1
|
Elbanna KY, Khalili K, AlMoharb M, Goel A, Fischer S, Kim TK. Qualitative and quantitative assessment of gadoxetic acid MRI in distinguishing atypical focal nodular hyperplasia from hepatocellular adenoma subtypes. Eur Radiol 2025:10.1007/s00330-025-11679-x. [PMID: 40369264 DOI: 10.1007/s00330-025-11679-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/21/2025] [Accepted: 04/17/2025] [Indexed: 05/16/2025]
Abstract
OBJECTIVE To assess qualitative and quantitative imaging features, including lesion-to-liver contrast enhancement ratio (LLCER), on gadoxetic acid-enhanced MRI for differentiating atypical focal nodular hyperplasia (aFNH) from hepatocellular adenoma (HCA) subtypes. MATERIALS AND METHODS This retrospective study included patients with histopathologically-confirmed aFNH and HCA who underwent gadoxetic acid-enhanced MRI between January 2010 and December 2020. Two radiologists assessed qualitative imaging features and calculated LLCERs for quantitative evaluation of HBP enhancement. Statistical analyses included ROC curves, sensitivity, specificity, and a decision tree. RESULTS 86 patients (41 ± 11 years; 64 women) had 29 aFNHs and 90 HCAs. HBP iso-/hyperintensity was observed in 72.4% (21/29) of aFNH compared to 28.8% (15/52) of U-HCA, 35% (7/20) of I-HCA, and 0% (0/11) of H-HCA. β-HCA showed 71.4% (5/7) iso-/hyperintensity, overlapping with aFNH (p = 0.17). Homogeneous iso-/hyperintensity and rim-like enhancement were present in 48.3% (14/29) and 20.7% (6/29) of aFNH but absent in β-HCA (p = 0.004). LLCER demonstrated high diagnostic performance, differentiating aFNH from U-HCA, H-HCA, and I-HCA(AUCs 0.91-0.99, sensitivities 82.8-96.6%, specificities 90.0-100%). For β-HCA, LLCER showed overlap with aFNH; AUCs (0.62-0.64) and specificities (57.1%). Among HCAs with HBP iso-/hyperintensity, 74.1% had negative LLCER values, while 25.9% (mostly β-HCA/U-HCA) showed positive values (true enhancement). Combined decision trees selected LLCER as the primary node, with downstream HBP features variably incorporated, except β-HCA, which solely used qualitative features. CONCLUSION HBP iso-/hyperintensity and LLCER reliably differentiated aFNH from most HCA subtypes, except β-HCA, validated by decision tree analyses. Homogeneous iso-/hyperintensity or rim-like enhancement was absent in β-HCA, aiding differentiation. KEY POINTS Question Variability in hepatobiliary phase (HBP) enhancement among hepatocellular adenoma (HCA) subtypes and atypical FNH (aFNH) poses diagnostic challenges. Findings Despite HBP enhancement overlap in aFNH/β-HCA, "homogeneous" and rim-like enhancement aided aFNH differentiation from HCAs. LLCER separated HCAs lacking true HBP uptake from aFNH. Clinical relevance This study explored challenges in differentiating aFNH from HCA subtypes, especially overlapping β-HCA, highlighting discriminatory qualitative markers and quantitative assessment to distinguish true HBP enhancement, an approach validated by decision tree analysis.
Collapse
Affiliation(s)
- Khaled Y Elbanna
- University Medical Imaging Toronto, University Health Network, University of Toronto, Toronto, ON, Canada.
| | - Korosh Khalili
- University Medical Imaging Toronto, University Health Network, University of Toronto, Toronto, ON, Canada
| | - May AlMoharb
- Department of Radiology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ankur Goel
- University Medical Imaging Toronto, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Sandra Fischer
- Laboratory Medicine Program, Princess Margaret Cancer Centre Research Institute, University Health Network. University of Toronto, Toronto, ON, Canada
| | - Tae Kyoung Kim
- University Medical Imaging Toronto, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Heo S, Song IH, Reizine E, Ronot M, Nault JC, Kim HY, Choi SH, Kim SY. Insights into hepatocellular adenomas in Asia: molecular subtypes, clinical characteristics, imaging features, and hepatocellular carcinoma risks. JOURNAL OF LIVER CANCER 2025; 25:67-78. [PMID: 40059521 PMCID: PMC12010821 DOI: 10.17998/jlc.2025.03.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 04/11/2025]
Abstract
Hepatocellular adenomas (HCAs) are benign monoclonal liver tumors. Advances in molecular studies have led to the identification of distinct subtypes of HCA with unique pathways, clinical characteristics, and complication risks, underscoring the need for precise diagnosis and tailored management. Malignant transformation and bleeding remain significant concerns. Imaging plays a crucial role in the identification of these subtypes, offering a non-invasive method to guide clinical decision-making. Most studies involving patients with HCAs have been conducted in Western populations; however, the number of studies focused on Asian population has increased in recent years. HCAs exhibit distinct features in Asian population, such as a higher prevalence among male patients and specific subtypes (e.g., inflammatory HCAs). Current clinical guidelines are predominantly influenced by Western data, which may not fully capture these regional differences in epidemiology and subtype distribution. Therefore, this review presents the updated molecular classification of HCAs and their epidemiologic differences between Asian and Western populations, and discuss the role of imaging techniques, particularly magnetic resonance imaging using hepatobiliary contrast agents, in classifying the subtypes and predicting the risk of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Subin Heo
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - In Hye Song
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Edouard Reizine
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, Créteil, France
| | - Maxime Ronot
- Service de Radiologie, Hôpital Beaujon, AP-HP, Clichy, France
| | - Jean-Charles Nault
- Service d'hépatologie, Hôpital Avicenne, AP-HP, Bobigny, France
- Université Sorbonne Paris Nord, Bobigny, France
- INSERM UMR 1138, Centre de Recherche des Cordeliers, Université de Paris Cité, Bobigny, France
| | - Hae Young Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang Hyun Choi
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - So Yeon Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Shen L, Altmayer S, Tse JR. Beta-Catenin-Mutated Hepatocellular Adenomas at Hepatobiliary Phase MRI: A Systematic Review and Meta-Analysis. J Magn Reson Imaging 2024; 60:2104-2114. [PMID: 38465878 DOI: 10.1002/jmri.29279] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Beta-catenin-mutated hepatocellular adenomas (β-HCAs) can appear iso- to hyperintense at the hepatobiliary phase (HBP) at magnetic resonance imaging (MRI). Given the relatively lower prevalence of β-HCAs, prior studies had limited power to show statistically significant differences in the HBP signal intensity between different subtypes. PURPOSE To assess the diagnostic performance of HBP MRI to discriminate β-HCA from other subtypes. STUDY TYPE Systemic review and meta-analysis. POPULATION Ten original studies were included, yielding 266 patients with 397 HCAs (9%, 36/397 β-HCAs and 91%, 361/397 non-β-HCAs). FIELD STRENGTH/SEQUENCE 1.5 T and 3.0 T, HBP. ASSESSMENT PubMed, Web of Science, and Embase databases were searched from January 1, 2000, to August 31, 2023, for all articles reporting HBP signal intensity in patients with histopathologically proven HCA subtypes. QUADAS-2 was used to assess risk of bias and concerns regarding applicability. STATISTICAL TESTS Univariate random-effects model was used to calculate pooled estimates. Heterogeneity estimates were assessed with I2 heterogeneity index. Meta-regression (mixed-effect model) was used to test for differences in the prevalence of HBP signal between HCA groups. The threshold for statistical significance was set at P < 0.05. RESULTS HBP iso- to hyperintensity was associated with β-HCAs (pooled prevalence was 72.3% in β-HCAs and 6.3% in non-β-HCAs). Pooled sensitivity and specificity were 72.3% (95% confidence interval 54.1-85.3) and 93.7% (93.8-97.7), respectively. Specificity had substantial heterogeneity with I2 of 83% due to one study, but not for sensitivity (I2 = 0). After excluding this study, pooled sensitivity and specificity were 77.4% (59.6-88.8) and 94.1% (88.9-96.9), with no substantial heterogeneity. One study had high risk of bias for patient selection and two studies were rated unclear for two domains. DATA CONCLUSION Iso- to hyperintensity at HBP MRI may help to distinguish β-HCA subtype from other HCAs with high specificity. However, there was heterogeneity in the pooled estimates. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Luyao Shen
- Department of Radiology, Stanford University School of Medicine, Stanford, California, USA
| | - Stephan Altmayer
- Department of Radiology, Stanford University School of Medicine, Stanford, California, USA
| | - Justin R Tse
- Department of Radiology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
4
|
Derbel H, Galletto Pregliasco A, Mulé S, Calderaro J, Zaarour Y, Saccenti L, Ghosn M, Reizine E, Blain M, Laurent A, Brustia R, Leroy V, Amaddeo G, Luciani A, Tacher V, Kobeiter H. Should Hypervascular Incidentalomas Detected on Per-Interventional Cone Beam Computed Tomography during Intra-Arterial Therapies for Hepatocellular Carcinoma Impact the Treatment Plan in Patients Waiting for Liver Transplantation? Cancers (Basel) 2024; 16:2333. [PMID: 39001395 PMCID: PMC11240509 DOI: 10.3390/cancers16132333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Current guidelines do not indicate any comprehensive management of hepatic hypervascular incidentalomas (HVIs) discovered in hepatocellular carcinoma (HCC) patients during intra-arterial therapies (IATs). This study aims to evaluate the prognostic value of HVIs detected on per-interventional cone beam computed tomography (CBCT) during IAT for HCC in patients waiting for liver transplantation (LT). MATERIAL AND METHODS In this retrospective single-institutional study, all liver-transplanted HCC patients between January 2014 and December 2018 who received transarterial chemoembolization (TACE) or radioembolization (TARE) before LT were included. The number of ≥10 mm HCCs diagnosed on contrast-enhanced pre-interventional imaging (PII) was compared with that detected on per-interventional CBCT with a nonparametric Wilcoxon test. The correlation between the presence of an HVI and histopathological criteria associated with poor prognosis (HPP) on liver explants was investigated using the chi-square test. Tumor recurrence (TR) and TR-related mortality were investigated using the chi-square test. Recurrence-free survival (RFS), TR-related survival (TRRS), and overall survival (OS) were assessed according to the presence of HVI using Kaplan-Meier analysis. RESULTS Among 63 included patients (average age: 59 ± 7 years, H/F = 50/13), 36 presented HVIs on per-interventional CBCT. The overall nodule detection rate of per-interventional CBCT was superior to that of PII (median at 3 [Q1:2, Q3:5] vs. 2 [Q1:1, Q3:3], respectively, p < 0.001). No significant correlation was shown between the presence of HVI and HPP (p = 0.34), TR (p = 0.095), and TR-related mortality (0.22). Kaplan-Meier analysis did not show a significant impact of the presence of HVI on RFS (p = 0.07), TRRS (0.48), or OS (p = 0.14). CONCLUSIONS These results may indicate that the treatment plan during IAT should not be impacted or modified in response to HVI detection.
