9.29 vs. 11.39±3.2) and contrast-to-noise ratio (17.17±6.7 vs 7.27±2.52) ( P <0.05). Moreover, 10/150 (6%) of central pulmonary artery measurements considered suboptimal on conventional mode were considered diagnostic on the monoenergetic images (181±14.6 vs. 387.7±72.4 HU respectively, P <0.05). In the subjective evaluation, noncardiothoracic radiologists showed a preference towards low-monoenergetic images, whereas cardiothoracic radiologists did not (74.4% vs. 57.7%, respectively, P <0.05). CONCLUSIONS The SNR and CNR increase on monoenergetic images may have clinical significance particularly in the setting of sub-optimal PE studies. Noncardiothoracic radiologists and residents prefer low monoenergetic images.
Collapse
Affiliation(s)
- Masha Gliner-Ron
- Department of Radiology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Zhou X, Cui M, Liu Y, Wu Y, Hu D, Zhai D, Qin M, Shen J, Ju S, Fan G, Cai W. Low Dose Iodinated Contrast Material and Radiation for Virtual Monochromatic Imaging in Craniocervical Dual-Layer Spectral Detector Computed Tomography Angiography: A Prospective and Randomized Study. Acad Radiol 2024; 31:2501-2510. [PMID: 38135625 DOI: 10.1016/j.acra.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023]
Abstract
RATIONALE AND OBJECTIVES To investigate the feasibility of virtual monochromatic imaging (VMI) of dual-layer spectral detector computed tomography (SDCT) to reduce iodinated contrast material (CM) and radiation dose in craniocervical computed tomography angiography (CTA). MATERIALS AND METHODS A total of 280 consecutively selected patients performed craniocervical CTA with SDCT were prospectively selected and randomly divided into four groups (A, DoseRight index (DRI) 31, iopromide 370mgI/mL, volume 0.8 mL/kg; B, DRI 26, iopromide 370mgI/mL, volume 0.4 mL/kg; C, DRI 26, ioversol 320mgI/mL, volume 0.4 mL/kg; D, DRI 26, iohexol 300mgI/mL, volume 0.4 mL/kg). 50-70 kiloelectron volts (keV) VMIs in group B were reconstructed and compared to group A to select the optimal keV. Then, the optimal keV in groups B, C and D was reconstructed and compared. Objective image quality, including vascular attenuation, image noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), was evaluated. Subjective image quality was assessed using a 5-point Likert scale. In addition, the effective dose (ED), iodine load and iodine delivery rate (IDR) were compared between groups A and D. RESULTS 55 keV VMI was the optimal VMI in group B. The objective and subjective image quality of 55 keV VMI in group B were equal to or better than those of the CI in group A. The SNR, CNR and subjective image quality in group D were similar to those in group B (P > 0.05). The ED, iodine load and IDR of group D were reduced by 44%, 59% and 19%, respectively, when compared to those of group A. CONCLUSION Low dose iodinated CM and radiation for 55 keV VMI in craniocervical CTA using SDCT could still provide equivalent or better image quality than the conventional scanning protocol.
Collapse
Affiliation(s)
- Xiuzhi Zhou
- Department of Radiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Gusu, Suzhou, 215004, Jiangsu, China (X.Z., M.C., Y.L., Y.W., D.H., D.Z., J.S., G.F., W.C.)
| | - Manman Cui
- Department of Radiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Gusu, Suzhou, 215004, Jiangsu, China (X.Z., M.C., Y.L., Y.W., D.H., D.Z., J.S., G.F., W.C.)
| | - Yan Liu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Gusu, Suzhou, 215004, Jiangsu, China (X.Z., M.C., Y.L., Y.W., D.H., D.Z., J.S., G.F., W.C.)
| | - Yuanyuan Wu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Gusu, Suzhou, 215004, Jiangsu, China (X.Z., M.C., Y.L., Y.W., D.H., D.Z., J.S., G.F., W.C.)
| | - Dongliang Hu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Gusu, Suzhou, 215004, Jiangsu, China (X.Z., M.C., Y.L., Y.W., D.H., D.Z., J.S., G.F., W.C.)
| | - Duchang Zhai
- Department of Radiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Gusu, Suzhou, 215004, Jiangsu, China (X.Z., M.C., Y.L., Y.W., D.H., D.Z., J.S., G.F., W.C.)
| | - Mingyu Qin
- Suzhou Medical College of Soochow University, Suzhou, 215026, Jiangsu, China (M.Q.)
| | - Junkang Shen
- Department of Radiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Gusu, Suzhou, 215004, Jiangsu, China (X.Z., M.C., Y.L., Y.W., D.H., D.Z., J.S., G.F., W.C.)
| | - Shenghong Ju
- Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China (S.J.)
| | - Guohua Fan
- Department of Radiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Gusu, Suzhou, 215004, Jiangsu, China (X.Z., M.C., Y.L., Y.W., D.H., D.Z., J.S., G.F., W.C.)
| | - Wu Cai
- Department of Radiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Gusu, Suzhou, 215004, Jiangsu, China (X.Z., M.C., Y.L., Y.W., D.H., D.Z., J.S., G.F., W.C.).
