1
|
Zhang X, Zhang G, Xu L, Bai X, Zhang J, Xu M, Yan J, Zhang D, Jin Z, Sun H. Application of deep learning reconstruction of ultra-low-dose abdominal CT in the diagnosis of renal calculi. Insights Imaging 2022; 13:163. [PMID: 36209195 DOI: 10.1186/s13244-022-01300-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Renal calculi are a common and recurrent urological disease and are usually detected by CT. In this study, we evaluated the diagnostic capability, image quality, and radiation dose of abdominal ultra-low-dose CT (ULDCT) with deep learning reconstruction (DLR) for detecting renal calculi. METHODS Sixty patients with suspected renal calculi were prospectively enrolled. Low-dose CT (LDCT) images were reconstructed with hybrid iterative reconstruction (LD-HIR) and was regarded as the standard for stone and lesion detection. ULDCT images were reconstructed with HIR (ULD-HIR) and DLR (ULD-DLR). We then compared stone detection rate, abdominal lesion detection rate, image quality and radiation dose between LDCT and ULDCT. RESULTS A total of 130 calculi were observed on LD-HIR images. Stone detection rates of ULD-HIR and ULD-DLR images were 93.1% (121/130) and 95.4% (124/130). A total of 129 lesions were detected on the LD-HIR images. The lesion detection rate on ULD-DLR images was 92.2%, with 10 cysts < 5 mm in diameter missed. The CT values of organs on ULD-DLR were similar to those on LD-HIR and lower than those on ULD-HIR. Signal-to-noise ratio was highest and noise lowest on ULD-DLR. The subjective image quality of ULD-DLR was similar to that of LD-HIR and better than that of ULD-HIR. The effective radiation dose of ULDCT (0.64 ± 0.17 mSv) was 77% lower than that of LDCT (2.75 ± 0.50 mSv). CONCLUSION ULDCT combined with DLR could significantly reduce radiation dose while maintaining suitable image quality and stone detection rate in the diagnosis of renal calculi.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No.1, Wangfujing Street, Dongcheng District, Beijing, 100730, China
| | - Gumuyang Zhang
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No.1, Wangfujing Street, Dongcheng District, Beijing, 100730, China
| | - Lili Xu
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No.1, Wangfujing Street, Dongcheng District, Beijing, 100730, China
| | - Xin Bai
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No.1, Wangfujing Street, Dongcheng District, Beijing, 100730, China
| | - Jiahui Zhang
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No.1, Wangfujing Street, Dongcheng District, Beijing, 100730, China
| | - Min Xu
- Canon Medical System (China), No.10, Jiuxianqiao North Road, Chaoyang District, Beijing, 100024, China
| | - Jing Yan
- Canon Medical System (China), No.10, Jiuxianqiao North Road, Chaoyang District, Beijing, 100024, China
| | - Daming Zhang
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No.1, Wangfujing Street, Dongcheng District, Beijing, 100730, China.
| | - Zhengyu Jin
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No.1, Wangfujing Street, Dongcheng District, Beijing, 100730, China. .,National Center for Quality Control of Radiology, Beijing, China.
| | - Hao Sun
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No.1, Wangfujing Street, Dongcheng District, Beijing, 100730, China. .,National Center for Quality Control of Radiology, Beijing, China.
| |
Collapse
|
2
|
Meurer F, Kopp F, Renz M, Harder FN, Leonhardt Y, Bippus R, Noël PB, Makowski MR, Sauter AP. Sparse-sampling computed tomography for detection of endoleak after endovascular aortic repair (EVAR). Eur J Radiol 2021; 142:109843. [PMID: 34274842 DOI: 10.1016/j.ejrad.2021.109843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 06/21/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES To evaluate sparse sampling computed tomography (SpSCT) for detection of endoleak after endovascular aortic repair (EVAR) at different dose levels in terms of subjective image criteria and diagnostic accuracy. METHODS Twenty clinically indicated computed tomography aortic angiography (CTA) scans were used to obtain simulated low-dose scans with 100%, 50%, 25%, 12.5% and 6.25% of the applicated clinical dose, resulting in five dose levels (DL). From full sampling (FS) data sets, every second (2-SpSCT) or fourth (4-SpSCT) projection was used to generate simulated sparse sampling scans. All examinations were evaluated by four blinded radiologists regarding subjective image criteria and diagnostic performance. RESULTS Sensitivity was higher than 93% in 4-SpSCT at the 25% DL which is the same as with FS at full dose (100% DL). High accuracies and relative high AUC-values were obtained for 2- and 4-SpSCT down to the 12.5% DL, while for FS similar values were shown down to 25% DL only. Subjective image quality was significantly higher for 4-SpSCT compared to FS at each dose level. More than 90% of all cases were rated with a high or medium confidence for FS and 2-SpSCT at the 50% DL and for 4-SpSCT at the 25% DL. At DL 25% and 12.5%, more cases showed a high confidence using 2- and 4-SpSCT compared with FS. CONCLUSIONS Via SpSCT, a dose reduction down to a 25% dose level (mean effective dose of 1.49 mSv in the current study) for CTA is possible while maintaining high image quality and full diagnostic confidence.