Collapse
Affiliation(s)
- Haytham Derbel
- Medical Imaging Department, Henri Mondor University Hospital, 51 Avenue du Marechal de Lattre de Tassigny, 94010 Creteil, France (H.K.)
- Institut Mondor de Recherche Biomédicale, Inserm U955, Team n° 18, 94010 Creteil, France
- Faculty of Medicine, University of Paris Est Creteil, 94010 Creteil, France
| | - Athena Galletto Pregliasco
- Medical Imaging Department, Henri Mondor University Hospital, 51 Avenue du Marechal de Lattre de Tassigny, 94010 Creteil, France (H.K.)
| | - Sébastien Mulé
- Medical Imaging Department, Henri Mondor University Hospital, 51 Avenue du Marechal de Lattre de Tassigny, 94010 Creteil, France (H.K.)
- Institut Mondor de Recherche Biomédicale, Inserm U955, Team n° 18, 94010 Creteil, France
- Faculty of Medicine, University of Paris Est Creteil, 94010 Creteil, France
| | - Julien Calderaro
- Institut Mondor de Recherche Biomédicale, Inserm U955, Team n° 18, 94010 Creteil, France
- Faculty of Medicine, University of Paris Est Creteil, 94010 Creteil, France
- Laboratory of Pathology, Henri Mondor University Hospital, 94010 Creteil, France
| | - Youssef Zaarour
- Medical Imaging Department, Henri Mondor University Hospital, 51 Avenue du Marechal de Lattre de Tassigny, 94010 Creteil, France (H.K.)
| | - Laetitia Saccenti
- Medical Imaging Department, Henri Mondor University Hospital, 51 Avenue du Marechal de Lattre de Tassigny, 94010 Creteil, France (H.K.)
- Institut Mondor de Recherche Biomédicale, Inserm U955, Team n° 18, 94010 Creteil, France
- Faculty of Medicine, University of Paris Est Creteil, 94010 Creteil, France
| | - Mario Ghosn
- Medical Imaging Department, Henri Mondor University Hospital, 51 Avenue du Marechal de Lattre de Tassigny, 94010 Creteil, France (H.K.)
- Faculty of Medicine, University of Paris Est Creteil, 94010 Creteil, France
| | - Edouard Reizine
- Medical Imaging Department, Henri Mondor University Hospital, 51 Avenue du Marechal de Lattre de Tassigny, 94010 Creteil, France (H.K.)
- Institut Mondor de Recherche Biomédicale, Inserm U955, Team n° 18, 94010 Creteil, France
- Faculty of Medicine, University of Paris Est Creteil, 94010 Creteil, France
| | - Maxime Blain
- Medical Imaging Department, Henri Mondor University Hospital, 51 Avenue du Marechal de Lattre de Tassigny, 94010 Creteil, France (H.K.)
- Faculty of Medicine, University of Paris Est Creteil, 94010 Creteil, France
| | - Alexis Laurent
- Institut Mondor de Recherche Biomédicale, Inserm U955, Team n° 18, 94010 Creteil, France
- Faculty of Medicine, University of Paris Est Creteil, 94010 Creteil, France
- Department of Visceral Surgery, Henri Mondor University Hospital, 94010 Creteil, France
| | - Raffaele Brustia
- Institut Mondor de Recherche Biomédicale, Inserm U955, Team n° 18, 94010 Creteil, France
- Faculty of Medicine, University of Paris Est Creteil, 94010 Creteil, France
- Department of Visceral Surgery, Henri Mondor University Hospital, 94010 Creteil, France
| | - Vincent Leroy
- Institut Mondor de Recherche Biomédicale, Inserm U955, Team n° 18, 94010 Creteil, France
- Faculty of Medicine, University of Paris Est Creteil, 94010 Creteil, France
- Department of Hepatology, Henri Mondor University Hospital, 94010 Creteil, France
| | - Giuliana Amaddeo
- Institut Mondor de Recherche Biomédicale, Inserm U955, Team n° 18, 94010 Creteil, France
- Faculty of Medicine, University of Paris Est Creteil, 94010 Creteil, France
- Department of Hepatology, Henri Mondor University Hospital, 94010 Creteil, France
| | - Alain Luciani
- Medical Imaging Department, Henri Mondor University Hospital, 51 Avenue du Marechal de Lattre de Tassigny, 94010 Creteil, France (H.K.)
- Institut Mondor de Recherche Biomédicale, Inserm U955, Team n° 18, 94010 Creteil, France
- Faculty of Medicine, University of Paris Est Creteil, 94010 Creteil, France
| | - Vania Tacher
- Medical Imaging Department, Henri Mondor University Hospital, 51 Avenue du Marechal de Lattre de Tassigny, 94010 Creteil, France (H.K.)
- Institut Mondor de Recherche Biomédicale, Inserm U955, Team n° 18, 94010 Creteil, France
- Faculty of Medicine, University of Paris Est Creteil, 94010 Creteil, France
| | - Hicham Kobeiter
- Medical Imaging Department, Henri Mondor University Hospital, 51 Avenue du Marechal de Lattre de Tassigny, 94010 Creteil, France (H.K.)
