1
|
Bai JW, Qiu SQ, Zhang GJ. Molecular and functional imaging in cancer-targeted therapy: current applications and future directions. Signal Transduct Target Ther 2023; 8:89. [PMID: 36849435 PMCID: PMC9971190 DOI: 10.1038/s41392-023-01366-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/19/2023] [Accepted: 02/14/2023] [Indexed: 03/01/2023] Open
Abstract
Targeted anticancer drugs block cancer cell growth by interfering with specific signaling pathways vital to carcinogenesis and tumor growth rather than harming all rapidly dividing cells as in cytotoxic chemotherapy. The Response Evaluation Criteria in Solid Tumor (RECIST) system has been used to assess tumor response to therapy via changes in the size of target lesions as measured by calipers, conventional anatomically based imaging modalities such as computed tomography (CT), and magnetic resonance imaging (MRI), and other imaging methods. However, RECIST is sometimes inaccurate in assessing the efficacy of targeted therapy drugs because of the poor correlation between tumor size and treatment-induced tumor necrosis or shrinkage. This approach might also result in delayed identification of response when the therapy does confer a reduction in tumor size. Innovative molecular imaging techniques have rapidly gained importance in the dawning era of targeted therapy as they can visualize, characterize, and quantify biological processes at the cellular, subcellular, or even molecular level rather than at the anatomical level. This review summarizes different targeted cell signaling pathways, various molecular imaging techniques, and developed probes. Moreover, the application of molecular imaging for evaluating treatment response and related clinical outcome is also systematically outlined. In the future, more attention should be paid to promoting the clinical translation of molecular imaging in evaluating the sensitivity to targeted therapy with biocompatible probes. In particular, multimodal imaging technologies incorporating advanced artificial intelligence should be developed to comprehensively and accurately assess cancer-targeted therapy, in addition to RECIST-based methods.
Collapse
Affiliation(s)
- Jing-Wen Bai
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid Cancers, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Department of Medical Oncology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
| | - Si-Qi Qiu
- Diagnosis and Treatment Center of Breast Diseases, Clinical Research Center, Shantou Central Hospital, 515041, Shantou, China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Shantou University Medical College, 515041, Shantou, China
| | - Guo-Jun Zhang
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid Cancers, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
- Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
| |
Collapse
|
2
|
Lu N, Dong J, Fang X, Wang L, Jia W, Zhou Q, Wang L, Wei J, Pan Y, Han X. Predicting pathologic response to neoadjuvant chemotherapy in patients with locally advanced breast cancer using multiparametric MRI. BMC Med Imaging 2021; 21:155. [PMID: 34688263 PMCID: PMC8542288 DOI: 10.1186/s12880-021-00688-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/11/2021] [Indexed: 11/12/2022] Open
Abstract
Background This study aims to observe and analyze the effect of diffusion weighted magnetic resonance imaging (MRI) on the patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy. Methods Fifty patients (mean age, 48.7 years) with stage II–III breast cancer who underwent neoadjuvant chemotherapy and preoperative MRI between 2016 and 2020 were retrospectively evaluated. The associations between preoperative breast MRI findings/clinicopathological features and outcomes of neoadjuvant chemotherapy were assessed. Results Clinical stage at baseline (OR: 0.104, 95% confidence interval (CI) 0.021–0.516, P = 0.006) and standard apparent diffusion coefficient (ADC) change (OR: 9.865, 95% CI 1.024–95.021, P = 0.048) were significant predictive factors of the effects of neoadjuvant chemotherapy. The percentage increase of standard ADC value in pathologic complete response (pCR) group was larger than that in non-pCR group at first time point (P < 0.05). A correlation was observed between the change in standard ADC values and tumor diameter at first follow-up (r: 0.438, P < 0.05). Conclusions Our findings support that change in standard ADC values and clinical stage at baseline can predict the effects of neoadjuvant chemotherapy for patients with breast cancer in early stage. Supplementary Information The online version contains supplementary material available at 10.1186/s12880-021-00688-z.