Collapse
Affiliation(s)
- Felix Meurer
- Klinikum rechts der Isar, School of Medicine Technical University of Munich, Institute of Diagnostic and Interventional Radiology, Munich, Germany.
| | - Felix Kopp
- Klinikum rechts der Isar, School of Medicine Technical University of Munich, Institute of Diagnostic and Interventional Radiology, Munich, Germany
| | - Martin Renz
- Klinikum rechts der Isar, School of Medicine Technical University of Munich, Institute of Diagnostic and Interventional Radiology, Munich, Germany
| | - Felix N Harder
- Klinikum rechts der Isar, School of Medicine Technical University of Munich, Institute of Diagnostic and Interventional Radiology, Munich, Germany
| | - Yannik Leonhardt
- Klinikum rechts der Isar, School of Medicine Technical University of Munich, Institute of Diagnostic and Interventional Radiology, Munich, Germany
| | - Rolf Bippus
- Philips Technologie GmbH Innovative Technologies, Research Laboratories, Hamburg, Germany
| | - Peter B Noël
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Markus R Makowski
- Klinikum rechts der Isar, School of Medicine Technical University of Munich, Institute of Diagnostic and Interventional Radiology, Munich, Germany
| | - Andreas P Sauter
- Klinikum rechts der Isar, School of Medicine Technical University of Munich, Institute of Diagnostic and Interventional Radiology, Munich, Germany
| |
Collapse
|
3
|
Establishment of Submillisievert Abdominal CT Protocols With an In Vivo Swine Model and an Anthropomorphic Phantom. AJR Am J Roentgenol 2020; 215:685-694. [DOI: 10.2214/ajr.19.22053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Image Quality and Lesion Detection on Deep Learning Reconstruction and Iterative Reconstruction of Submillisievert Chest and Abdominal CT. AJR Am J Roentgenol 2020; 214:566-573. [PMID: 31967501 DOI: 10.2214/ajr.19.21809] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE. The objective of this study was to compare image quality and clinically significant lesion detection on deep learning reconstruction (DLR) and iterative reconstruction (IR) images of submillisievert chest and abdominopelvic CT. MATERIALS AND METHODS. Our prospective multiinstitutional study included 59 adult patients (33 women, 26 men; mean age ± SD, 65 ± 12 years old; mean body mass index [weight in kilograms divided by the square of height in meters] = 27 ± 5) who underwent routine chest (n = 22; 16 women, six men) and abdominopelvic (n = 37; 17 women, 20 men) CT on a 640-MDCT scanner (Aquilion ONE, Canon Medical Systems). All patients gave written informed consent for the acquisition of low-dose (LD) CT (LDCT) after a clinically indicated standard-dose (SD) CT (SDCT). The SDCT series (120 kVp, 164-644 mA) were reconstructed with interactive reconstruction (IR) (adaptive iterative dose reduction [AIDR] 3D, Canon Medical Systems), and the LDCT (100 kVp, 120 kVp; 30-50 mA) were reconstructed with filtered back-projection (FBP), IR (AIDR 3D and forward-projected model-based iterative reconstruction solution [FIRST], Canon Medical Systems), and deep learning reconstruction (DLR) (Advanced Intelligent Clear-IQ Engine [AiCE], Canon Medical Systems). Four subspecialty-trained radiologists first read all LD image sets and then compared them side-by-side with SD AIDR 3D images in an independent, randomized, and blinded fashion. Subspecialty radiologists assessed image quality of LDCT images on a 3-point scale (1 = unacceptable, 2 = suboptimal, 3 = optimal). Descriptive statistics were obtained, and the Wilcoxon sign rank test was performed. RESULTS. Mean volume CT dose index and dose-length product for LDCT (2.1 ± 0.8 mGy, 49 ± 13mGy·cm) were lower than those for SDCT (13 ± 4.4 mGy, 567 ± 249 mGy·cm) (p < 0.0001). All 31 clinically significant abdominal lesions were seen on SD AIDR 3D and LD DLR images. Twenty-five, 18, and seven lesions were detected on LD AIDR 3D, LD FIRST, and LD FBP images, respectively. All 39 pulmonary nodules detected on SD AIDR 3D images were also noted on LD DLR images. LD DLR images were deemed acceptable for interpretation in 97% (35/37) of abdominal and 95-100% (21-22/22) of chest LDCT studies (p = 0.2-0.99). The LD FIRST, LD AIDR 3D, and LD FBP images had inferior image quality compared with SD AIDR 3D images (p < 0.0001). CONCLUSION. At submillisievert chest and abdominopelvic CT doses, DLR enables image quality and lesion detection superior to commercial IR and FBP images.