| |
Collapse
|
6
|
Kazimierczak W, Nowak E, Kazimierczak N, Jankowski T, Jankowska A, Serafin Z. The value of metal artifact reduction and iterative algorithms in dual energy CT angiography in patients after complex endovascular aortic aneurysm repair. Heliyon 2023; 9:e20700. [PMID: 37876478 PMCID: PMC10590777 DOI: 10.1016/j.heliyon.2023.e20700] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/26/2023] Open
Abstract
Rationale and objectives Evaluation of the diagnostic value of linearly blended (LB) and virtual monoenergetic images (VMI) reconstruction techniques with and without metal artifacts reduction (MAR) and of adaptive statistical iterative reconstructions (ASIR) in the assessment of target vessels after branched/fenestrated endovascular aortic repair (f/brEVAR) procedures. Materials and methods CT scans of 28 patients were used in this study. Arterial phase of examination was obtained using a dual-energy fast-kVp switching scanner. CT numbers in the aorta, celiac trunk, superior mesenteric artery, and renal arteries were measured in the following reconstructions: LB, VMI 60 keV, VMI MAR 60 keV, VMI ASIR 60 % 60 keV. Contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) were calculated for each reconstruction. Luminal diameters (measurements at 2 levels of stent) and subjective image quality (5-point Likert scale) were assessed (2 readers, blinded to the type of reconstruction). Results The highest mean values of CNR and SNR in vascular structures were obtained in VMI MAR 60 keV (CNR 12.526 ± 2.46, SNR 17.398 ± 2.52), lower in VMI 60 keV (CNR 11.508 ± 2.01, SNR 16.524 ± 2.07) and VMI ASIR (CNR 11.086 ± 1.78, SNR 15.928 ± 1.82), and the lowest in LB (CNR 6.808 ± 0.79, SNR 11.492 ± 0.79) reconstructions. There were no statistically significant differences in the measurements of the stent width between reconstructions (p > 0.05). The highest subjective image quality was obtained in the ASIR VMI (4.25 ± 0.44) and the lowest in the MAR VMI (1.57 ± 0.5) reconstruction. Conclusion Despite obtaining the highest values of SNR and CNR in the MAR VMI reconstruction, the subjective diagnostic value was the lowest for this technique due to significant artifacts. The type of reconstruction did not significantly affect vessel diameter measurements (p > 0.05). Iterative reconstructions raised both objective and subjective image quality.
Collapse
Affiliation(s)
- Wojciech Kazimierczak
- Collegium Medicum, Nicolaus Copernicus University in Torun, Jagiellońska 13-15, 85-067, Bydgoszcz, Poland
- University Hospital No 1 in Bydgoszcz, Marii Skłodowskiej – Curie 9, 85-094, Bydgoszcz, Poland
- Kazimierczak Private Medical Practice, Dworcowa 13/u6a, 85-009, Bydgoszcz, Poland
| | - Ewa Nowak
- University Hospital No 1 in Bydgoszcz, Marii Skłodowskiej – Curie 9, 85-094, Bydgoszcz, Poland
| | - Natalia Kazimierczak
- Kazimierczak Private Medical Practice, Dworcowa 13/u6a, 85-009, Bydgoszcz, Poland
| | - Tomasz Jankowski
- Jankowscy Private Dental Practice, Czerwonego Krzyża 24, 68-200, Żary, Poland
| | - Agnieszka Jankowska
- Jankowscy Private Dental Practice, Czerwonego Krzyża 24, 68-200, Żary, Poland
| | - Zbigniew Serafin
- Collegium Medicum, Nicolaus Copernicus University in Torun, Jagiellońska 13-15, 85-067, Bydgoszcz, Poland
- University Hospital No 1 in Bydgoszcz, Marii Skłodowskiej – Curie 9, 85-094, Bydgoszcz, Poland
| |
Collapse
|
7
|
Gupta H, Spanopoulous B, Lubat E, Krinsky G, Rutledge J, Fortier JH, Grau J, Tayal R. Real-world approach to comprehensive artificial intelligence-aided CT evaluation of coronary artery disease in 530 patients: A retrospective study. Heliyon 2023; 9:e19974. [PMID: 37809738 PMCID: PMC10559546 DOI: 10.1016/j.heliyon.2023.e19974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Purpose Recent guidelines provide broader support for the use of less invasive imaging modalities for the evaluation of patients with stable chest pain. Coronary CT angiography (CCTA) uses increasingly sophisticated techniques to improve evaluation of coronary lesions. The purpose of this study is to describe one center's experience implementing AI-assisted advanced imaging techniques to diagnose coronary artery disease. Materials & methods Retrospective study of patients who had AI-assisted CCTA interpretation, including a subgroup who underwent fractional flow reserve CT (FFR-CT) and invasive coronary angiography. Descriptive statistics summarized baseline characteristics and univariate statistics compared findings between groups of patients with and without anatomically and hemodynamically significant lesions based on FFR-CT. For patients who underwent invasive coronary angiography, concordance between CCTA and angiography was evaluated. Results Of 532 included patients, AI-assisted CCTA identified statistically significant difference in calcification scores, plaque types and total plaque volume between lesions <50% and ≥50% stenosis. CCTA results were mostly concordant with invasive coronary angiography. Importantly, we identified a subset of patients with less than 50% anatomical stenosis that demonstrated physiologically significant stenosis on FFR-CT and invasive coronary angiography. Conclusions AI-assisted CCTA and other advanced techniques are a tool to support high quality diagnostic assessment of coronary lesions in a clinical environment. Combined CCTA with FFRCT in mild to moderate coronary stenosis identifies patients with hemodynamically significant stenosis even when quantitative stenosis is <50%. Implementation of AI-assisted coronary CT angiography is feasible in a community hospital setting, but these technologies do not replace the need for expert review and clinical correlation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Juan Grau
- The Valley Hospital, Ridgewood, NJ, USA
- The University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | | |
Collapse
|
8
|