Collapse
Affiliation(s)
- Nannan Lu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Lujiang Road 17, Hefei, 230001, Anhui, China
| | - Jie Dong
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Lujiang Road 17, Hefei, 230001, Anhui, China.,Department of Medical Oncology, Anhui Provincial Hospital Affiliated To Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xin Fang
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China
| | - Lufang Wang
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Lujiang Road 17, Hefei, 230001, Anhui, China
| | - Wei Jia
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Lujiang Road 17, Hefei, 230001, Anhui, China
| | - Qiong Zhou
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Lujiang Road 17, Hefei, 230001, Anhui, China.,Department of Medical Oncology, Anhui Provincial Hospital Affiliated To Anhui Medical University, Hefei, 230032, Anhui, China
| | - Lingyu Wang
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Lujiang Road 17, Hefei, 230001, Anhui, China
| | - Jie Wei
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Lujiang Road 17, Hefei, 230001, Anhui, China
| | - Yueyin Pan
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Lujiang Road 17, Hefei, 230001, Anhui, China
| | - Xinghua Han
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Lujiang Road 17, Hefei, 230001, Anhui, China.
| |
Collapse
|
3
|
Early Changes in DCE-MRI Biomarkers May Predict Survival Outcomes in Patients with Advanced Hepatocellular Carcinoma after Sorafenib Failure: Two Prospective Phase II Trials. Cancers (Basel) 2021; 13:cancers13194962. [PMID: 34638446 PMCID: PMC8508238 DOI: 10.3390/cancers13194962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary In patients with advanced hepatocellular carcinoma, systemic therapy is recommended by most treatment guidelines. Sorafenib and lenvatinib are both 1st-line treatments for inoperable advanced HCC. Regorafenib, cabozantinib, and ramucirumab have been approved as 2nd-line targeted therapy in patients who show progression or do not tolerate sorafenib. However, there is a lack of imaging biomarkers for predicting survival outcomes in patients receiving 2nd-line targeted therapy after sorafenib failure. In this paper, we try to predict survival outcomes via early changes in the DCE-MRI biomarkers in participants with advanced HCC after 2nd-line targeted therapy following sorafenib failure, taking data from two different prospective clinical trials. We found that an early reduction in tumor perfusion detected by DCE-MRI biomarkers, especially on day 14, may predict survival outcomes in these participants. For the further clinical development of anti-angiogenic therapies, optimal participant selection with predictive biomarkers, such as DCE-MRI, is essential in order to improve treatment outcomes. Abstract In this paper, our main objective was to predict survival outcomes using DCE-MRI biomarkers in patients with advanced hepatocellular carcinoma (HCC) after progression from 1st-line sorafenib treatment in two prospective phase II trials. This study included 74 participants (men/women = 64/10, mean age 60 ± 11.8 years) with advanced HCC who received 2nd-line targeted therapy (n = 41 with lenalidomide in one clinical trial; n = 33 with axitinib in another clinical trial) after sorafenib failure from two prospective phase II studies. Among them, all patients underwent DCE-MRI at baseline, and on days 3 and 14 of treatment. The relative changes (Δ) in the DCE-MRI parameters, including ΔPeak, ΔAUC, and ΔKtrans, were derived from the largest hepatic tumor. The treatment response was evaluated using the Response Evaluation Criteria in Solid Tumors (RECIST 1.1). The Cox model was used to investigate the associations of the clinical variables and DCE-MRI biomarkers with progression-free survival (PFS) and overall survival (OS). The objective response rate (ORR) was 10.8% (8/74) and the disease control rate (DCR) was 58.1% (43/74). The median PFS and OS values were 1.9 and 7.8 months, respectively. On day 3 (D3), participants with high reductions in ΔPeak_D3 (hazard ratio (HR) 0.4, 95% confidence interval (CI) 0.17–0.93, p = 0.017) or ΔAUC_D3 (HR 0.51, 95% CI 0.25–1.04, p = 0.043) were associated with better PFS. On day 14, participants with high reductions in ΔPeak_D14 (HR 0.51, 95% CI 0.26–1.01, p = 0.032), ΔAUC_D14 (HR 0.54, 95% CI 0.33–0.9, p = 0.009), or ΔKtrans_D14 (HR 0.26, 95% CI 0.12–0.56, p < 0.001) had a higher PFS than those with lower reduction values. In addition, high reductions in ΔAUC_D14 (HR 0.53, 95% CI 0.32–0.9, p = 0.016) or ΔKtrans_D14 (HR 0.47, 95% CI 0.23–0.98, p = 0.038) were associated with a better OS. Among the clinical variables, ORR was associated with both PFS (p = 0.001) and OS (p = 0.005). DCR was associated with PFS (p = 0.002), but not OS (p = 0.089). Cox multivariable analysis revealed that ΔKtrans_D14 (p = 0.002) remained an independent predictor of PFS after controlling for ORR and DCR. An early reduction in tumor perfusion detected by DCE-MRI biomarkers, especially on day 14, may predict favorable survival outcomes in participants with HCC receiving 2nd-line targeted therapy after sorafenib failure.
