1
|
Homolka P, Breyer L, Semturs F. 3D Printing Materials Mimicking Human Tissues after Uptake of Iodinated Contrast Agents for Anthropomorphic Radiology Phantoms. Biomimetics (Basel) 2024; 9:606. [PMID: 39451811 PMCID: PMC11504517 DOI: 10.3390/biomimetics9100606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
(1) Background: 3D printable materials with accurately defined iodine content enable the development and production of radiological phantoms that simulate human tissues, including lesions after contrast administration in medical imaging with X-rays. These phantoms provide accurate, stable and reproducible models with defined iodine concentrations, and 3D printing allows maximum flexibility and minimal development and production time, allowing the simulation of anatomically correct anthropomorphic replication of lesions and the production of calibration and QA standards in a typical medical research facility. (2) Methods: Standard printing resins were doped with an iodine contrast agent and printed using a consumer 3D printer, both (resins and printer) available from major online marketplaces, to produce printed specimens with iodine contents ranging from 0 to 3.0% by weight, equivalent to 0 to 3.85% elemental iodine per volume, covering the typical levels found in patients. The printed samples were scanned in a micro-CT scanner to measure the properties of the materials in the range of the iodine concentrations used. (3) Results: Both mass density and attenuation show a linear dependence on iodine concentration (R2 = 1.00), allowing highly accurate, stable, and predictable results. (4) Conclusions: Standard 3D printing resins can be doped with liquids, avoiding the problem of sedimentation, resulting in perfectly homogeneous prints with accurate dopant content. Iodine contrast agents are perfectly suited to dope resins with appropriate iodine concentrations to radiologically mimic tissues after iodine uptake. In combination with computer-aided design, this can be used to produce printed objects with precisely defined iodine concentrations in the range of up to a few percent of elemental iodine, with high precision and anthropomorphic shapes. Applications include radiographic phantoms for detectability studies and calibration standards in projective X-ray imaging modalities, such as contrast-enhanced dual energy mammography (abbreviated CEDEM, CEDM, TICEM, or CESM depending on the equipment manufacturer), and 3-dimensional modalities like CT, including spectral and dual energy CT (DECT), and breast tomosynthesis.
Collapse
Affiliation(s)
- Peter Homolka
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Lara Breyer
- Department of Biomedical Imaging and Image-Guided Therapy, Medical Imaging Cluster (MIC), Medical University of Vienna, 1090 Vienna, Austria
| | - Friedrich Semturs
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
2
|
Bach M, Aberle C, Depeursinge A, Jimenez-Del-Toro O, Schaer R, Flouris K, Konukoglu E, Müller H, Stieltjes B, Obmann MM. 3D-printed iodine-ink CT phantom for radiomics feature extraction - advantages and challenges. Med Phys 2023; 50:5682-5697. [PMID: 36945890 DOI: 10.1002/mp.16373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/07/2023] [Accepted: 02/20/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND To test and validate novel CT techniques, such as texture analysis in radiomics, repeat measurements are required. Current anthropomorphic phantoms lack fine texture and true anatomic representation. 3D-printing of iodinated ink on paper is a promising phantom manufacturing technique. Previously acquired or artificially created CT data can be used to generate realistic phantoms. PURPOSE To present the design process of an anthropomorphic 3D-printed iodine ink phantom, highlighting the different advantages and pitfalls in its use. To analyze the phantom's X-ray attenuation properties, and the influences of the printing process on the imaging characteristics, by comparing it to the original input dataset. METHODS Two patient CT scans and artificially generated test patterns were combined in a single dataset for phantom printing and cropped to a size of 26 × 19 × 30 cm3 . This DICOM dataset was printed on paper using iodinated ink. The phantom was CT-scanned and compared to the original image dataset used for printing the phantom. The water-equivalent diameter of the phantom was compared to that of a patient cohort (N = 104). Iodine concentrations in the phantom were measured using dual-energy CT. 86 radiomics features were extracted from 10 repeat phantom scans and the input dataset. Features were compared using a histogram analysis and a PCA individually and overall, respectively. The frequency content was compared using the normalized spectrum modulus. RESULTS Low density structures are depicted incorrectly, while soft tissue structures show excellent visual accordance with the input dataset. Maximum deviations of around 30 HU between the original dataset and