Ozawa Y, Ohno Y, Nagata H, Tamokami K, Nishikimi K, Oshima Y, Hamabuchi N, Matsuyama T, Ueda T, Toyama H. Advances for Pulmonary Functional Imaging: Dual-Energy Computed Tomography for Pulmonary Functional Imaging. Diagnostics (Basel) 2023; 13:2295. [PMID: 37443688 DOI: 10.3390/diagnostics13132295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Dual-energy computed tomography (DECT) can improve the differentiation of material by using two different X-ray energy spectra, and may provide new imaging techniques to diagnostic radiology to overcome the limitations of conventional CT in characterizing tissue. Some techniques have used dual-energy imaging, which mainly includes dual-sourced, rapid kVp switching, dual-layer detectors, and split-filter imaging. In iodine images, images of the lung's perfused blood volume (PBV) based on DECT have been applied in patients with pulmonary embolism to obtain both images of the PE occluding the pulmonary artery and the consequent perfusion defects in the lung's parenchyma. PBV images of the lung also have the potential to indicate the severity of PE, including chronic thromboembolic pulmonary hypertension. Virtual monochromatic imaging can improve the accuracy of diagnosing pulmonary vascular diseases by optimizing kiloelectronvolt settings for various purposes. Iodine images also could provide a new approach in the area of thoracic oncology, for example, for the characterization of pulmonary nodules and mediastinal lymph nodes. DECT-based lung ventilation imaging is also available with noble gases with high atomic numbers, such as xenon, which is similar to iodine. A ventilation map of the lung can be used to image various pulmonary diseases such as chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Yoshiyuki Ozawa
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Yoshiharu Ohno
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Hiroyuki Nagata
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Keigo Tamokami
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Keitaro Nishikimi
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Yuka Oshima
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Nayu Hamabuchi
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Takahiro Matsuyama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Takahiro Ueda
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Hiroshi Toyama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| |
Collapse
|
9
|
D’Angelo T, Arico FM, Broccio L, Ascenti G, Mazziotti S, Booz C, Martin SS, Yel I, Lanzafame LRM, Blandino A, Sofia C. Multi-Contrast Differentiation by Dual-Energy Spectral CT Angiography in a Patient with Pulmonary Barium Granulomas. Diagnostics (Basel) 2023; 13:diagnostics13050832. [PMID: 36899976 PMCID: PMC10000742 DOI: 10.3390/diagnostics13050832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Barium inhalation usually relates to accidental aspiration during radiological procedures with an oral contrast agent. When present, barium lung deposits are visible as high-density opacities on chest X-ray or CT scan due to high atomic number, and they may be indistinguishable from calcifications. Dual-layer spectral CT has shown good material differentiation capabilities, due to its increased high-Z element range and smaller spectral separation between low- and high-energy spectral data. We present the case of a 17-year-old female with a history of tracheoesophageal fistula, who underwent chest CT angiography on a dual-layer spectral platform. Despite the close Z numbers and K-edge energy levels of the two different contrast materials, spectral CT was able to identify barium lung deposits from a previous swallowing study and to clearly distinguish them from calcium and the surrounding iodine-containing structures.
Collapse
Affiliation(s)
- Tommaso D’Angelo
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital “Policlinico G. Martino”, 98124 Messina, Italy
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Correspondence: (T.D.); (F.M.A.)
| | - Francesco M. Arico
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital “Policlinico G. Martino”, 98124 Messina, Italy
- Correspondence: (T.D.); (F.M.A.)
| | - Lydia Broccio
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital “Policlinico G. Martino”, 98124 Messina, Italy
| | - Giorgio Ascenti
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital “Policlinico G. Martino”, 98124 Messina, Italy
| | - Silvio Mazziotti
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital “Policlinico G. Martino”, 98124 Messina, Italy
| | - Christian Booz
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Simon S. Martin
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Ibrahim Yel
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Ludovica R. M. Lanzafame
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital “Policlinico G. Martino”, 98124 Messina, Italy
| | - Alfredo Blandino
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital “Policlinico G. Martino”, 98124 Messina, Italy
| | - Carmelo Sofia
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital “Policlinico G. Martino”, 98124 Messina, Italy
| |
Collapse
|
10
|
Dell’Aversana S, Ascione R, De Giorgi M, De Lucia DR, Cuocolo R, Boccalatte M, Sibilio G, Napolitano G, Muscogiuri G, Sironi S, Di Costanzo G, Cavaglià E, Imbriaco M, Ponsiglione A. Dual-Energy CT of the Heart: A Review. J Imaging 2022; 8:jimaging8090236. [PMID: 36135402 PMCID: PMC9503750 DOI: 10.3390/jimaging8090236] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/09/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022] Open
Abstract
Dual-energy computed tomography (DECT) represents an emerging imaging technique which consists of the acquisition of two separate datasets utilizing two different X-ray spectra energies. Several cardiac DECT applications have been assessed, such as virtual monoenergetic images, virtual non-contrast reconstructions, and iodine myocardial perfusion maps, which are demonstrated to improve diagnostic accuracy and image quality while reducing both radiation and contrast media administration. This review will summarize the technical basis of DECT and review the principal cardiac applications currently adopted in clinical practice, exploring possible future applications.