- Faculty of Medicine, University of Paris Est Creteil, 94010 Creteil, France
| |
Collapse
|
5
|
Ding F, Huang M, Ren P, Zhang J, Lin Z, Sun Y, Liang C, Zhao X. Quantitative information from gadobenate dimeglumine-enhanced MRI can predict proliferative subtype of solitary hepatocellular carcinoma: a multicenter retrospective study. Eur Radiol 2024; 34:2445-2456. [PMID: 37691080 DOI: 10.1007/s00330-023-10227-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/18/2023] [Accepted: 07/15/2023] [Indexed: 09/12/2023]
Abstract
OBJECTIVES To investigate the value of quantitative parameters derived from gadobenate dimeglumine-enhanced magnetic resonance imaging (MRI) for predicting molecular subtype of hepatocellular carcinoma (HCC) and overall survival. METHODS This multicenter retrospective study included 218 solitary HCC patients who underwent gadobenate dimeglumine-enhanced MRI. All HCC lesions were resected and pathologically confirmed. The lesion-to-liver contrast enhancement ratio (LLCER) and lesion-to-liver contrast (LLC) were measured in the hepatobiliary phase. Potential risk factors for proliferative HCC were assessed by logistic regression. The ability of LLCER and LLC to predict proliferative HCC was assessed by the receiver operating characteristic (ROC) curve. Prognostic factors were evaluated using the Cox proportional hazards regression model for survival outcomes. RESULTS LLCER was an independent predictor of proliferative HCC (odds ratio, 0.015; 95% confidence interval [CI], 0.008-0.022; p < 0.001). The area under the ROC curve was 0.812 (95% CI, 0.748-0.877), higher than that of LLC, alpha-fetoprotein > 100 ng/ml, satellite nodules, and rim arterial phase hyperenhancement (all p ≤ 0.001). HCC patients with LLCER < -4.59% had a significantly higher incidence of proliferative HCC than those with the LLCER ≥ -4.59%. During the follow-up period, LLCER was an independent predictor of overall survival (hazard ratio, 0.070; 95% CI, 0.015-0.324; p = 0.001) in HCC patients. CONCLUSIONS Gadobenate dimeglumine-enhanced quantitative parameter in the hepatobiliary phase can predict the proliferative subtype of solitary HCC with a moderately high accuracy. CLINICAL RELEVANCE STATEMENT Quantitative information from gadobenate dimeglumine-enhanced MRI can provide crucial information on hepatocellular carcinoma subtypes. It might be valuable to design novel therapeutic strategies, such as targeted therapies or immunotherapy. KEY POINTS • The lesion-to-liver contrast enhancement ratio (LLCER) is an independent predictor of proliferative hepatocellular carcinoma (HCC). • The ability of LLCER to predict proliferative HCC outperformed lesion-to-liver contrast, alpha-fetoprotein > 100 ng/ml, satellite nodules, and rim arterial phase hyperenhancement. • HCC patients with LLCER < -4.59% had a significantly higher incidence of proliferative HCC than those with the LLCER ≥ -4.59%.
Collapse
Affiliation(s)
- Feier Ding
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong Province, China
| | - Min Huang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong Province, China
| | - Ping Ren
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong Province, China
| | - Junlei Zhang
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong Province, China
| | - Zhengyu Lin
- Department of Interventional Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, Fujian Province, China
| | - Yan Sun
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250021, Shandong Province, China
| | - Changhu Liang
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong Province, China.
| | - Xinya Zhao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong Province, China.
| |
Collapse
|
6
|
Wang Z, Chu F, Bai B, Lu S, Zhang H, Jia Z, Zhao K, Zhang Y, Zheng Y, Xia Q, Li X, Kamel IR, Li H, Qu J. MR imaging characteristics of different pathologic subtypes of esophageal carcinoma. Eur Radiol 2023; 33:9233-9243. [PMID: 37482548 DOI: 10.1007/s00330-023-09941-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
OBJECTIVES To describe the specific MRI characteristics of different pathologic subtypes of esophageal carcinoma (EC) METHODS: This prospective study included EC patients who underwent esophageal MRI and esophagectomy between April 2015 and October 2021. Pathomorphological characteristics of EC such as localized type (LT), ulcerative type (UT), protruding type (PT), and infiltrative type (IT) were assessed by two radiologists relying on the imaging characteristics of tumor, especially the specific imaging findings on the continuity of the mucosa overlying the tumor, the opposing mucosa, mucosa linear thickening, and transmural growth pattern. Intraclass correlation coefficients (ICC) were calculated for the consistency between two readers. The associations of imaging characteristics with different pathologic subtypes were assessed using multilogistic regression model (MLR). RESULTS A total of 201 patients were identified on histopathology with a high inter-reader agreement (ICC = 0.991). LT showed intact mucosa overlying the tumor. IT showed transmural growth pattern extending from the mucosa to the adventitia and a "sandwich" appearance. The remaining normal mucosa on the opposing side was linear and nodular in UT. PT showed correlation with T1 staging and grade 1; IT showed correlation with T3 staging and grades 2-3. Four MLR models showed high predictive performance on the test set with AUCs of 0.94 (LT), 0.87 (PT), 0.96 (IT), and 0.97 (UT), respectively, and the predictors that contributed most to the models matched the four specific characteristics. CONCLUSIONS Different pathologic subtypes of EC displayed specific MR imaging characteristics, which could help predict T staging and the degree of pathological differentiation. CLINICAL RELEVANCE STATEMENT Different pathologic subtypes of esophageal carcinoma displayed specific MR imaging characteristics, which correspond to differences in the degree of differentiation, T staging, and sensitivity to radiotherapy, and could also be one of the predictive factors of cause-specific survival and local progression-free rates. KEY POINTS Different types of EC had different characteristics on MR images. A total of 91/95 (96%) LTEC showed intact mucosa over the tumor, while masses or nodules are specific to PTEC; 21/27 (78%) ITEC showed a "sandwich" sign; and 33/35 (60%) UTEC showed linear and nodular opposing mucosa. In the association of tumor type with degree of differentiation and T staging, PTEC was predominantly associated with T1 and grade 1, and ITEC was associated with T3 and grades 2-3, while LTEC and UECT were likewise primarily linked with T2-3 and grades 2-3.
Collapse
Affiliation(s)
- Zhaoqi Wang
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No.127 Dongming Road, Zhengzhou, 450008, Henan, China
| | - Funing Chu
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No.127 Dongming Road, Zhengzhou, 450008, Henan, China
| | - Bingmei Bai
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No.127 Dongming Road, Zhengzhou, 450008, Henan, China
| | - Shuang Lu
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No.127 Dongming Road, Zhengzhou, 450008, Henan, China
| | - Hongkai Zhang
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No.127 Dongming Road, Zhengzhou, 450008, Henan, China
| | - Zhengyan Jia
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No.127 Dongming Road, Zhengzhou, 450008, Henan, China
| | - Keke Zhao
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No.127 Dongming Road, Zhengzhou, 450008, Henan, China
| | - Yudong Zhang
- Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, 210029, China
| | - Yan Zheng
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Qingxin Xia
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Xu Li
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Ihab R Kamel
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205-2196, USA
| | - Hailiang Li
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No.127 Dongming Road, Zhengzhou, 450008, Henan, China
| | - Jinrong Qu
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No.127 Dongming Road, Zhengzhou, 450008, Henan, China.
| |
Collapse
|
7
|
Tse JR, Felker ER, Naini BV, Shen L, Shen J, Lu DSK, Kamaya A, Raman SS. Hepatocellular Adenomas: Molecular Basis and Multimodality Imaging Update. Radiographics 2023; 43:e220134. [PMID: 36821508 DOI: 10.1148/rg.220134] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Hepatocellular adenomas (HCAs) are a family of liver tumors that are associated with variable prognoses. Since the initial description of these tumors, the classification of HCAs has expanded and now includes eight distinct genotypic subtypes based on molecular analysis findings. These genotypic subtypes have unique derangements in their cellular biologic makeup that determine their clinical course and may allow noninvasive identification of certain subtypes. Multiphasic MRI performed with hepatobiliary contrast agents remains the best method to noninvasively detect, characterize, and monitor HCAs. HCAs are generally hypointense during the hepatobiliary phase; the β-catenin-mutated exon 3 subtype and up to a third of inflammatory HCAs are the exception to this characterization. It is important to understand the appearances of HCAs beyond their depictions at MRI, as these tumors are typically identified with other imaging modalities first. The two most feared related complications are bleeding and malignant transformation to hepatocellular carcinoma, although the risk of these complications depends on tumor size, subtype, and clinical factors. Elective surgical resection is recommended for HCAs that are persistently larger than 5 cm, adenomas of any size in men, and all β-catenin-mutated exon 3 HCAs. Thermal ablation and transarterial embolization are potential alternatives to surgical resection. In the acute setting of a ruptured HCA, patients typically undergo transarterial embolization with or without delayed surgical resection. This update on HCAs includes a review of radiologic-pathologic correlations by subtype and imaging modality, related complications, and management recommendations. © RSNA, 2023 Online supplemental material is available for this article. Quiz questions for this article are available through the Online Learning Center.