phantom HU values were observed. The phantom has X-ray attenuation properties comparable to a lightweight adult patient (∼54 kg, BMI 19 kg/m2 ). Iodine concentrations in the phantom varied between 0 and 50 mg/ml. PCA of radiomics features shows different tissue types separate in similar areas of PCA representation in the phantom scans as in the input dataset. Individual feature analysis revealed systematic shift of first order radiomics features compared to the original dataset, while some higher order radiomics features did not. The normalized frequency modulus |f(ω)| of the phantom data agrees well with the original data. However, all frequencies systematically occur more frequently in the phantom compared to the maximum of the spectrum modulus than in the original data set, especially for mid-frequencies (e.g., for ω = 0.3942 mm-1 , |f(ω)|original = 0.09 * |fmax |original and |f(ω)|phantom = 0.12 * |fmax |phantom ). CONCLUSIONS 3D-iodine-ink-printing technology can be used to print anthropomorphic phantoms with a water-equivalent diameter of a lightweight adult patient. Challenges include small residual air enclosures and the fidelity of HU values. For soft tissue, there is a good agreement between the HU values of the phantom and input data set. Radiomics texture features of the phantom scans are similar to the input data set, but systematic shifts of radiomics features in first order features, due to differences in HU values, need to be considered. The paper substrate influences the spatial frequency distribution of the phantom scans. This phantom type is of very limited use for dual-energy CT analyses.
Collapse
Affiliation(s)
- Michael Bach
- Clinic of Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Christoph Aberle
- Clinic of Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Adrien Depeursinge
- University of Applied Sciences Western Switzerland (HES-SO) Valais, Sierre, Switzerland
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Lausanne, Switzerland
| | | | - Roger Schaer
- University of Applied Sciences Western Switzerland (HES-SO) Valais, Sierre, Switzerland
| | | | | | - Henning Müller
- University of Applied Sciences Western Switzerland (HES-SO) Valais, Sierre, Switzerland
- Faculty of Medicine, University of Geneva (UNIGE), Geneva, Switzerland
| | - Bram Stieltjes
- Clinic of Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Markus M Obmann
- Clinic of Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
3
|
Tsai CY, Tsai SCS, Shen GQ, Guo GLR, Tsui ZLG, Hsieh MY, Yuan C, Lin FCF. Simulation education utilizing phantom and angle reference guide in pulmonary nodule CT localization. Heliyon 2023; 9:e18329. [PMID: 37539172 PMCID: PMC10395521 DOI: 10.1016/j.heliyon.2023.e18329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
Objective The incidence of sub-centimeter pulmonary nodules has been increasing along with the use of low-dose computed tomography (LDCT) as a screening tool for early lung cancer detection. In our institution, pulmonary nodule computed tomography-guided localization (PNCL) is performed preoperatively with the laser angle guided assembly (LAGA), an angle reference device. This study aims to investigate the efficacy of postgraduate education in a phantom simulation of PNCL, with or without LAGA. Setting design This prospective study was conducted in an academic hospital in Taiwan. Seven thoracic surgery residents and three experienced senior physicians were recruited to perform PNCL using a phantom simulation, with or without LAGA, for five nodules each and complete a questionnaire. Performance data were collected. χ2 tests, Mann-Whitney U test, univariate and multivariate linear regression were used for statistical analyses. Results The confidence level increased from median 7[range 1, 9] to 8, range [6,9] (p = 0.001) before and after the simulation education course. The scores of enhanced PNCL ability and course satisfaction were as high as 8 [5,9], and 9 [7,9]. LAGA enabled broader puncture angles (with 27.5° [0°,80°]; without 14° [0°, 80°], p = 0.003), a lower puncture frequency (with 1 [1,4]; without 2 [1,5], p < 0.001), and a smaller angle deviation (with 3°[ 0°,8°]; without 5°[ 0°,19°], p = 0.002). Pleural depth in millimeters was associated with increased puncture frequency (0.019[0,010,0.028]) and procedure time (0.071'[ 0.018,0.123']. The PNCL-experienced physicians performed the procedure in less time (-2.854'[-4.646',1.061']. The traverse direction toward the mediastinum diminished the frequency (toward 1[ 1,3]; away 1 [1,5], p = 0.003) and time (toward 7.5'[2',18]'; away 9'[ 3',31'], p = 0.027). The learning curve did not improve procedure performance after ten PNCL simulation rounds. Conclusions The phantom PNCL simulation education course increased the confidence level, enhanced residents' skill acquisition, and promoted learning satisfaction. The angle reference device helped improve the outcomes of the puncture frequency and reduced angle deviation.