Collapse
Affiliation(s)
- Serena Dell’Aversana
- Department of Radiology, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
- Correspondence:
| | - Raffaele Ascione
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Marco De Giorgi
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Davide Raffaele De Lucia
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Renato Cuocolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
| | - Marco Boccalatte
- Coronary Care Unit, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
| | - Gerolamo Sibilio
- Coronary Care Unit, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
| | | | - Giuseppe Muscogiuri
- Department of Radiology, Istituto Auxologico Italiano IRCCS, San Luca Hospital, University Milano Bicocca, 20149 Milan, Italy
| | - Sandro Sironi
- Department of Radiology, Istituto Auxologico Italiano IRCCS, San Luca Hospital, University Milano Bicocca, 20149 Milan, Italy
| | - Giuseppe Di Costanzo
- Department of Radiology, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
| | - Enrico Cavaglià
- Department of Radiology, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
| | - Massimo Imbriaco
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Andrea Ponsiglione
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
11
|
Initial Investigation of Clinical Value of Noise-Optimized Virtual Monoenergetic Images Derived From Dual-Energy Computed Tomography Angiography in Preoperative Perforator Planning of Anterolateral Thigh Flap Transplantation. J Comput Assist Tomogr 2022; 46:560-567. [PMID: 35405721 DOI: 10.1097/rct.0000000000001320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To objectively and subjectively assess the image characteristics of noise-optimized virtual monoenergetic images [MEI (+)] and polyenergetic images (PEIs) from dual-energy computed tomography angiography and then to explore the clinical value of the optimal MEI (+) in preoperative perforator planning of anterolateral thigh (ALT) flap transplantation. METHODS Sixteen patients (32 thighs) who underwent lower extremity run-off dual-energy computed tomography angiography for planning ALT flap transplantation were enrolled. One standard PEI and 5 MEI (+) in 10-keV intervals (range, 40-80 keV) were reconstructed. First, we compared the image quality subjectively (branch order, image quality, and vascular network continuity) and objectively (vascular attenuation, image noise, signal-to-noise ratio, and the contrast-to-noise ratio). Then, we compared the clinical value (number, type, source artery, pedicle length, caliber, and location of all sizable perforators) between the optimal MEI (+) and PEI groups. RESULTS The 40-keV MEI (+) was rated superior subjective and objective image quality metrics to PEI (all P < 0.001). Compared with PEI, 40 keV MEI (+) increased the number of visible perforators, the percentage of perforators with identifiable types, and the measurable length of perforator pedicle (all P < 0.001). CONCLUSIONS We recommend 40 keV MEI (+) for the visualization of perforators and their contribution to the selection and location of suitable perforators in preoperative planning for ALT flaps.
Collapse
|
12
|
Zeng Y, Geng D, Zhang J. Noise-optimized virtual monoenergetic imaging technology of the third-generation dual-source computed tomography and its clinical applications. Quant Imaging Med Surg 2021; 11:4627-4643. [PMID: 34737929 DOI: 10.21037/qims-20-1196] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 06/02/2021] [Indexed: 02/05/2023]
Abstract
The third-generation dual-source computed tomography (DSCT) is among the most advanced imaging methods. It employs noise-optimized virtual monoenergetic imaging (VMI+) technology. It uses the frequency-split method to extract high-contrast image information from low-energy images and low-noise information from images reconstructed at an optimal energy level, combining them to obtain the final image with improved quality. This review is the first to summarize the results of clinical studies that primarily and recently evaluated the VMI+ technique based on tumor, blood vessel, and other lesion classification. We aim to assist radiologists in quickly selecting the appropriate energy level when performing image reconstruction for superior image quality in clinical work and providing several ideas for future scientific research of the VMI+ technique. Presently, VMI+ reconstruction is mostly used for images of various tumors or blood vessels, including coronary plaques, coronary stents, deep vein thromboses, pulmonary embolisms (PEs), active arterial hemorrhages, and endoleaks after endovascular aneurysm repair. In addition, VMI+ has been used for imaging children's heads, liver lesions, pancreatic lacerations, and reducing metal artifacts. Regarding the reconstruction at the optimal energy level, the VMI+ technique yielded a higher image quality than the pre-optimized virtual monoenergetic imaging (VMI) technique and single-energy CT. Moreover, either low concentrations of contrast medium or low iodine injection rates can be applied before VMI+ reconstruction at a low-energy level to reduce contrast agent-related kidney injury risk. After reconstructing an image at the optimal energy level, both the image's window width and level can also be adjusted to improve the image effect's reach and diagnosis suitability. To improve image quality and lesion-imaging clarity and reduce the use of contrast agents, VMI+ reconstruction technology has been applied clinically, in which the selection of energy level is the key to the whole reconstruction process. Our review summarizes these optimal levels for radiologists' reference and suggests new ideas for the direction of future VMI+ research.
Collapse
Affiliation(s)
- Yanwei Zeng
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China.,Center for Shanghai Intelligent Imaging for Critical Brain Diseases Engineering and Technology Research, Shanghai, China
| | - Daoying Geng
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China.,Center for Shanghai Intelligent Imaging for Critical Brain Diseases Engineering and Technology Research, Shanghai, China
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China.,Center for Shanghai Intelligent Imaging for Critical Brain Diseases Engineering and Technology Research, Shanghai, China
| |
Collapse
|
13
|
Zopfs D, Lennartz S, Abdullayev N, Lichtenstein T, Laukamp KR, Reimer RP, Kabbasch C, Borggrefe J, Schlamann M, Neuhaus V, Große Hokamp N. Generally applicable window settings of low-keV virtual monoenergetic reconstructions in dual-layer CT-angiography of the head and neck. Quant Imaging Med Surg 2021; 11:3408-3417. [PMID: 34341719 DOI: 10.21037/qims-20-1140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/25/2021] [Indexed: 11/06/2022]
Abstract
Background Increased vessel contrast in low-keV virtual monoenergetic images (VMI) in spectral detector CT angiography of the head and neck requires adaption of window settings. Aim of this study was to define generally applicable window settings of low-keV VMI. Methods Two radiologists determined ideal subjective window settings for VMI40-70 keV in 54 patients. To obtain generally applicable window settings, center and width values were modeled against the attenuation of the internal carotid artery (HUICA). This modeling was performed with and without respect to keV. Subsequently, image quality of VMI40-70 keV was assessed using the model-based determined window settings. Results With decreasing keV values, HUICA increased significantly in comparison to conventional images (CI) (P<0.05 for 40-60 keV). No significant differences between modelled and individually recorded window settings were found confirming validity of the obtained models (P values: 0.2-1.0). However, modelling with respect to keV was marginally less precise. Conclusions Window settings of low-keV VMI can be semi-automatically determined in dependency of the ICA attenuation in spectral detector CTA of the head and neck. The reported models are a promising tool to leverage the improved image quality of these images in clinical routine.