Collapse
Affiliation(s)
- Justin R Tse
- From the Department of Radiology, Stanford University School of Medicine, 300 Pasteur Dr, Room H-1307, Stanford, CA 94305 (J.R.T., L.S., J.S., A.K.); and Departments of Radiological Sciences (E.R.F., D.S.K.L., S.S.R.) and Pathology (B.V.N.), University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA
| | - Ely R Felker
- From the Department of Radiology, Stanford University School of Medicine, 300 Pasteur Dr, Room H-1307, Stanford, CA 94305 (J.R.T., L.S., J.S., A.K.); and Departments of Radiological Sciences (E.R.F., D.S.K.L., S.S.R.) and Pathology (B.V.N.), University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA
| | - Bita V Naini
- From the Department of Radiology, Stanford University School of Medicine, 300 Pasteur Dr, Room H-1307, Stanford, CA 94305 (J.R.T., L.S., J.S., A.K.); and Departments of Radiological Sciences (E.R.F., D.S.K.L., S.S.R.) and Pathology (B.V.N.), University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA
| | - Luyao Shen
- From the Department of Radiology, Stanford University School of Medicine, 300 Pasteur Dr, Room H-1307, Stanford, CA 94305 (J.R.T., L.S., J.S., A.K.); and Departments of Radiological Sciences (E.R.F., D.S.K.L., S.S.R.) and Pathology (B.V.N.), University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA
| | - Jody Shen
- From the Department of Radiology, Stanford University School of Medicine, 300 Pasteur Dr, Room H-1307, Stanford, CA 94305 (J.R.T., L.S., J.S., A.K.); and Departments of Radiological Sciences (E.R.F., D.S.K.L., S.S.R.) and Pathology (B.V.N.), University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA
| | - David S K Lu
- From the Department of Radiology, Stanford University School of Medicine, 300 Pasteur Dr, Room H-1307, Stanford, CA 94305 (J.R.T., L.S., J.S., A.K.); and Departments of Radiological Sciences (E.R.F., D.S.K.L., S.S.R.) and Pathology (B.V.N.), University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA
| | - Aya Kamaya
- From the Department of Radiology, Stanford University School of Medicine, 300 Pasteur Dr, Room H-1307, Stanford, CA 94305 (J.R.T., L.S., J.S., A.K.); and Departments of Radiological Sciences (E.R.F., D.S.K.L., S.S.R.) and Pathology (B.V.N.), University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA
| | - Steven S Raman
- From the Department of Radiology, Stanford University School of Medicine, 300 Pasteur Dr, Room H-1307, Stanford, CA 94305 (J.R.T., L.S., J.S., A.K.); and Departments of Radiological Sciences (E.R.F., D.S.K.L., S.S.R.) and Pathology (B.V.N.), University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA
| |
Collapse
|
8
|
Wakasa Y, Toyoki Y, Kusumi T, Kameyama Y, Odagiri T, Jin H, Nakai M, Aoki K, Kawashima H, Endo M. β-Catenin-activated inflammatory hepatocellular adenoma with pigmentation and atypical features: a case report. Clin J Gastroenterol 2023; 16:237-243. [PMID: 36640247 DOI: 10.1007/s12328-023-01757-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023]
Abstract
Hepatocellular adenomas are rare diseases, defined as benign liver neoplasms composed of cells with hepatocellular differentiation. Differential diagnosis of hepatocellular adenoma from other lesions, including focal nodular hyperplasia and hepatocellular carcinoma, is crucial to determine treatment strategy. We describe a case of β-catenin-activated inflammatory hepatocellular adenoma with malignant transformation. A 50-year-old man with a suspected liver tumor, based on abdominal ultrasonography findings, was referred to our hospital. Contrast-enhanced computed tomography and magnetic resonance imaging revealed a liver tumor in S2 which was enhanced in the arterial phase to the delayed phase. Based on diagnostic imaging findings, hepatocellular adenoma or focal nodular hyperplasia was suspected. We considered the possibility of malignant potential because of the enlargement of the lesion. Thus, we performed a laparoscopic hepatectomy. Histological examination showed pigment deposition in the hepatocytes, which was determined to be lipofuscin. Mild nuclear swelling and atypia in the tumor area indicated nodular growth. Based on the histological and immunohistochemical findings, the diagnosis was ꞵ-catenin-activated inflammatory hepatocellular adenoma with atypical features. The imaging features of hepatocellular adenoma and focal nodular hyperplasia are similar, but if the tumor tends to grow, surgical treatment should be performed because of the possibility of malignant hepatocellular adenoma.
Collapse
Affiliation(s)
- Yusuke Wakasa
- Department of General Surgery, Aomori City Hospital, 1-14-20, Katta, Aomori, 030-0821, Japan.
| | - Yoshikazu Toyoki
- Department of General Surgery, Aomori City Hospital, 1-14-20, Katta, Aomori, 030-0821, Japan
| | - Tomomi Kusumi
- Department of Pathology, Aomori City Hospital, Aomori, Japan
| | - Yuma Kameyama
- Department of General Surgery, Aomori City Hospital, 1-14-20, Katta, Aomori, 030-0821, Japan
| | - Tadashi Odagiri
- Department of General Surgery, Aomori City Hospital, 1-14-20, Katta, Aomori, 030-0821, Japan
| | - Hiroyuki Jin
- Department of General Surgery, Aomori City Hospital, 1-14-20, Katta, Aomori, 030-0821, Japan
| | - Makoto Nakai
- Department of General Surgery, Aomori City Hospital, 1-14-20, Katta, Aomori, 030-0821, Japan
| | - Kazunori Aoki
- Department of General Surgery, Aomori City Hospital, 1-14-20, Katta, Aomori, 030-0821, Japan
| | - Hiroaki Kawashima
- Department of General Surgery, Aomori City Hospital, 1-14-20, Katta, Aomori, 030-0821, Japan
| | - Masaaki Endo
- Department of General Surgery, Aomori City Hospital, 1-14-20, Katta, Aomori, 030-0821, Japan
| |
Collapse
|
9
|
Focal Benign Liver Lesions and Their Diagnostic Pitfalls. Radiol Clin North Am 2022; 60:755-773. [DOI: 10.1016/j.rcl.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Michallek F, Sartoris R, Beaufrère A, Dioguardi Burgio M, Cauchy F, Cannella R, Paradis V, Ronot M, Dewey M, Vilgrain V. Differentiation of hepatocellular adenoma by subtype and hepatocellular carcinoma in non-cirrhotic liver by fractal analysis of perfusion MRI. Insights Imaging 2022; 13:81. [PMID: 35482151 PMCID: PMC9050986 DOI: 10.1186/s13244-022-01223-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022] Open
Abstract
Background To investigate whether fractal analysis of perfusion differentiates hepatocellular adenoma (HCA) subtypes and hepatocellular carcinoma (HCC) in non-cirrhotic liver by quantifying perfusion chaos using four-dimensional dynamic contrast-enhanced magnetic resonance imaging (4D-DCE-MRI). Results A retrospective population of 63 patients (47 female) with histopathologically characterized HCA and HCC in non-cirrhotic livers was investigated. Our population consisted of 13 hepatocyte nuclear factor (HNF)-1α-inactivated (H-HCAs), 7 β-catenin-exon-3-mutated (bex3-HCAs), 27 inflammatory HCAs (I-HCAs), and 16 HCCs. Four-dimensional fractal analysis was applied to arterial, portal venous, and delayed phases of 4D-DCE-MRI and was performed in lesions as well as remote liver tissue. Diagnostic accuracy of fractal analysis was compared to qualitative MRI features alone and their combination using multi-class diagnostic accuracy testing including kappa-statistics and area under the receiver operating characteristic curve (AUC). Fractal analysis allowed quantification of perfusion chaos, which was significantly different between lesion subtypes (multi-class AUC = 0.90, p < 0.001), except between I-HCA and HCC. Qualitative MRI features alone did not allow reliable differentiation between HCA subtypes and HCC (κ = 0.35). However, combining qualitative MRI features and fractal analysis reliably predicted the histopathological diagnosis (κ = 0.89) and improved differentiation of high-risk lesions (i.e., HCCs, bex3-HCAs) and low-risk lesions (H-HCAs, I-HCAs) from sensitivity and specificity of 43% (95% confidence interval [CI] 23–66%) and 47% (CI 32–64%) for qualitative MRI features to 96% (CI 78–100%) and 68% (CI 51–81%), respectively, when adding fractal analysis. Conclusions Combining qualitative MRI features with fractal analysis allows identification of HCA subtypes and HCCs in patients with non-cirrhotic livers and improves differentiation of lesions with high and low risk for malignant transformation. Supplementary Information The online version contains supplementary material available at 10.1186/s13244-022-01223-6.