Collapse
|
4
|
Coolens C, Gwilliam MN, Alcaide-Leon P, de Freitas Faria IM, Ynoe de Moraes F. Transformational Role of Medical Imaging in (Radiation) Oncology. Cancers (Basel) 2021; 13:cancers13112557. [PMID: 34070984 PMCID: PMC8197089 DOI: 10.3390/cancers13112557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Onboard, imaging techniques have brought about a huge transformation in the ability to deliver targeted radiation therapies. Each generation of these technologies enables us to better visualize where to deliver lethal doses of radiation and thus allows the shrinking of necessary geometric margins leading to reduced toxicities. Alongside improvements in treatment delivery, advances in medical imaging have also allowed us to better define the volumes we wish to target. The development of imaging techniques that can capture aspects of the tumor’s biology before, during and after therapy is transforming how treatment can be delivered. Technological changes have further made these biological imaging techniques available in real-time providing the opportunity to monitor a patient’s response to treatment closely and often before any volume changes are visible on conventional radiological images. Here we discuss the development of robust quantitative imaging biomarkers and how they can personalize therapy towards meaningful clinical endpoints. Abstract Onboard, real-time, imaging techniques, from the original megavoltage planar imaging devices, to the emerging combined MRI-Linear Accelerators, have brought a huge transformation in the ability to deliver targeted radiation therapies. Each generation of these technologies enables lethal doses of radiation to be delivered to target volumes with progressively more accuracy and thus allows shrinking of necessary geometric margins, leading to reduced toxicities. Alongside these improvements in treatment delivery, advances in medical imaging, e.g., PET, and MRI, have also allowed target volumes themselves to be better defined. The development of functional and molecular imaging is now driving a conceptually larger step transformation to both better understand the cancer target and disease to be treated, as well as how tumors respond to treatment. A biological description of the tumor microenvironment is now accepted as an essential component of how to personalize and adapt treatment. This applies not only to radiation oncology but extends widely in cancer management from surgical oncology planning and interventional radiology, to evaluation of targeted drug delivery efficacy in medical oncology/immunotherapy. Here, we will discuss the role and requirements of functional and metabolic imaging techniques in the context of brain tumors and metastases to reliably provide multi-parametric imaging biomarkers of the tumor microenvironment.
Collapse
Affiliation(s)
- Catherine Coolens
- Department of Medical Physics, Princess Margaret Cancer Centre & University Health Network, Toronto, ON M5G 1Z5, Canada;
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
- Department of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- TECHNA Institute, University Health Network, Toronto, ON M5G 1Z5, Canada
- Correspondence:
| | - Matt N. Gwilliam
- Department of Medical Physics, Princess Margaret Cancer Centre & University Health Network, Toronto, ON M5G 1Z5, Canada;
| | - Paula Alcaide-Leon
- Joint Department of Medical Imaging, University Health Network, Toronto, ON M5G 1Z5, Canada;
| | | | - Fabio Ynoe de Moraes
- Department of Oncology, Division of Radiation Oncology, Queen’s University, Kingston, ON K7L 5P9, Canada;
| |
Collapse
|
5
|
Zhao L, Zhao M, Liu J, Yang H, Zhou X, Wen C, Li G, Duan Y. Mean apparent diffusion coefficient in a single slice may predict tumor response to whole-brain radiation therapy in non-small-cell lung cancer patients with brain metastases. Eur Radiol 2021; 31:5565-5575. [PMID: 33452628 DOI: 10.1007/s00330-020-07584-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/09/2020] [Accepted: 12/01/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVES This study aimed to access the performance of apparent diffusion coefficient (ADC) as a predictor for treatment response to whole-brain radiotherapy (WBRT) in patients with brain metastases (BMs) from non-small-cell lung cancer (NSCLC). METHODS A retrospective analysis was conducted of 102 NSCLC patients with BMs who underwent WBRT between 2012 and 2016. Diffusion-weighted MRI were performed pre-WBRT