Collapse
Affiliation(s)
- David Zopfs
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University Cologne, Cologne, Germany
| | - Simon Lennartz
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University Cologne, Cologne, Germany.,Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Nuran Abdullayev
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University Cologne, Cologne, Germany
| | - Thorsten Lichtenstein
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University Cologne, Cologne, Germany
| | - Kai Roman Laukamp
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University Cologne, Cologne, Germany
| | - Robert Peter Reimer
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University Cologne, Cologne, Germany
| | - Christoph Kabbasch
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University Cologne, Cologne, Germany
| | - Jan Borggrefe
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Marc Schlamann
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University Cologne, Cologne, Germany
| | - Victor Neuhaus
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University Cologne, Cologne, Germany
| | - Nils Große Hokamp
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University Cologne, Cologne, Germany
| |
Collapse
|
14
|
Lim HJ, Hwang JH, Kim JH, Park S, Lee KH, Park SH. Fistula from right and left coronary arteries to pulmonary artery: Coronary CT angiography and coronary angiography findings. Radiol Case Rep 2021; 16:1790-1793. [PMID: 34025888 PMCID: PMC8121624 DOI: 10.1016/j.radcr.2021.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 11/19/2022] Open
Abstract
Coronary artery fistula is an abnormal communication between the coronary artery and either the cardiac chamber or the great vessel. In particular, the coronary-to-pulmonary artery fistula can be supplied by either one or both coronary arteries and drains to the pulmonary trunk. We report a unique case of fistula originating from both coronary arteries and draining into both sinuses of the main pulmonary artery in a 57-year-old female who experienced chronic chest pain and palpitation. Dilated and tortuous fistulas were found in coronary angiography and coronary computed tomography angiography examinations. To aid early diagnosis and clinical management, radiologists should be aware of the characteristic radiologic findings.
Collapse
|
15
|
Nomura T, Niwa T, Ozawa S, Imai Y, Hashimoto J. Visibility of bronchial arteries using virtual and advanced virtual monoenergetic imaging. Acta Radiol 2020; 61:1618-1627. [PMID: 32429673 DOI: 10.1177/0284185120923992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The utility of virtual monoenergetic imaging (VMI) for fine arteries has not been well clarified. PURPOSE To assess bronchial artery visualization using VMI and noise-optimized advanced VMI (VMI+). MATERIAL AND METHODS Eighty-seven patients with esophageal cancer underwent computed tomography (CT) using a third-generation dual-source system before surgery. Tube voltages were set to 90 kVp and 150 kVp, respectively. Images were reconstructed using VMI and VMI+ with energy levels of 40-120 keV (in 10-keV increments); composite images equivalent to CT images at 105 kVp were also generated. The CT attenuation value and contrast-to-noise ratio (CNR) of bronchial arteries using VMI and VMI+ were compared with those obtained using composite imaging. Two radiologists subjectively analyzed bronchial artery visualization with reference to the composite image. RESULTS CT attenuation values for bronchial arteries using VMI at 40-60 keV and VMI+ at 40 keV and 50 keV were significantly higher than those obtained using composite imaging (P < 0.05). CNR using VMI at 40-60 keV was significantly higher than that obtained using composite imaging (P < 0.05), whereas no differences were noted for values obtained using composite imaging between VMI+ at 40 keV and 50 keV. In the subjective analysis, VMI at 40 keV and 50 keV yielded significantly better visibility of bronchial arteries than VMI+ (P < 0.05). CONCLUSION VMI and VMI+ at low voltages (40-50 keV) may be useful for bronchial artery visualization. VMI+ may be less effective for fine vessels as bronchial artery visualization.
Collapse
Affiliation(s)
- Takakiyo Nomura
- Department of Diagnostic Radiology, Tokai University School of Medicine, Isehara, Japan
| | - Tetsu Niwa
- Department of Diagnostic Radiology, Tokai University School of Medicine, Isehara, Japan
| | - Soji Ozawa
- Department of Gastroenterological Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Yutaka Imai
- Department of Diagnostic Radiology, Tokai University School of Medicine, Isehara, Japan
| | - Jun Hashimoto
- Department of Diagnostic Radiology, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
16
|
D'Angelo T, Lenga L, Arendt CT, Bucher AM, Peterke JL, Caruso D, Mazziotti S, Ascenti G, Blandino A, Othman AE, Martin SS, Albrecht MH, Bodelle B, Vogl TJ, Wichmann JL. Carotid and cerebrovascular dual-energy computed tomography angiography: Optimization of window settings for virtual monoenergetic imaging reconstruction. Eur J Radiol 2020; 130:109166. [PMID: 32693314 DOI: 10.1016/j.ejrad.2020.109166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 04/25/2020] [Accepted: 07/05/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE Dedicated post-processing of dual-energy computed tomography angiography (DE-CTA) datasets has been shown to allow for increased vascular contrast. The goal of our study was to define optimal window settings for displaying virtual monoenergetic images (VMI) reconstructed from dual-energy carotid and cerebrovascular DE-CTA. METHODS Fifty-seven patients who underwent clinically-indicated carotid and cerebrovascular third-generation dual-source DE-CTA were retrospectively evaluated. Standard linearly-blended (M_0.6), 70-keV traditional VMI (M70), and 40-keV noise-optimized VMI (M40+) reconstructions were analyzed. For M70 and M40+ datasets, the subjectively best window setting (width and level, B-W/L) was independently determined by two observers and subsequently related with aortic arch attenuation to calculate optimized values (O-W/L) using linear regression. Subjective evaluation of image quality (IQ) between W/L settings were assessed by two additional readers. Repeated measures analysis of variance were performed to compare W/L settings and IQ indices between M_0.6, M70, and M40 + . RESULTS B-W/L and O-W/L for M70 were 580/210 and 560/200, and for M40+ were 1630/570 and 1560/550, respectively, higher than standard DE-CTA W/L settings (450/100). Highest subjective scores were observed for M40+ regarding overall IQ (all p < 0.001). CONCLUSION Application of O-W/L settings is mandatory to optimize subjective IQ of VMI reconstructions of DE-CTA.