Collapse
Affiliation(s)
- Florian Michallek
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
| | - Riccardo Sartoris
- Université de Paris, CRI, U1149, Paris, France.,Department of Radiology, Hôpital Beaujon, AP-HP.Nord, 100 Boulevard du Général Leclerc, 92110, Clichy, France
| | - Aurélie Beaufrère
- Université de Paris, CRI, U1149, Paris, France.,Department of Pathology, Hôpital Beaujon, AP-HP.Nord, 100 Boulevard du Général Leclerc, 92110, Clichy, France
| | - Marco Dioguardi Burgio
- Université de Paris, CRI, U1149, Paris, France.,Department of Radiology, Hôpital Beaujon, AP-HP.Nord, 100 Boulevard du Général Leclerc, 92110, Clichy, France
| | - François Cauchy
- Department of HBP Surgery, Hôpital Beaujon, AP-HP.Nord, 100 Boulevard du Général Leclerc, 92110, Clichy, France
| | - Roberto Cannella
- Department of Radiology, Hôpital Beaujon, AP-HP.Nord, 100 Boulevard du Général Leclerc, 92110, Clichy, France.,Section of Radiology - BiND, University Hospital "Paolo Giaccone", Via del Vespro 129, 90127, Palermo, Italy.,Department of Health Promotion Sciences Maternal and Infant Care, Internal Medicine and Medical Specialties, PROMISE, University of Palermo, 90127, Palermo, Italy
| | - Valérie Paradis
- Department of Pathology, Hôpital Beaujon, AP-HP.Nord, 100 Boulevard du Général Leclerc, 92110, Clichy, France
| | - Maxime Ronot
- Université de Paris, CRI, U1149, Paris, France.,Department of Radiology, Hôpital Beaujon, AP-HP.Nord, 100 Boulevard du Général Leclerc, 92110, Clichy, France
| | - Marc Dewey
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.,DKTK (German Cancer Consortium), Partner Site, Berlin, Germany
| | - Valérie Vilgrain
- Université de Paris, CRI, U1149, Paris, France.,Department of Radiology, Hôpital Beaujon, AP-HP.Nord, 100 Boulevard du Général Leclerc, 92110, Clichy, France
| |
Collapse
|
11
|
Li X, Jing H, Cheng L, Xia J, Wang J, Li Q, Liu C, Cai P. A case study of glycogen storage disease type Ia presenting with multiple hepatocellular adenomas: an analysis by gadolinium ethoxybenzyl-diethylenetriamine-pentaacetic acid magnetic resonance imaging. Quant Imaging Med Surg 2021; 11:2785-2791. [PMID: 34079743 DOI: 10.21037/qims-20-746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycogen storage disease type Ia (GSD Ia) is a rare disease caused by a deficiency of hepatic glucose-6-phosphatase (G6Pase). Here, we report a 17-year-old Chinese boy with GSD Ia. Clinical manifestations of the patient included hepatomegaly, growth retardation, doll face, and biochemical abnormalities, including hypoglycaemia, hyperuricaemia, and hyperlipidaemia. The computed tomography (CT) and gadolinium ethoxybenzyl-diethylenetriamine-pentaacetic acid (Gd-EOB-DTPA) magnetic resonance imaging (MRI) revealed multiple masses in the left and right hemiliver. These masses presented as different dynamic enhanced patterns in the Gd-EOB-DTPA MRI. In addition, a large amount of glycogen deposit was detected in the liver tissue biopsy. Liver puncture confirmed that the masses were hepatocellular adenomas (HCAs). Genetic analyses confirmed the presence of liver metabolic disease, and the final clinical diagnostic was GSD Ia. The patient's clinical manifestations were significantly improved following regular treatment with raw corn starch for 9 months. Unfortunately, it was suspected that parts of the adenoma had undergone malignant transformation.
Collapse
Affiliation(s)
- Xiaoming Li
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hui Jing
- Department of Radiology, Shan Xi Medical University, Taiyuan, China
| | - Lin Cheng
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jie Xia
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qing Li
- Magnetic Resonance Collaborations, Siemens Healthcare Ltd., Shanghai, China
| | - Chen Liu
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ping Cai
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
12
|
Vernuccio F, Gagliano DS, Cannella R, Ba-Ssalamah A, Tang A, Brancatelli G. Spectrum of liver lesions hyperintense on hepatobiliary phase: an approach by clinical setting. Insights Imaging 2021; 12:8. [PMID: 33432491 PMCID: PMC7801550 DOI: 10.1186/s13244-020-00928-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatobiliary MRI contrast agents are increasingly being used for liver imaging. In clinical practice, most focal liver lesions do not uptake hepatobiliary contrast agents. Less commonly, hepatic lesions may show variable signal characteristics on hepatobiliary phase. This pictorial essay reviews a broad spectrum of benign and malignant focal hepatic observations that may show hyperintensity on hepatobiliary phase in various clinical settings. In non-cirrhotic patients, focal hepatic observations that show hyperintensity in the hepatobiliary phase are usually benign and typically include focal nodular hyperplasia. In patients with primary or secondary vascular disorders, focal nodular hyperplasia-like lesions arise as a local hyperplastic response to vascular alterations and tend to be iso- or hyperintense in the hepatobiliary phase. In oncologic patients, metastases and cholangiocarcinoma are hypointense lesions in the hepatobiliary phase; however, occasionally they may show a diffuse, central and inhomogeneous hepatobiliary paradoxical uptake with peripheral rim hypointensity. Post-chemotherapy focal nodular hyperplasia-like lesions may be tricky, and their typical hyperintense rim in the hepatobiliary phase is very helpful for the differential diagnosis with metastases. In cirrhotic patients, hepatocellular carcinoma may occasionally appear hyperintense on hepatobiliary phase.
Collapse
Affiliation(s)
- Federica Vernuccio
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Via del Vespro, 129, 90127, Palermo, Italy. .,University Paris Diderot, Sorbonne Paris Cité, Paris, France. .,I.R.C.C.S. Centro Neurolesi Bonino Pulejo, Contrada Casazza, SS113, 98124, Messina, Italy. .,Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University Hospital of Palermo, Via del Vespro 129, 90127, Palermo, Italy.
| | - Domenico Salvatore Gagliano
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University Hospital of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Roberto Cannella
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Via del Vespro, 129, 90127, Palermo, Italy.,Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University Hospital of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Ahmed Ba-Ssalamah
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, General Hospital of Vienna (AKH), Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - An Tang
- Department of Radiology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada.,Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Department of Radiology, Radio-Oncology and Nuclear Medicine, University of Montreal, Montreal, Canada
| | - Giuseppe Brancatelli
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University Hospital of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| |
Collapse
|
13
|
Reizine E, Ronot M, Ghosn M, Calderaro J, Frulio N, Bioulac-Sage P, Trillaud H, Vilgrain V, Paradis V, Luciani A. Hepatospecific MR contrast agent uptake on hepatobiliary phase can be used as a biomarker of marked β-catenin activation in hepatocellular adenoma. Eur Radiol 2020; 31:3417-3426. [PMID: 33146794 DOI: 10.1007/s00330-020-07434-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/01/2020] [Accepted: 10/15/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES To assess the value of hepatospecific MR contrast agent uptake on hepatobiliary phase (HBP) images to detect marked activation of the β-catenin pathway in hepatocellular adenomas (HCAs). METHODS This multicentric retrospective IRB-approved study included all patients with a pathologically proven HCA who underwent gadobenate dimeglumine-enhanced liver MRI with HBP. Tumor signal intensity on HBP was first assessed visually, and lesions were classified into three distinct groups-hypointense, isointense, or hyperintense-according to the relative signal intensity to liver. Uptake was then quantified using the lesion-to-liver contrast enhancement ratio (LLCER). Finally, the accuracy of HBP analysis in depicting marked β-catenin activation in HCA was evaluated. RESULTS A total of 124 HCAs were analyzed including 12 with marked β-catenin activation (HCA B+). Visual analysis classified 94/124 (76%), 12/124 (10%), and 18/124 (14%) HCAs as being hypointense, isointense, and hyperintense on HBP, respectively. Of these, 1/94 (1%), 3/12 (25%), and 8/18 (44%) were HCA B+, respectively (p < 0.001). The LLCER of HCA B+ was higher than that of HCA without marked β-catenin activation in the entire cohort (means 4.9 ± 11.8% vs. - 19.8 ± 11.4%, respectively, p < 0.001). A positive LLCER, i.e., LLCER ≥ 0%, had 75% (95% CI 43-95%) sensitivity and 97% (95% CI 92-99%) specificity, with a LR+ of 28 (95% CI 8.8-89.6) for the diagnosis of HCA B+. CONCLUSIONS Hepatospecific contrast uptake on hepatobiliary phase is strongly associated with marked activation of the β-catenin pathway in hepatocellular adenoma, and its use might improve hepatocellular adenoma subtyping on MRI. KEY POINTS • Tumor uptake on hepatobiliary phase in both the visual and quantitative analyses had a specificity higher than 90% for the detection of marked β-catenin activation in hepatocellular adenoma. • However, the sensitivity of visual analysis alone is inferior to that of LLCER quantification on HBP due to the high number of HCAs with signal hyperintensity on HBP, especially those developed on underlying liver steatosis.