and within 12 weeks after WBRT started. Mean single-plane ADC value of ROIs was evaluated by two radiologists blinded to results of each other. The treatment response rate, intracranial progression-free survival (PFS), and overall survival (OS) were analyzed based on the ADC value and ΔADC respectively. At last, we used COX and logistic regression to do the multivariate analysis. RESULTS There was good inter-observer agreement of mean ADC value pre-WBRT, post-WBRT, and ΔADC between the 2 radiologists (Pearson correlation 0.915 [pre-WBRT], 0.950 [post-WBRT], 0.937 [ΔADC], p < 0.001, for each one). High mean ADC value were related with better response rate (72.2% vs 37.5%, p = 0.001) and iPFS (7.6 vs 6.4 months, p = 0.031). High ΔADC were related with better response rate (73.6% vs 36.7%, p < 0.001). Multivariate analysis shows that histopathology, BMs number, high ADC value pre-WBRT, and high ΔADC post-WBRT were related to better treatment response of WBRT, and KPS, BMs number, and low ADC value pre-WBRT increased the risk of developing intracranial relapse. CONCLUSIONS The mean single-plane ADC value pre-WBRT and ΔADC post-WBRT were potential predictor for intracranial tumor response to WBRT in NSCLC patients with brain metastases. KEY POINTS • ADC value is a potential predictor of intracranial treatment response to WBRT in NSCLC patients with brain metastases. • Higher mean ADC value pre-WBRT and ΔADC post-WBRT of brain metastases were related to better intracranial tumor response. • Prediction of response before WBRT using ADC value can help oncologists to make better therapy plans and avoid missing opportunities for rescue therapy.
Collapse
Affiliation(s)
- Lihao Zhao
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, 325000, People's Republic of China
| | - Mengjing Zhao
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang Street, Wenzhou, 325000, People's Republic of China
| | - Jinjin Liu
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang Street, Wenzhou, 325000, People's Republic of China
| | - Han Yang
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, 325000, People's Republic of China
| | - Xiaojun Zhou
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang Street, Wenzhou, 325000, People's Republic of China
| | - Caiyun Wen
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang Street, Wenzhou, 325000, People's Republic of China
| | - Gang Li
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, 325000, People's Republic of China.
| | - Yuxia Duan
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang Street, Wenzhou, 325000, People's Republic of China.
| |
Collapse
|
6
|
Iorio E, Podo F, Leach MO, Koutcher J, Blankenberg FG, Norfray JF. A novel roadmap connecting the 1H-MRS total choline resonance to all hallmarks of cancer following targeted therapy. Eur Radiol Exp 2021; 5:5. [PMID: 33447887 PMCID: PMC7809082 DOI: 10.1186/s41747-020-00192-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/29/2020] [Indexed: 11/15/2022] Open
Abstract
This review describes a cellular adaptive stress signalling roadmap connecting the 1H magnetic resonance spectroscopy (MRS) total choline peak at 3.2 ppm (tCho) to cancer response after targeted therapy (TT). Recent research on cell signalling, tCho metabolism, and TT of cancer has been retrospectively re-examined. Signalling research describes how the unfolded protein response (UPR), a major stress signalling network, transduces, regulates, and rewires the total membrane turnover in different cancer hallmarks after a TT stress. In particular, the UPR signalling maintains or increases total membrane turnover in all pro-survival hallmarks, whilst dramatically decreases turnover during apoptosis, a pro-death hallmark. Recent research depicts the TT-induced stress as a crucial event responsible for interrupting UPR pro-survival pathways, leading to an UPR-mediated cell death. The 1H-MRS tCho resonance represents the total mobile precursors and products during the enzymatic modification of phosphatidylcholine membrane abundance. The tCho profile represents a biomarker that noninvasively monitors TT-induced enzymatic changes in total membrane turnover in a wide variety of existing and new anticancer treatments targeting specific layers of the UPR signalling network. Our overview strongly suggests further evaluating and validating the 1H-MRS tCho peak as a powerful noninvasive imaging biomarker of cancer response in TT clinical trials.