Collapse
Affiliation(s)
- Tommaso D'Angelo
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany; Department of Biomedical Sciences and Morphological and Functional Imaging, "G. Martino" University Hospital Messina, Via Consolare Valeria 1, 98100, Messina, Italy
| | - Lukas Lenga
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Christophe T Arendt
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Andreas M Bucher
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Julia L Peterke
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Damiano Caruso
- Department of Radiological Sciences, Oncological and Pathological Sciences, "La Sapienza'' University Hospital, Latina, Italy
| | - Silvio Mazziotti
- Department of Biomedical Sciences and Morphological and Functional Imaging, "G. Martino" University Hospital Messina, Via Consolare Valeria 1, 98100, Messina, Italy
| | - Giorgio Ascenti
- Department of Biomedical Sciences and Morphological and Functional Imaging, "G. Martino" University Hospital Messina, Via Consolare Valeria 1, 98100, Messina, Italy
| | - Alfredo Blandino
- Department of Biomedical Sciences and Morphological and Functional Imaging, "G. Martino" University Hospital Messina, Via Consolare Valeria 1, 98100, Messina, Italy
| | - Ahmed E Othman
- Department for Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, University Hospital Tübingen, Tübingen, Germany
| | - Simon S Martin
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Moritz H Albrecht
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Boris Bodelle
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Thomas J Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Julian L Wichmann
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| |
Collapse
|
17
|
Cicero G, Ascenti G, Albrecht MH, Blandino A, Cavallaro M, D'Angelo T, Carerj ML, Vogl TJ, Mazziotti S. Extra-abdominal dual-energy CT applications: a comprehensive overview. Radiol Med 2020; 125:384-397. [PMID: 31925704 DOI: 10.1007/s11547-019-01126-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 12/27/2019] [Indexed: 12/12/2022]
Abstract
Unlike conventional computed tomography, dual-energy computed tomography is a relatively novel technique that exploits ionizing radiations at different energy levels. The separate radiation sets can be achieved through different technologies, such as dual source, dual layers or rapid switching voltage. Body tissue molecules vary for their specific atomic numbers and electron density, and the interaction with different sets of radiations results in different attenuations, allowing to their final distinction. In particular, iodine recognition and quantification have led to important information about intravenous contrast medium delivery within the body. Over the years, useful post-processing algorithms have also been validated for improving tissue characterization. For instance, contrast resolution improvement and metal artifact reduction can be obtained through virtual monoenergetic images, dose reduction by virtual non-contrast reconstructions and iodine distribution highlighting through iodine overlay maps. Beyond the evaluation of the abdominal organs, dual-energy computed tomography has also been successfully employed in other anatomical districts. Although lung perfusion is one of the most investigated, this evaluation has been extended to narrowly fields of application, such as musculoskeletal, head and neck, vascular and cardiac. The potential pool of information provided by dual-energy technology is already wide and not completely explored, yet. Therefore, its performance continues to raise increasing interest from both radiologists and clinicians.
Collapse
Affiliation(s)
- Giuseppe Cicero
- Section of Radiological Sciences, Department of Biomedical Sciences and Morphological and Functional Imaging, University of Messina, Policlinico "G. Martino" Via Consolare Valeria 1, 98100, Messina, Italy.
| | - Giorgio Ascenti
- Section of Radiological Sciences, Department of Biomedical Sciences and Morphological and Functional Imaging, University of Messina, Policlinico "G. Martino" Via Consolare Valeria 1, 98100, Messina, Italy
| | - Moritz H Albrecht
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Alfredo Blandino
- Section of Radiological Sciences, Department of Biomedical Sciences and Morphological and Functional Imaging, University of Messina, Policlinico "G. Martino" Via Consolare Valeria 1, 98100, Messina, Italy
| | - Marco Cavallaro
- Section of Radiological Sciences, Department of Biomedical Sciences and Morphological and Functional Imaging, University of Messina, Policlinico "G. Martino" Via Consolare Valeria 1, 98100, Messina, Italy.,Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Tommaso D'Angelo
- Section of Radiological Sciences, Department of Biomedical Sciences and Morphological and Functional Imaging, University of Messina, Policlinico "G. Martino" Via Consolare Valeria 1, 98100, Messina, Italy
| | - Maria Ludovica Carerj
- Section of Radiological Sciences, Department of Biomedical Sciences and Morphological and Functional Imaging, University of Messina, Policlinico "G. Martino" Via Consolare Valeria 1, 98100, Messina, Italy
| | - Thomas J Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Silvio Mazziotti
- Section of Radiological Sciences, Department of Biomedical Sciences and Morphological and Functional Imaging, University of Messina, Policlinico "G. Martino" Via Consolare Valeria 1, 98100, Messina, Italy