Collapse
Affiliation(s)
- E Reizine
- Department of Radiology, APHP, HU Henri Mondor, Créteil, Val-de-Marne, France.
| | - M Ronot
- Department of Radiology, APHP, University Hospitals Paris Nord Val de Seine, Beaujon, Clichy, Hauts-de-Seine, France.,University Paris Diderot, Sorbonne Paris Cité, Paris, France.,INSERM U1149, centre de recherche biomédicale Bichat-Beaujon, CRB3, Paris, France
| | - M Ghosn
- Department of Radiology, APHP, HU Henri Mondor, Créteil, Val-de-Marne, France
| | - J Calderaro
- Department of Pathology, APHP, HU Henri Mondor, Créteil, Val-de-Marne, France.,Faculté de Médecine, Universite Paris Est Creteil, 94010, Créteil, France.,INSERM Unit U 955, Equipe 18, 94010, Créteil, France
| | - N Frulio
- CHU Bordeaux Department of Diagnostic and Interventional Radiology, Université de Bordeaux, 33000, Bordeaux, France
| | - P Bioulac-Sage
- Inserm, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Université de Bordeaux, 33076, Bordeaux, France.,Department of Pathology, Pellegrin Hospital, CHU de Bordeaux, 33076, Bordeaux, France
| | - H Trillaud
- Department of Pathology, Beaujon Hospital, APHP, Clichy, France
| | - V Vilgrain
- Department of Radiology, APHP, University Hospitals Paris Nord Val de Seine, Beaujon, Clichy, Hauts-de-Seine, France.,University Paris Diderot, Sorbonne Paris Cité, Paris, France.,INSERM U1149, centre de recherche biomédicale Bichat-Beaujon, CRB3, Paris, France
| | - V Paradis
- INSERM U1149, centre de recherche biomédicale Bichat-Beaujon, CRB3, Paris, France.,Department of Pathology, Beaujon Hospital, APHP, Clichy, France
| | - A Luciani
- Department of Radiology, APHP, HU Henri Mondor, Créteil, Val-de-Marne, France.,Faculté de Médecine, Universite Paris Est Creteil, 94010, Créteil, France.,INSERM Unit U 955, Equipe 18, 94010, Créteil, France
| |
Collapse
|
14
|
Hui CL, Mautone M. Patterns of enhancement in the hepatobiliary phase of gadoxetic acid-enhanced MRI. Br J Radiol 2020; 93:20190989. [PMID: 32462892 DOI: 10.1259/bjr.20190989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A variety of patterns of enhancement of liver lesions and liver parenchyma is observed in the hepatobiliary phase (HBP) of gadoxetic acid-enhanced MRI. It is becoming increasingly apparent that many lesions may exhibit HBP enhancement. Much of the literature regarding the role of gadoxetic acid-enhanced MRI in characterising liver lesions is dichotomous, focusing on whether lesions are enhancing or non-enhancing in the HBP, rather than examining the patterns of enhancement. We provide a pattern-based description of HBP enhancement of liver parenchyma and of liver lesions. The role of OATP1B3 transporters, hepatocyte function and lesion composition in influencing patterns of HBP hyperintensity are discussed.
Collapse
Affiliation(s)
- Cathryn L Hui
- Diagnostic Imaging Department, Monash Health, Melbourne, Australia
| | | |
Collapse
|
15
|
Hepatobiliary MR contrast agent uptake as a predictive biomarker of aggressive features on pathology and reduced recurrence-free survival in resectable hepatocellular carcinoma: comparison with dual-tracer 18F-FDG and 18F-FCH PET/CT. Eur Radiol 2020; 30:5348-5357. [PMID: 32405753 DOI: 10.1007/s00330-020-06923-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/26/2020] [Accepted: 04/28/2020] [Indexed: 01/06/2023]
Abstract
OBJECTIVES To compare the performance of the quantitative analysis of the hepatobiliary phase (HBP) tumor enhancement in gadobenate dimeglumine (Gd-BOPTA)-enhanced MRI and of dual-tracer 18F-FDG and 18F-fluorocholine (FCH) PET/CT for the prediction of tumor aggressiveness and recurrence-free survival (RFS) in resectable hepatocellular carcinoma (HCC). METHODS This retrospective, IRB approved study included 32 patients with 35 surgically proven HCCs. All patients underwent Gd-BOPTA-enhanced MRI including delayed HBP images, 18F-FDG PET/CT, and (for 29/32 patients) 18F-FCH PET/CT during the 2 months prior to surgery. For each lesion, the lesion-to-liver contrast enhancement ratio (LLCER) on MRI HBP images and the SUVmax tumor-to-liver ratio (SUVT/L) for both tracers were calculated. Their predictive value for aggressive pathological features-including the histological grade and microvascular invasion (MVI)-and RFS were analyzed and compared using area under receiver operating characteristic (AUROC) curves and Cox regression models, respectively. RESULTS The AUROCs for the identification of aggressive HCCs on pathology with LLCER, 18F-FDG SUVT/L, and 18F-FCH SUVT/L were 0.92 (95% CI 0.78, 0.98), 0.89 (95% CI 0.74, 0.97; p = 0.70), and 0.64 (95% CI 0.45, 0.80; p = 0.035). At multivariate Cox regression analysis, LLCER was identified as an independent predictor of RFS (HR (95% CI) = 0.91 (0.84, 0.99), p = 0.022). LLCER - 4.72% or less also accurately predicted moderate-poor differentiation grade (Se = 100%, Sp = 92.9%) and MVI (Se = 93.3%, Sp = 60%) and identified patients with poor RFS after surgical resection (p = 0.030). CONCLUSIONS HBP tumor enhancement after Gd-BOPTA injection may help identify aggressive HCC pathological features, and patients with reduced recurrence-free survival after surgical resection. KEY POINTS • In patients with resectable HCC, the quantitative analysis of the HBP tumor enhancement in Gd-BOPTA-enhanced MRI (LLCER) accurately identifies moderately-poorly differentiated and/or MVI-positive HCCs. • After surgical resection for HCC, patients with LLCER - 4.72% or less had significantly poorer recurrence-free survival than patients with LLCER superior to - 4.72%. • Gd-BOPTA-enhanced MRI with delayed HBP images may be suggested as part of pre-surgery workup in patients with resectable HCC.
Collapse
|
16
|
Reizine E, Luciani A. Reply to "Intrapatient Comparison of the Hepatobiliary Phase of Gd-BOPTA and Gd-EOB-DTPA in the Differentiation of Hepatocellular Adenoma From Focal Nodular Hyperplasia". J Magn Reson Imaging 2020; 52:1279-1280. [PMID: 32022384 DOI: 10.1002/jmri.27074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 11/05/2022] Open
Abstract
LEVEL OF EVIDENCE 5 TECHNICAL EFFICACY STAGE: 3 CONFLICT OF INTEREST: None. FINANCIAL SUPPORT None. J. Magn. Reson. Imaging 2020;52:1279-1280.
Collapse
Affiliation(s)
- Edouard Reizine
- Department of Radiology, APHP, HU Henri Mondor, Creteil, France
| | - Alain Luciani
- Department of Radiology, APHP, HU Henri Mondor, Creteil, France.,Faculté de Médecine, Universite Paris Est Creteil, Creteil, France.,INSERM Unit U 955, Creteil, France
| |
Collapse
|
17
|
Wu M, Zhou RH, Xu F, Li XP, Zhao P, Yuan R, Lan YP, Zhou WX. Multi-parameter ultrasound based on the logistic regression model in the differential diagnosis of hepatocellular adenoma and focal nodular hyperplasia. World J Gastrointest Oncol 2019; 11:1193-1205. [PMID: 31908724 PMCID: PMC6937441 DOI: 10.4251/wjgo.v11.i12.1193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/13/2019] [Accepted: 09/10/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Focal nodular hyperplasia (FNH) has very low potential risk, and a tendency to spontaneously resolve. Hepatocellular adenoma (HCA) has a certain malignant tendency, and its prognosis is significantly different from FNH. Accurate identification of HCA and FNH is critical for clinical treatment.
AIM To analyze the value of multi-parameter ultrasound index based on logistic regression for the differential diagnosis of HCA and FNH.
METHODS Thirty-one patients with HCA were included in the HCA group. Fifty patients with FNH were included in the FNH group. The clinical data were collected and recorded in the two groups. Conventional ultrasound, shear wave elastography, and contrast-enhanced ultrasound were performed, and the lesion location, lesion echo, Young’s modulus (YM) value, YM ratio, and changes of time intense curve (TIC) were recorded. Multivariate logistic regression analysis was used to screen the indicators that can be used for the differential diagnosis of HCA and FNH. A ROC curve was established for the potential indicators to analyze the accuracy of the differential diagnosis of HCA and FNH. The value of the combined indicators for distinguishing HCA and FNH were explored.
RESULTS Multivariate logistic regression analysis showed that lesion echo (P = 0.000), YM value (P = 0.000) and TIC decreasing slope (P = 0.000) were the potential indicators identifying HCA and FNH. In the ROC curve analysis, the accuracy of the YM value distinguishing HCA and FNH was the highest (AUC = 0.891), which was significantly higher than the AUC of the lesion echo and the TIC decreasing slope (P < 0.05). The accuracy of the combined diagnosis was the highest (AUC = 0.938), which was significantly higher than the AUC of the indicators diagnosing HCA individually (P < 0.05). This sensitivity was 91.23%, and the specificity was 83.33%.
CONCLUSION The combination of lesion echo, YM value and TIC decreasing slope can accurately differentiate between HCA and FNH.