Collapse
Affiliation(s)
- Chiao-Yun Tsai
- Department of Thoracic Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Stella Chin-Shaw Tsai
- Superintendents' Office, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
- Department of Postbaccalaureate Medicine, School of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Guang-Qian Shen
- Department of Mechanical and Computer-Aided Engineering, Feng Chia University, Taichung, Taiwan
| | - Guan-Liang Robert Guo
- Department of Mechanical and Computer-Aided Engineering, Feng Chia University, Taichung, Taiwan
| | - Zhe-Luen Gerald Tsui
- Department of Mechanical and Computer-Aided Engineering, Feng Chia University, Taichung, Taiwan
| | - Ming-Yu Hsieh
- Department of Pediatric Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Cadmus Yuan
- Department of Mechanical and Computer-Aided Engineering, Feng Chia University, Taichung, Taiwan
| | - Frank Cheau-Feng Lin
- Department of Thoracic Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
4
|
Zhao Z, Ma Y, Mushtaq A, Radhakrishnan V, Hu Y, Ren H, Song W, Tse ZTH. Engineering functional and anthropomorphic models for surgical training in interventional radiology: A state-of-the-art review. Proc Inst Mech Eng H 2023; 237:3-17. [PMID: 36377860 PMCID: PMC9841824 DOI: 10.1177/09544119221135086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Training medical students in surgical procedures and evaluating their performance are both necessary steps to ensure the safety and efficacy of surgeries. Traditionally, trainees practiced on live patients, cadavers or animals under the supervision of skilled physicians, but realistic anatomical phantom models have provided a low-cost alternative because of the advance of material technology that mimics multi-layer tissue structures. This setup provides safer and more efficient training. Many research prototypes of phantom models allow rapid in-house prototyping for specific geometries and tissue properties. The gel-based method and 3D printing-based method are two major methods for developing phantom prototypes. This study excluded virtual reality based technologies and focused on physical phantoms, total 189 works published between 2015 and 2020 on anatomical phantom prototypes made for interventional radiology were reviewed in terms of their functions and applications. The phantom prototypes were first categorized based on fabrication methods and then subcategorized based on the organ or body part they simulated; the paper is organized accordingly. Engineering specifications and applications were analyzed and summarized for each study. Finally, current challenges in the development of phantom models and directions for future work were discussed.