Collapse
Affiliation(s)
- Egidio Iorio
- High Resolution NMR Unit-Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Roma, Italy.
| | - Franca Podo
- High Resolution NMR Unit-Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Roma, Italy
| | - Martin O Leach
- MRI Unit, Royal Marsden Hospital, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Jason Koutcher
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Joseph F Norfray
- Emeritus, Chicago Northside MRI Center, 2818 N. Sheridan Rd, Chicago, IL, 60657, USA
| |
Collapse
|
7
|
Systemic treatment of breast cancer with leptomeningeal metastases using bevacizumab, etoposide and cisplatin (BEEP regimen) significantly improves overall survival. J Neurooncol 2020; 148:165-172. [PMID: 32346837 PMCID: PMC7280357 DOI: 10.1007/s11060-020-03510-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/18/2020] [Indexed: 12/29/2022]
Abstract
Introduction Metastatic breast cancer (MBC) with leptomeningeal metastases (LM) has dismal survival. We aim to determine if modern systemic therapy, especially the bevacizumab, cisplatin, and etoposide (BEEP) regimen, is beneficial to MBC LM patients. Methods We excerpted data from a prospectively collected cytopathology database for MBC patients who were diagnosed with LM by positive cerebrospinal fluid cytology. The primary outcome was OS from cytologically confirmed LM until death. Univariate and multivariate analyses were performed to elucidate prognostic factors. Results We identified 34 patients with cytologically confirmed LM. Treatments after LM diagnosis included: intrathecal methotrexate (82.4%), systemic chemotherapy (68%; BEEP n = 19, others n = 4), and whole brain radiotherapy (n = 5, 14.7%). Three of seven HER2-positive patients (43%) also received intrathecal trastuzumab. OS was improved in 2014–2016 compared with 2011–2013 (13.57 vs 3.20 months, p = 0.004), when 12/17 (71%) versus 7/17 (41%) patients received BEEP, respectively. In the multivariate model including all treatments, BEEP (HR 0.24, p = 0.003) and intrathecal trastuzumab (HR 0.22, p = 0.035), but not intrathecal methotrexate (HR 0.86, p = 0.78), remained significant prognostic factors. Conclusions MBC with LM is treatable—systemic BEEP are efficacious and may improve survival. Electronic supplementary material The online version of this article (10.1007/s11060-020-03510-y) contains supplementary material, which is available to authorized users.
Collapse
|
8
|
Liang X, Li H, Coussy F, Callens C, Lerebours F. An update on biomarkers of potential benefit with bevacizumab for breast cancer treatment: Do we make progress? Chin J Cancer Res 2019; 31:586-600. [PMID: 31564802 PMCID: PMC6736652 DOI: 10.21147/j.issn.1000-9604.2019.04.03] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
As the first monoclonal antibody against vascular endothelial growth factor (VEGF), bevacizumab (BEV) is a definitely controversial antiangiogenic therapy in breast cancer. The initial excitement over improvements in progression-free survival (PFS) with BEV was tempered by an absence of overall survival (OS) benefit and serious adverse effects. Missing targeted population urged us to identify the predictive biomarkers for BEV efficacy. In this review we focus on the research in breast cancer and provide recent investigations on clinical, radiological, molecular and gene profiling markers of BEV efficacy, including the new results from randomized phase III clinical trials evaluating the efficacy of BEV in combination with comprehensive biomarker analyses. Current evidences indicate some predictive values for genetic variants, molecular imaging, VEGF pathway factors or associated factors in peripheral blood and gene profiling. The current challenge is to validate those potential biomarkers and implement them into clinical practice.
Collapse
Affiliation(s)
- Xu Liang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China.,Pharmacogenomic Unit, Department of Genetics, Curie Institute, PSL Research University, Paris 75005, France
| | - Huiping Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Florence Coussy
- Department of Medical Oncology, Institut Curie, PSL Research University, Paris 75005, France
| | - Celine Callens
- Pharmacogenomic Unit, Department of Genetics, Curie Institute, PSL Research University, Paris 75005, France
| | - Florence Lerebours
- Department of Medical Oncology, Institut Curie, René Huguenin Hospital, Saint-Cloud 92210, France
| |
Collapse
|