1
|
Togao O, Obara M, Yamashita K, Kikuchi K, Wada T, Murazaki H, Arimura K, Nishimura A, Horie N, van de Ven K, Van Cauteren M, Ishigami K. Arterial Spin Labeling-Based MR Angiography for Cerebrovascular Diseases: Principles and Clinical Applications. J Magn Reson Imaging 2024; 60:1305-1324. [PMID: 37937684 DOI: 10.1002/jmri.29119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023] Open
Abstract
Arterial spin labeling (ASL) is a noninvasive imaging technique that labels the proton spins in arterial blood and uses them as endogenous tracers. Brain perfusion imaging with ASL is becoming increasingly common in clinical practice, and clinical applications of ASL for intracranial magnetic resonance angiography (MRA) have also been demonstrated. Unlike computed tomography (CT) angiography and cerebral angiography, ASL-based MRA does not require contrast agents. ASL-based MRA overcomes most of the disadvantages of time-of-flight (TOF) MRA. Several schemes have been developed for ASL-based MRA; the most common method has been pulsed ASL, but more recently pseudo-continuous ASL, which provides a higher signal-to-noise ratio (SNR), has been used more frequently. New methods that have been developed include direct intracranial labeling methods such as velocity-selective ASL and acceleration-selective ASL. MRA using an extremely short echo time (eg, silent MRA) or ultrashort echo-time (TE) MRA can suppress metal susceptibility artifacts and is ideal for patients with a metallic device implanted in a cerebral vessel. Vessel-selective 4D ASL MRA can provide digital subtraction angiography (DSA)-like images. This review highlights the principles, clinical applications, and characteristics of various ASL-based MRA techniques. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Osamu Togao
- Department of Molecular Imaging & Diagnosis, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Koji Yamashita
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazufumi Kikuchi
- Department of Molecular Imaging & Diagnosis, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuhiro Wada
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| | - Hiroo Murazaki
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| | - Koichi Arimura
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ataru Nishimura
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobutaka Horie
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | - Kousei Ishigami
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
2
|
Togao O, Obara M, Kikuchi K, Helle M, Arimura K, Nishimura A, Wada T, Murazaki H, Van Cauteren M, Hiwatashi A, Ishigami K. Vessel-Selective 4D-MRA Using Superselective Pseudocontinuous Arterial Spin-Labeling with Keyhole and View-Sharing for Visualizing Intracranial Dural AVFs. AJNR Am J Neuroradiol 2022; 43:368-375. [PMID: 35241425 PMCID: PMC8910818 DOI: 10.3174/ajnr.a7426] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/11/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE An accurate assessment of the hemodynamics of an intracranial dural AVF is necessary for treatment planning. We aimed to investigate the utility of 4D-MRA based on superselective pseudocontinuous arterial spin-labeling with CENTRA-keyhole and view-sharing (4D-S-PACK) for the vessel-selective visualization of intracranial dural AVFs. MATERIALS AND METHODS We retrospectively analyzed the images of 21 patients (12 men and 9 women; mean age, 62.2 [SD,19.2] years) with intracranial dural AVFs, each of whom was imaged with DSA, 4D-S-PACK, and nonselective 4D-MRA based on pseudocontinuous arterial spin-labeling combined with CENTRA-keyhole and view-sharing (4D-PACK). The shunt location, venous drainage patterns, feeding artery identification, and Borden classification were evaluated by 2 observers using both MRA methods on separate occasions. Vessel selectivity was evaluated on 4D-S-PACK. RESULTS Shunt locations were correctly evaluated in all 21 patients by both observers on both MRA methods. With 4D-S-PACK, observers 1 and 2 detected 76 (80.0%, P < .001) and 73 (76.8%, P < .001) feeding arteries of the 95 feeding arteries identified on DSA but only 39 (41.1%) and 46 (48.4%) feeding arteries with nonselective 4D-PACK, respectively. Both observers correctly identified 10 of the 11 patients with cortical venous reflux confirmed by DSA with both 4D-S-PACK and 4D-PACK (sensitivity = 90.9%, specificity = 90.9% for each method), and they made accurate Borden classifications in 20 of the 21 patients (95.2%) on both MRA methods. Of the 84 vessel territories examined, vessel selectivity was graded 3 or 4 in 73 (91.2%) and 66 (88.0%) territories by observers 1 and 2, respectively. CONCLUSIONS 4D-S-PACK is useful for the identification of feeding arteries and accurate classifications of intracranial dural AVFs and can be a useful noninvasive clinical tool.