Collapse
Affiliation(s)
- Zhuo Zhao
- School of Electrical and Computer Engineering, University of Georgia, Athens, GA, USA
| | - Yangmyung Ma
- Hull York Medical School, University of York, Heslington, York, UK
| | - Adeel Mushtaq
- Hull York Medical School, University of York, Heslington, York, UK
| | - Vignesh Radhakrishnan
- School of Engineering and Materials Science, Queen Mary University of London, London
| | - Yihua Hu
- School of Engineering and Materials Science, Queen Mary University of London, London
| | - Hongliang Ren
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong, China,Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Wenzhan Song
- Department of Computer Science, University of Georgia, Athens, GA, USA
| | - Zion Tsz Ho Tse
- School of Engineering and Materials Science, Queen Mary University of London, London,Zion Tsz Ho Tse, School of Engineering and Materials Science, Queen Mary University of London, Room 229 Mile End Road, London E1 4NS, United Kingdom.
| |
Collapse
|
5
|
Okkalidis N. 3D printing methods for radiological anthropomorphic phantoms. Phys Med Biol 2022; 67. [PMID: 35830787 DOI: 10.1088/1361-6560/ac80e7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/13/2022] [Indexed: 01/06/2023]
Abstract
Three dimensional (3D) printing technology has been widely evaluated for the fabrication of various anthropomorphic phantoms during the last couple of decades. The demand for such high quality phantoms is constantly rising and gaining an ever-increasing interest. Although, in a short time 3D printing technology provided phantoms with more realistic features when compared to the previous conventional methods, there are still several aspects to be explored. One of these aspects is the further development of the current 3D printing methods and software devoted to radiological applications. The current 3D printing software and methods usually employ 3D models, while the direct association of medical images with the 3D printing process is needed in order to provide results of higher accuracy and closer to the actual tissues' texture. Another aspect of high importance is the development of suitable printing materials. Ideally, those materials should be able to emulate the entire range of soft and bone tissues, while still matching the human's anatomy. Five types of 3D printing methods have been mainly investigated so far: (a) solidification of photo-curing materials; (b) deposition of melted plastic materials; (c) printing paper-based phantoms with radiopaque ink; (d) melting or binding plastic powder; and (e) bio-printing. From the first and second category, polymer jetting technology and fused filament fabrication (FFF), also known as fused deposition modelling (FDM), are the most promising technologies for the fulfilment of the requirements of realistic and radiologically equivalent anthropomorphic phantoms. Another interesting approach is the fabrication of radiopaque paper-based phantoms using inkjet printers. Although, this may provide phantoms of high accuracy, the utilized materials during the fabrication process are restricted to inks doped with various contrast materials. A similar condition applies to the polymer jetting technology, which despite being quite fast and very accurate, the utilized materials are restricted to those capable of polymerization. The situation is better for FFF/FDM 3D printers, since various compositions of plastic filaments with external substances can be produced conveniently. Although, the speed and accuracy of this 3D printing method are lower compared to the others, the relatively low-cost, constantly improving resolution, sufficient printing volume and plethora of materials are quite promising for the creation of human size heterogeneous phantoms and their adaptation to the treatment procedures of patients in the current health systems.
Collapse
Affiliation(s)
- Nikiforos Okkalidis
- Research Institute, Medical University of Varna, Bulgaria.,Morphé, Praxitelous 1, Thessaloniki, Greece
| |
Collapse
|
6
|
Bauer DF, Rosenkranz J, Golla AK, Tönnes C, Hermann I, Russ T, Kabelitz G, Rothfuss AJ, Schad LR, Stallkamp JL, Zöllner FG. Development of an abdominal phantom for the validation of an oligometastatic disease diagnosis workflow. Med Phys 2022; 49:4445-4454. [PMID: 35510908 DOI: 10.1002/mp.15701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/01/2021] [Accepted: 04/14/2022] [Indexed: 11/11/2022] Open
Abstract