Collapse
Affiliation(s)
- Meng Wu
- Department of Ultrasound, Yinzhou Hospital Affiliated to Ningbo University School of Medicine, Ningbo 315000, Zhejiang Province, China
| | - Ru-Hai Zhou
- Department of Ultrasound, Yinzhou Hospital Affiliated to Ningbo University School of Medicine, Ningbo 315000, Zhejiang Province, China
| | - Feng Xu
- Department of Ultrasound, Yinzhou Hospital Affiliated to Ningbo University School of Medicine, Ningbo 315000, Zhejiang Province, China
- Department of Gastroenterology, Yinzhou Hospital Affiliated to Ningbo University School of Medicine, Ningbo 315000, Zhejiang Province, China
| | - Xian-Peng Li
- Department of Ultrasound, Yinzhou Hospital Affiliated to Ningbo University School of Medicine, Ningbo 315000, Zhejiang Province, China
- Department of Gastroenterology, Yinzhou Hospital Affiliated to Ningbo University School of Medicine, Ningbo 315000, Zhejiang Province, China
| | - Ping Zhao
- Department of Ultrasound, Yinzhou Hospital Affiliated to Ningbo University School of Medicine, Ningbo 315000, Zhejiang Province, China
| | - Rui Yuan
- Department of Ultrasound, Yinzhou Hospital Affiliated to Ningbo University School of Medicine, Ningbo 315000, Zhejiang Province, China
| | - Yu-Peng Lan
- Department of Ultrasound, Yinzhou Hospital Affiliated to Ningbo University School of Medicine, Ningbo 315000, Zhejiang Province, China
| | - Wei-Xia Zhou
- Department of Ultrasound, Yinzhou Hospital Affiliated to Ningbo University School of Medicine, Ningbo 315000, Zhejiang Province, China
| |
Collapse
|
18
|
Zulfiqar M, Sirlin CB, Yoneda N, Ronot M, Hecht EM, Chernyak V, Matsui O, Bastati N, Ba‐Ssalamah A, Chatterjee D, Bashir M, Fowler KJ. Hepatocellular adenomas: Understanding the pathomolecular lexicon, MRI features, terminology, and pitfalls to inform a standardized approach. J Magn Reson Imaging 2019; 51:1630-1640. [DOI: 10.1002/jmri.26902] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/15/2022] Open
Affiliation(s)
- Maria Zulfiqar
- Mallinckrodt Institute of RadiologyWashington University School of Medicine St Louis Missouri USA
| | - Claude B. Sirlin
- Department of RadiologyUniversity of California San Diego San Diego California USA
| | | | - Maxime Ronot
- Department of RadiologyHôpitaux Universitaires Paris Nord Val de Seine, Cinchy France
| | | | - Victoria Chernyak
- Department of Radiology, Montefiore Medical CenterAlbert Einstein College of Medicine New York New York USA
| | - Osamu Matsui
- Department of RadiologyKanazawa University Japan
| | - Nina Bastati
- Department of Biomedical Imaging and Image‐guided therapyMedical University of Vienna Vienna Austria
| | - Ahmed Ba‐Ssalamah
- Department of Biomedical Imaging and Image‐guided therapyMedical University of Vienna Vienna Austria
| | - Deyali Chatterjee
- Department of PathologyWashington University School of Medicine St Louis Missouri USA
| | - Mustafa Bashir
- Department of RadiologyDuke University Durham North Carolina USA
| | - Kathryn J. Fowler
- Department of RadiologyUniversity of California San Diego San Diego California USA
| |
Collapse
|
19
|
Lebert P, Adens-Fauquembergue M, Azahaf M, Gnemmi V, Behal H, Luciani A, Ernst O. MRI for characterization of benign hepatocellular tumors on hepatobiliary phase: the added value of in-phase imaging and lesion-to-liver visual signal intensity ratio. Eur Radiol 2019; 29:5742-5751. [PMID: 30993437 DOI: 10.1007/s00330-019-06210-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/27/2019] [Accepted: 03/29/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To evaluate the lesion-to-liver visual signal intensity ratio (SIR) before and at the hepatobiliary phase MRI (HBP-MRI) after gadobenate dimeglumine (Gd-BOPTA) injection, using several T1-weighted images (T1-WI), for the characterization of benign hepatocellular lesions. METHODS Patients with histologically proven focal nodular hyperplasia (FNH) and hepatocellular adenoma (HCA), who underwent Gd-BOPTA-enhanced HBP-MRI from 2009 to 2017, were retrospectively identified. The lesion-to-liver SIR was visually assessed by two radiologists on HBP (post-HBP analysis) and compared with that of unenhanced sequences (pre/post-HBP analysis) on T1-WI in-phase (T1-IP), out-of-phase (T1-OP), and fat suppression (T1-FS). Lesions were classified as hyper-, iso-, or hypointense on post-HBP, and as decreasing, stable, or increasing SIR on pre/post-HBP analyses. The performance of the different T1-WI sequences for the diagnostic of FNH was evaluated on post-HBP analysis. RESULTS Twenty-nine FNHs and 33 HCAs were analyzed. On post-HBP analysis, FNHs appeared hyper-/isointense in 89.7% of all T1-WI. HCAs appeared hypointense in 93.9%, 63.6%, and 69.7% of T1-IP, T1-OP, and T1-FS, respectively. FNHs exhibited an increasing SIR in 55.2-58.6%, a stable SIR in 44.8-58.6%, and a decreasing SIR in 0%, whereas HCAs exhibited a decreasing SIR in 66.7-93.9%, a stable SIR in 6.1-33.3%, and an increasing SIR in 0% (p < 0.0001). The specificity of T1-IP was significantly higher than that of T1-OP (p = 0.015) and T1-FS (p = 0.042). CONCLUSION T1-IP is the most reliable sequence due to misleading tumor/liver signal ratio in the case of fatty liver when using T1-FS or T1-OP. The pre/post-HBP lesion-to-liver SIR is accurate to classify benign hepatocellular lesions and contributes to avoid biopsy. KEY POINTS •The T1-weighted images in-phase should be systematically included in the HBP-MRI protocol, as it is the most reliable sequence especially in the case of fatty liver. •The comparison between lesion-to-liver signal intensity ratios on unenhanced and at the hepatobiliary phase sequences is useful to classify benign hepatocellular lesions in three categories without misclassification: FNH (increasing signal intensity ratio), HCA (decreasing signal intensity ration), and indeterminate lesions (stable signal intensity ratio).
Collapse
Affiliation(s)
- P Lebert
- Department of Gastrointestinal Imaging, Lille University Hospital, Rue Michel Polonovski, 59037, Lille Cedex, France.
| | - M Adens-Fauquembergue
- Department of Gastrointestinal Imaging, Lille University Hospital, Rue Michel Polonovski, 59037, Lille Cedex, France
| | - M Azahaf
- Department of Gastrointestinal Imaging, Lille University Hospital, Rue Michel Polonovski, 59037, Lille Cedex, France
| | - V Gnemmi
- Department of Pathology, Lille University Hospital, avenue Oscar-Lambret, 59037, Lille Cedex, France
| | - H Behal
- Department of Biostatistics, Lille University Hospital, avenue Oscar-Lambret, 59037, Lille Cedex, France
| | - A Luciani
- Groupe Henri Mondor Albert Chenevier, Imagerie Medicale, AP-HP, 94010, Creteil, France
| | - O Ernst
- Department of Gastrointestinal Imaging, Lille University Hospital, Rue Michel Polonovski, 59037, Lille Cedex, France
| |
Collapse
|
20
|
Reizine E, Ronot M, Pigneur F, Purcell Y, Mulé S, Dioguardi Burgio M, Calderaro J, Amaddeo G, Laurent A, Vilgrain V, Luciani A. Iso- or hyperintensity of hepatocellular adenomas on hepatobiliary phase does not always correspond to hepatospecific contrast-agent uptake: importance for tumor subtyping. Eur Radiol 2019; 29:3791-3801. [DOI: 10.1007/s00330-019-06150-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/21/2019] [Accepted: 03/08/2019] [Indexed: 12/25/2022]
|
21
|
Kurzbard-Roach N, Jha P, Poder L, Menias C. Abdominal and pelvic imaging findings associated with sex hormone abnormalities. Abdom Radiol (NY) 2019; 44:1103-1119. [PMID: 30483844 DOI: 10.1007/s00261-018-1844-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hormones are substances that serve as chemical communication between cells. They are unique biological molecules that affect multiple organ systems and play a key role in maintaining homoeostasis. In this role, they are usually produced from a single organ and have defined target organs. However, hormones can affect non-target organs as well. As such, biochemical and hormonal abnormalities can be associated with anatomic changes in multiple target as well as non-target organs. Hormone-related changes may take the form of an organ parenchymal abnormality, benign neoplasm, or even malignancy. Given the multifocal action of hormones, the observed imaging findings may be remote from the site of production, and may actually be multi-organ in nature. Anatomic findings related to hormone level abnormalities and/or laboratory biomarker changes may be identified with imaging. The purpose of this image-rich review is to sensitize radiologists to imaging findings in the abdomen and pelvis that may occur in the context of hormone abnormalities, focusing primarily on sex hormones and their influence on these organs.