| |
Collapse
|
18
|
Albrecht MH, Vogl TJ, Martin SS, Nance JW, Duguay TM, Wichmann JL, De Cecco CN, Varga-Szemes A, van Assen M, Tesche C, Schoepf UJ. Review of Clinical Applications for Virtual Monoenergetic Dual-Energy CT. Radiology 2019; 293:260-271. [DOI: 10.1148/radiol.2019182297] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
19
|
Dual-Energy Computed Tomography in Thoracic Imaging—Current Practices and Utility. J Thorac Imaging 2019; 35:W43-W50. [DOI: 10.1097/rti.0000000000000450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Arendt CT, Czwikla R, Lenga L, Wichmann JL, Albrecht MH, Booz C, Martin SS, Leithner D, Tischendorf P, Blandino A, Vogl TJ, D'Angelo T. Improved coronary artery contrast enhancement using noise-optimised virtual monoenergetic imaging from dual-source dual-energy computed tomography. Eur J Radiol 2019; 122:108666. [PMID: 31786506 DOI: 10.1016/j.ejrad.2019.108666] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 09/04/2019] [Accepted: 09/12/2019] [Indexed: 01/15/2023]
Abstract
PURPOSE To define optimal kiloelectron volt (keV) settings for virtual monoenergetic imaging (VMI) reconstruction at dual-energy coronary computed tomography angiography (DE-CCTA). METHOD Fifty-one DE-CCTA data sets (33 men; mean age, 63.9 ± 13.2 years) were reconstructed as standard linearly-blended images (F_0.6; 60% of 90 kVp, 40% of 150 kVpSn), and with traditional (VMI) and noise-optimised (VMI+) algorithms from 40 to 100 keV in 10-keV intervals. Objective image quality was assessed with signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) measurements. Three observers subjectively evaluated vascular contrast, image sharpness, noise and delineation of coronary plaques. RESULTS Median values for objective image analysis were highest in VMI + series at 40 keV (SNR, 44.5; CNR: 33.5), significantly superior (allp < 0.001) to the best VMI series at 70 keV (SNR, 28.1; CNR, 18.4) and standard F_0.6 images (SNR, 23.2; CNR, 15.6). Overall subjective metrics achieved higher scores at 40-keV VMI+ series in comparison to 70-keV VMI series and F_0.6 images (all p < 0.001), with optimal vascular contrast (5; ICC, 0.90), good image sharpness (4; 0.88), low noise (4; 0.82), and optimal plaque delineation (5; 0.89). CONCLUSIONS DE-CCTA image reconstruction with 40-keV VMI + allows for significant improvement of both objective and subjective image quality.
Collapse
Affiliation(s)
- Christophe T Arendt
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Rouben Czwikla
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Lukas Lenga
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Julian L Wichmann
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Moritz H Albrecht
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany.
| | - Christian Booz
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Simon S Martin
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany; Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Doris Leithner
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Patricia Tischendorf
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Alfredo Blandino
- Section of Radiological Sciences, Department of Biomedical Sciences and Morphological and Functional Imaging, Policlinico G. Martino - University Hospital Messina, Messina, Italy
| | - Thomas J Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Tommaso D'Angelo
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany; Section of Radiological Sciences, Department of Biomedical Sciences and Morphological and Functional Imaging, Policlinico G. Martino - University Hospital Messina, Messina, Italy
| |
Collapse
|
21
|
Iuga AI, Doerner J, Siedek F, Haneder S, Byrtus J, Luetkens JA, Maintz D, Hickethier T. Computed tomography pulmonary angiograms using a novel dual-layer spectral detector: Adjusted window settings are essential for diagnostic image quality. Medicine (Baltimore) 2019; 98:e16606. [PMID: 31415352 PMCID: PMC6831234 DOI: 10.1097/md.0000000000016606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE The aim of this study was to determine optimal window settings for conventional polyenergetic and virtual monoenergetic images derived from computed tomography pulmonary angiogram (CTPA) examinations of a novel dual-layer spectral detector computed tomography system (DLCT). METHODS Monoenergetic (40 keV) and polyenergetic images of 50 CTPA examinations were calculated and the best individual window width and level (W/L) values were manually assessed. Optimized values were obtained afterwards based on regression analysis. Diameters of standardized pulmonary artery segments and subjective image quality parameters were evaluated and compared. RESULTS Attenuation and contrast-to-noise values were higher in monoenergetic than in polyenergetic images (P≤.001). Averaged best individual W/L for polyenergetic and monoenergetic were 1020/170 and 2070/480 HU, respectively.All adjusted W/L-settings varied significantly compared to standard settings (700/100 HU) and obtained higher subjective image quality scores. A systematic overestimation of artery diameters for standard window settings in monoenergetic images was observed. CONCLUSIONS Appropriate W/L-settings are required to assess polyenergetic and monoenergetic CTPA images of a novel DLCT. W/L-settings of 1020/170 HU and 2070/480 HU were found to be the best averaged values for polyenergetic and monoenergetic CTPA images, respectively.