Collapse
Affiliation(s)
- O. Togao
- From the Departments of Molecular Imaging & Diagnosis (O.T.)
| | - M. Obara
- Philips Japan (M.O., M.V.C.), Tokyo, Japan
| | | | - M. Helle
- Philips Research (M.H.), Hamburg, Germany
| | - K. Arimura
- Neurosurgery (K.A., A.N.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - A. Nishimura
- Neurosurgery (K.A., A.N.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - T. Wada
- Division of Radiology (T.W., H.M.), Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| | - H. Murazaki
- Division of Radiology (T.W., H.M.), Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| | | | | | | |
Collapse
|
3
|
Togao O, Obara M, Helle M, Yamashita K, Kikuchi K, Momosaka D, Kikuchi Y, Nishimura A, Arimura K, Wada T, Murazaki H, Iihara K, Van Cauteren M, Hiwatashi A. Vessel-selective 4D-MR angiography using super-selective pseudo-continuous arterial spin labeling may be a useful tool for assessing brain AVM hemodynamics. Eur Radiol 2020; 30:6452-6463. [PMID: 32696254 DOI: 10.1007/s00330-020-07057-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/04/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVES To evaluate the usefulness of 4D-MR angiography based on super-selective pseudo-continuous ASL combined with keyhole and view-sharing (4D-S-PACK) for vessel-selective visualization and to examine the ability of this technique to visualize brain arteriovenous malformations (AVMs). METHODS In this retrospective study, 15 patients (ten men and five women, mean age 44.0 ± 16.9 years) with brain AVMs were enrolled. All patients were imaged with 4D-PACK (non-selective), 4D-S-PACK, and digital subtraction angiography (DSA). Observers evaluated vessel selectivity, identification of feeding arteries and venous drainage patterns, visualization scores, and contrast-to-noise ratio (CNR) for each AVM component. Measurements were compared between the MR methods. RESULTS Vessel selectivity was graded 4 in 43/45 (95.6%, observer 1) and 42/45 (93.3%, observer 2) territories and graded 3 in two (observer 1) and three (observer 2) territories. The sensitivity and specificity for identification of feeding arteries for both observers was 88.9% and 100% on 4D-PACK, and 100% and 100% on 4D-S-PACK, respectively. For venous drainage, the sensitivity and specificity was 100% on both methods for observer 1. The sensitivity and specificity for observer 2 was 94.4% and 83.3% on 4D-PACK, and 94.4% and 91.7% on 4D-S-PACK, respectively. The CNRs at the timepoint of 1600 ms were slightly lower in 4D-S-PACK than in 4D-PACK for all AVM components (Feeding artery, p = .02; nidus, p = .001; and draining artery, p = .02). The visualization scores for both observers were not significantly different between 4D-PACK and 4D-S-PACK for all components. CONCLUSIONS 4D-S-PACK could be a useful non-invasive clinical tool for assessing hemodynamics in brain AVMs. KEY POINTS • The 4D-MR angiography based on super-selective pseudo-continuous arterial spin labeling combined with CENTRA-keyhole and view-sharing (4D-S-PACK) enabled excellent vessel selectivity. • The 4D-S-PACK enabled the perfect identification of feeding arteries of brain arteriovenous malformation (AVM). • 4D-S-PACK could be a non-invasive clinical tool for assessing hemodynamics in brain AVMs.
Collapse
Affiliation(s)
- Osamu Togao
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Makoto Obara
- Philips Japan, 13-37, Kohnan 2-chome, Minato-ku, Tokyo, 108-8507, Japan
| | | | - Koji Yamashita
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazufumi Kikuchi
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Daichi Momosaka
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshitomo Kikuchi
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ataru Nishimura
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Koichi Arimura
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tatsuhiro Wada
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| | - Hiroo Murazaki
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| | - Koji Iihara
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Marc Van Cauteren
- Philips Japan, 13-37, Kohnan 2-chome, Minato-ku, Tokyo, 108-8507, Japan
| | - Akio Hiwatashi
- Department of Molecular Imaging & Diagnosis, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|