Collapse
Affiliation(s)
- Nicole Kurzbard-Roach
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Priyanka Jha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA.
| | - Liina Poder
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
22
|
Purcell Y, Copin P, Paradis V, Vilgrain V, Ronot M. Lessons learnt from pathologic imaging correlation in the liver: an historical perspective. Br J Radiol 2019; 92:20180701. [PMID: 30604641 DOI: 10.1259/bjr.20180701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Imaging and pathology can be considered as two sides of the same diagnostic coin. Yet, pathology remains the gold-standard technique for the diagnosis of most diseases. Nevertheless, significant and constant progress in imaging has been made thanks to fruitful rad-path correlations. The aim of this article is to show how much imaging has benefited from pathology and to illustrate the different ways in which imaging has evolved according to different types of pathological references. Imaging of hepatocellular carcinoma shows how image-based knowledge and expertise can be exploited to yield a non-invasive diagnosis approaching that of a fixed, robust pathological reference. Hepatocellular adenomas provide an example of the constant radiological evolutions triggered by changing pathological definitions. Finally, hepatic steatosis illustrates the possibility for imaging to surpass its historical reference, and become a new gold-standard. For these three examples, we have taken a historical approach to demonstrate how rad-path interminglement creates knowledge.
Collapse
Affiliation(s)
- Yvonne Purcell
- 1 Department of Radiology, Hôpitaux Universitaires Paris Nord Val de Seine , Clichy , France
| | - Pauline Copin
- 1 Department of Radiology, Hôpitaux Universitaires Paris Nord Val de Seine , Clichy , France
| | - Valérie Paradis
- 2 Department of Pathology, Hôpitaux Universitaires Paris Nord Val de Seine , Clichy , France.,3 University Paris Diderot, Sorbonne Paris Cité , Paris , France
| | - Valérie Vilgrain
- 1 Department of Radiology, Hôpitaux Universitaires Paris Nord Val de Seine , Clichy , France.,3 University Paris Diderot, Sorbonne Paris Cité , Paris , France.,4 Centre de recherche biomédicale Bichat-Beaujon , Paris , France
| | - Maxime Ronot
- 1 Department of Radiology, Hôpitaux Universitaires Paris Nord Val de Seine , Clichy , France.,3 University Paris Diderot, Sorbonne Paris Cité , Paris , France.,4 Centre de recherche biomédicale Bichat-Beaujon , Paris , France
| |
Collapse
|
23
|
Sciarra A, Schmidt S, Pellegrinelli A, Maggioni M, Dondossola D, Pasquier J, Cigala C, Tosi D, Halkic N, Bulfamante G, Viale G, Bosari S, Balabaud C, Bioulac-Sage P, Sempoux C. OATPB1/B3 and MRP3 expression in hepatocellular adenoma predicts Gd-EOB-DTPA uptake and correlates with risk of malignancy. Liver Int 2019; 39:158-167. [PMID: 30218633 DOI: 10.1111/liv.13964] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/22/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Hepatobiliary phase (HBP) Gd-EOB-DTPA-enhanced magnetic resonance imaging (MRI) has increased the accuracy in differentiating focal nodular hyperplasia (FNH) and hepatocellular adenoma (HCA). However, the ability of this technique to distinguish HCA subtypes remains controversial. The aim of this study was to investigate the expression of hepatocyte transporters (OATPB1/B3, MRP2, MRP3) in HCA subtypes, hence to understand their MRI signal intensity on HBP Gd-EOB-DTPA-enhanced MRI. METHODS By means of immunohistochemistry (IHC), we scored the expression of OATPB1/B3, MRP2 and MRP3, in resected specimens of FNH (n = 40), subtyped HCA (n = 58) and HCA with focal malignant transformation (HCA-HCC, n = 4). Results were validated on a supplementary set of FNH (n = 6), subtyped HCA (n = 17) and HCA-HCC (n = 1) with Gd-EOB-DTPA MR images. RESULTS All FNH showed a preserved expression of hepatocytes transporters. Beta-catenin-activated HCA (at highest risk of malignant transformation) and HCA-HCC were characterized by preserved/increased OATPB1/B3 expression (predictor of hyperintensity on HBP), as opposed to other HCA subtypes (P < 0.01) that mostly showed OATPB1/B3 absence (predictor of hypointensity on HBP). HCA-HCC showed an additional MRP3 overexpressed profile (P < 0.01). On HBP Gd-EOB-DTPA-enhanced MRI, FNH and HCA signal intensity reflected the profile predicted by their specific OATPB1/B3 tissue expression. The hyperintense vs hypointense HBP signal criterion was able to distinguish all higher risk HCA and HCA-HCC (100% accuracy). CONCLUSIONS OATPB1/B3 and MRP3 IHC and signal intensity on HBP Gd-EOB-DTPA-enhanced MRI can help to stratify HCA according to their risk of malignant transformation.
Collapse
Affiliation(s)
- Amedeo Sciarra
- Service of Clinical Pathology, Institute of Pathology, Lausanne University Hospital, Lausanne, Switzerland.,Pathology, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Sabine Schmidt
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, Lausanne, Switzerland
| | | | - Marco Maggioni
- Pathology, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Daniele Dondossola
- Liver Transplant and General Surgery Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Jerome Pasquier
- Institute for Social and Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Claudia Cigala
- Unit of Pathology, San Paolo Hospital Medical School, Department of Health Sciences, University of Milan, Milan, Italy
| | - Delfina Tosi
- Unit of Pathology, San Paolo Hospital Medical School, Department of Health Sciences, University of Milan, Milan, Italy
| | - Nermin Halkic
- Department of Visceral Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Gaetano Bulfamante
- Unit of Pathology, San Paolo Hospital Medical School, Department of Health Sciences, University of Milan, Milan, Italy
| | - Giuseppe Viale
- European Institute of Oncology, University of Milan, Milan, Italy
| | - Silvano Bosari
- Pathology, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Charles Balabaud
- Pathology Department, Inserm, UMR-1053, CHU de Bordeaux, Pellegrin Hospital, Bordeaux, France
| | - Paulette Bioulac-Sage
- Pathology Department, Inserm, UMR-1053, CHU de Bordeaux, Pellegrin Hospital, Bordeaux, France
| | - Christine Sempoux
- Service of Clinical Pathology, Institute of Pathology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
24
|
New MRI features improve subtype classification of hepatocellular adenoma. Eur Radiol 2018; 29:2436-2447. [PMID: 30523457 DOI: 10.1007/s00330-018-5784-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/31/2018] [Accepted: 09/20/2018] [Indexed: 01/14/2023]
Abstract
OBJECTIVE MRI is crucial for the classification of hepatocellular adenomas (HCA) into subtypes. Our objective was to review and increase MRI criteria for subtype classification and define the limits. METHODS Pathological and radiological data of 116 HCAs were retrospectively analyzed to investigate MRI features of HCA pathological subtypes. Risk for complication was also evaluated with regard to subtype and tumor size. RESULTS 38/43 (88%) HNF1α-mutated HCAs (H-HCAs) were discriminated by (i) fatty component (homogeneous or heterogeneous) and (ii) hypovascular pattern, with a sensitivity of 88% and a specificity of 97%. 51/58 (88%) inflammatory HCAs (IHCAs) displayed features of sinusoidal dilatation (SD) including three different patterns (global SD, atoll sign, and a new "crescent sign" corresponding to a partial peripheral rim, hyperintense on T2W and/or arterial phase with persistent delayed enhancement). Sensitivity was 88% and specificity 100%. However, some HCA remained unclassifiable by MRI: HCA remodeled by necrotic/hemorrhagic changes covering > 50% of the lesion, H-HCAs without steatosis, IHCAs without SD, β-catenin-mutated and unclassified HCAs. Regarding malignant transformation (5/116) and bleeding (24/116), none was observed when the HCA diameter was smaller than 5.2 cm and 4.2 cm, respectively. CONCLUSION Based on the largest series evaluated until now, we identified several non-described MRI features and propose new highly sensitive and specific MRI criteria. With the addition of these new features, 88% of the two main HCA subtypes could be identified. KEY POINTS • HNF1α-mutated hepatocellular adenomas (H-HCA) are characterized by the presence of fat and hypovascular pattern in MRI. • Inflammatory hepatocellular adenomas (I-HCA) are characterized by different patterns translating sinusoidal dilatation including the newly described crescent sign. • No MRI specific pattern was identified for β-catenin-mutated HCA (b-HCA).
Collapse
|