Collapse
Affiliation(s)
- Andra-Iza Iuga
- Institute of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne
| | - Jonas Doerner
- Institute of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne
| | - Florian Siedek
- Institute of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne
| | - Stefan Haneder
- Institute of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne
| | - Jonathan Byrtus
- Institute of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne
| | - Julian A. Luetkens
- Institute of Diagnostic and Interventional Radiology, University of Bonn, Bonn, Germany
| | - David Maintz
- Institute of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne
| | - Tilman Hickethier
- Institute of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne
| |
Collapse
|
22
|
Große Hokamp N, Gilkeson R, Jordan M, Laukamp K, Neuhaus VF, Haneder S, Halliburton S, Gupta A. Virtual monoenergetic images from spectral detector CT as a surrogate for conventional CT images: Unaltered attenuation characteristics with reduced image noise. Eur J Radiol 2019; 117:49-55. [DOI: 10.1016/j.ejrad.2019.05.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/23/2019] [Accepted: 05/25/2019] [Indexed: 10/26/2022]
|
23
|
D'Angelo T, Cicero G, Mazziotti S, Ascenti G, Albrecht MH, Martin SS, Othman AE, Vogl TJ, Wichmann JL. Dual energy computed tomography virtual monoenergetic imaging: technique and clinical applications. Br J Radiol 2019; 92:20180546. [PMID: 30919651 DOI: 10.1259/bjr.20180546] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dual energy CT (DECT) has evolved into a commonly applied imaging technique in clinical routine due to its unique post-processing opportunities for improved evaluation of all body areas. Reconstruction of virtual monoenergetic imaging (VMI) series has shown beneficial effects for both non-contrast and contrast-enhanced DECT due to the flexibility to calculate low-keV VMI reconstructions to increase contrast and iodine attenuation, or to compute high-keV VMI reconstructions to reduce beam-hardening artefacts. The goal of this review article is to explain the technical background of VMI and noise-optimized VMI+ algorithms and to give an overview of useful clinical applications of the VMI technique in DECT of various body regions.
Collapse
Affiliation(s)
- Tommaso D'Angelo
- 1 Department of Biomedical Sciences and Morphological and Functional Imaging, Policlinico G. Martino - University Hospital Messina , Messina , Italy.,2 Department of Diagnostic and Interventional Radiology, Division of Experimental Imaging, University Hospital Frankfurt , Frankfurt , Germany
| | - Giuseppe Cicero
- 1 Department of Biomedical Sciences and Morphological and Functional Imaging, Policlinico G. Martino - University Hospital Messina , Messina , Italy
| | - Silvio Mazziotti
- 1 Department of Biomedical Sciences and Morphological and Functional Imaging, Policlinico G. Martino - University Hospital Messina , Messina , Italy
| | - Giorgio Ascenti
- 1 Department of Biomedical Sciences and Morphological and Functional Imaging, Policlinico G. Martino - University Hospital Messina , Messina , Italy
| | - Moritz H Albrecht
- 2 Department of Diagnostic and Interventional Radiology, Division of Experimental Imaging, University Hospital Frankfurt , Frankfurt , Germany
| | - Simon S Martin
- 2 Department of Diagnostic and Interventional Radiology, Division of Experimental Imaging, University Hospital Frankfurt , Frankfurt , Germany
| | - Ahmed E Othman
- 3 Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tübingen , Tübingen , Germany
| | - Thomas J Vogl
- 2 Department of Diagnostic and Interventional Radiology, Division of Experimental Imaging, University Hospital Frankfurt , Frankfurt , Germany
| | - Julian L Wichmann
- 2 Department of Diagnostic and Interventional Radiology, Division of Experimental Imaging, University Hospital Frankfurt , Frankfurt , Germany
| |
Collapse
|
24
|
Patino M, Parakh A, Lo GC, Agrawal M, Kambadakone AR, Oliveira GR, Sahani DV. Virtual Monochromatic Dual-Energy Aortoiliac CT Angiography With Reduced Iodine Dose: A Prospective Randomized Study. AJR Am J Roentgenol 2019; 212:467-474. [DOI: 10.2214/ajr.18.19935] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Manuel Patino
- Department of Radiology, Division of Abdominal Imaging, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA 02114
| | - Anushri Parakh
- Department of Radiology, Division of Abdominal Imaging, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA 02114
| | - Grace C. Lo
- Department of Radiology, Division of Abdominal Imaging, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA 02114
| | - Mukta Agrawal
- Department of Radiology, Division of Abdominal Imaging, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA 02114
| | - Avinash R. Kambadakone
- Department of Radiology, Division of Abdominal Imaging, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA 02114
| | - George R. Oliveira
- Department of Radiology, Division of Abdominal Imaging, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA 02114
| | - Dushyant V. Sahani
- Department of Radiology, Division of Abdominal Imaging, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA 02114
| |
Collapse
|
25
|
Walter SS, Schneeweiß S, Maurer M, Kraus MS, Wichmann JL, Bongers MN, Lescan M, Bamberg F, Othman AE. Virtual non-enhanced dual-energy CT reconstruction may replace true non-enhanced CT scans in the setting of suspected active hemorrhage. Eur J Radiol 2018; 109:218-222. [DOI: 10.1016/j.ejrad.2018.10.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/11/2018] [Accepted: 10/25/2018] [Indexed: 12/30/2022]
|
26
|
Virtual Monoenergetic Images for Diagnostic Assessment of Hypodense Lesions Within the Liver: Semiautomatic Estimation of Window Settings Using Linear Models. J Comput Assist Tomogr 2018; 42:925-931. [PMID: 30371610 DOI: 10.1097/rct.0000000000000794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE The aim of the study was to establish the reference window settings for display of virtual monoenergetic images (VMIs) from spectral detector computed tomography when assessing hypodense liver lesions. METHODS In patients with cysts (n = 24) or metastases (n = 26), objective (HU, signal-to-noise ratio [SNR]) and subjective (overall image quality, lesion conspicuity and noise) were assessed. Furthermore, 2 readers determined optimal window center/width (C/W) for conventional images (CIs) and VMIs of 40 to 120 keV. Center/width were modeled against HUliv with and without respect to the keV level (models A and B). RESULTS Attenuation and SNR were significantly higher in low-keV VMIs and improved overall image quality and lesion conspicuity (P ≤ 0.05). Model B provided valid estimations of C/W, whereas model A was slightly less accurate. CONCLUSIONS The increase in attenuation and SNR on low-keV VMIs requires adjustment of C/W, and they can be estimated in dependency of HUliv using linear models. Reference values for standard display of VMIs of 40 to 120 keV are reported.
Collapse
|