Collapse
|
5
|
Greffier J, Frandon J, Pereira F, Hamard A, Beregi JP, Larbi A, Omoumi P. Optimization of radiation dose for CT detection of lytic and sclerotic bone lesions: a phantom study. Eur Radiol 2019; 30:1075-1078. [DOI: 10.1007/s00330-019-06425-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/11/2019] [Accepted: 08/14/2019] [Indexed: 11/28/2022]
|
6
|
Sauter AP, Kopp FK, Bippus R, Dangelmaier J, Deniffel D, Fingerle AA, Meurer F, Pfeiffer D, Proksa R, Rummeny EJ, Noël PB. Sparse sampling computed tomography (SpSCT) for detection of pulmonary embolism: a feasibility study. Eur Radiol 2019; 29:5950-5960. [DOI: 10.1007/s00330-019-06217-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/01/2019] [Accepted: 04/02/2019] [Indexed: 02/02/2023]
|
7
|
Sollmann N, Mei K, Schwaiger B, Gersing A, Kopp F, Bippus R, Maegerlein C, Zimmer C, Rummeny E, Kirschke J, Noël P, Baum T. Effects of virtual tube current reduction and sparse sampling on MDCT-based femoral BMD measurements. Osteoporos Int 2018; 29:2685-2692. [PMID: 30143850 PMCID: PMC6267136 DOI: 10.1007/s00198-018-4675-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 08/14/2018] [Indexed: 01/14/2023]
Abstract
UNLABELLED This study investigates the impact of tube current reduction and sparse sampling on femoral bone mineral density (BMD) measurements derived from multi-detector computed tomography (MDCT). The application of sparse sampling led to robust and clinically acceptable BMD measurements. In contrast, BMD measurements derived from MDCT with virtually reduced tube currents showed a considerable increase when compared to original data. INTRODUCTION The study aims to evaluate the effects of radiation dose reduction by using virtual reduction of tube current or sparse sampling combined with standard filtered back projection (FBP) and statistical iterative reconstruction (SIR) on femoral bone mineral density (BMD) measurements derived from multi-detector computed tomography (MDCT). METHODS In routine MDCT scans of 41 subjects (65.9% men; age 69.3 ± 10.1 years), reduced radiation doses were simulated by lowering tube currents and applying sparse sampling (50, 25, and 10% of the original tube current and projections, respectively). Images were reconstructed using FBP and SIR. BMD values were assessed in the femoral neck and compared between the different dose levels, numbers of projections, and image reconstruction approaches. RESULTS Compared to full-dose MDCT, virtual lowering of the tube current by applying our simulation algorithm resulted in increases in BMD values for both FBP (up to a relative change of 32.5%) and SIR (up to a relative change of 32.3%). In contrast, the application of sparse sampling with a reduction down to 10% of projections showed robust BMD values, with clinically acceptable relative changes of up to 0.5% (FBP) and 0.7% (SIR). CONCLUSIONS Our simulations, which still require clinical validation, indicate that reductions down to ultra-low tube currents have a significant impact on MDCT-based femoral BMD measurements. In contrast, the application of sparse-sampled MDCT seems a promising future clinical option that may enable a significant reduction of the radiation dose without considerable changes of BMD values.
Collapse
Affiliation(s)
- N. Sollmann
- 0000000123222966grid.6936.aDepartment of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
- 0000000123222966grid.6936.aTUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - K. Mei
- 0000000123222966grid.6936.aDepartment of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - B.J. Schwaiger
- 0000000123222966grid.6936.aDepartment of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - A.S. Gersing
- 0000000123222966grid.6936.aDepartment of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - F.K. Kopp
- 0000000123222966grid.6936.aDepartment of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - R. Bippus
- 0000 0004 0373 4886grid.418621.8Philips GmbH Innovative Technologies, Research Laboratories, Röntgenstr. 24-26, 22335 Hamburg, Germany
| | - C. Maegerlein
- 0000000123222966grid.6936.aDepartment of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - C. Zimmer
- 0000000123222966grid.6936.aDepartment of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - E.J. Rummeny
- 0000000123222966grid.6936.aDepartment of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - J.S. Kirschke
- 0000000123222966grid.6936.aDepartment of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - P.B. Noël
- 0000000123222966grid.6936.aDepartment of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - T. Baum
- 0000000123222966grid.6936.aDepartment of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| |
Collapse
|