PURPOSE The liver is a common site for metastatic disease, which is a challenging and life-threatening condition with a grim prognosis and outcome. We propose a standardized workflow for the diagnosis of oligometastatic disease (OMD), as a gold standard workflow has not been established yet. The envisioned workflow comprises the acquisition of a multimodal image dataset, novel image processing techniques, and cone beam computed tomography (CBCT)-guided biopsy for subsequent molecular subtyping. By combining morphological, molecular, and functional information about the tumor, a patient-specific treatment planning is possible. We designed and manufactured an abdominal liver phantom that we used to demonstrate multimodal image acquisition, image processing, and biopsy of the OMD diagnosis workflow. METHODS The anthropomorphic abdominal phantom contains a rib cage, a portal vein, lungs, a liver with six lesions, and a hepatic vessel tree. This phantom incorporates three different lesion types with varying visibility under computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography CT (PET-CT), which reflects clinical reality. The phantom is puncturable and the size of the corpus and the organs is comparable to those of a real human abdomen. By using several modern additive manufacturing techniques, the manufacturing process is reproducible and allows to incorporate patient-specific anatomies. As a first step of the OMD diagnosis workflow, a pre-interventional CT, MRI, and PET-CT dataset of the phantom was acquired. The image information was fused using image registration and organ information was extracted via image segmentation. A CBCT-guided needle puncture experiment was performed, where all six liver lesions were punctured with coaxial biopsy needles. RESULTS Qualitative observation of the image data and quantitative evaluation using contrast-to-noise ratio (CNR) confirms that one lesion type is visible only in MRI and not CT. The other two lesion types are visible in CT and MRI. The CBCT-guided needle placement was performed for all six lesions, including those visible only in MRI and not CBCT. This was possible by successfully merging multimodal pre-interventional image data. Lungs, bones, and liver vessels serve as realistic inhibitions during needle path planning. CONCLUSIONS We have developed a reusable abdominal phantom that has been used to validate a standardized OMD diagnosis workflow. Utilizing the phantom, we have been able to show that a multimodal imaging pipeline is advantageous for a comprehensive detection of liver lesions. In a CBCT-guided needle placement experiment we have punctured lesions that are invisible in CBCT using registered pre-interventional MRI scans for needle path planning. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dominik F Bauer
- Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Julian Rosenkranz
- Fraunhofer Institute for Manufacturing Engineering and Automation, Department of Clinical Health Technologies, Mannheim, Germany
| | - Alena-Kathrin Golla
- Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christian Tönnes
- Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ingo Hermann
- Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tom Russ
- Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gordian Kabelitz
- Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Lothar R Schad
- Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jan L Stallkamp
- Automation in Medicine and Biotechnology, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frank G Zöllner
- Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
7
|
Bouattour Y, Sautou V, Hmede R, El Ouadhi Y, Gouot D, Chennell P, Lapusta Y, Chapelle F, Lemaire JJ. A Minireview on Brain Models Simulating Geometrical, Physical, and Biochemical Properties of the Human Brain. Front Bioeng Biotechnol 2022; 10:818201. [PMID: 35419353 PMCID: PMC8996142 DOI: 10.3389/fbioe.2022.818201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
There is a growing body of evidences that brain surrogates will be of great interest for researchers and physicians in the medical field. They are currently mainly used for education and training purposes or to verify the appropriate functionality of medical devices. Depending on the purpose, a variety of materials have been used with specific and accurate mechanical and biophysical properties, More recently they have been used to assess the biocompatibility of implantable devices, but they are still not validated to study the migration of leaching components from devices. This minireview shows the large diversity of approaches and uses of brain phantoms, which converge punctually. All these phantoms are complementary to numeric models, which benefit, reciprocally, of their respective advances. It also suggests avenues of research for the analysis of leaching components from implantable devices.
Collapse
Affiliation(s)
- Yassine Bouattour
- Université Clermont Auvergne, CHU Clermont Ferrand, Clermont Auvergne INP, CNRS, ICCF, F-63000, Clermont-Ferrand, France
- *Correspondence: Yassine Bouattour, ; Jean-Jacques Lemaire,
| | - Valérie Sautou
- Université Clermont Auvergne, CHU Clermont Ferrand, Clermont Auvergne INP, CNRS, ICCF, F-63000, Clermont-Ferrand, France
| | - Rodayna Hmede
- Universite Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Youssef El Ouadhi
- Universite Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000, Clermont-Ferrand, France
- Service de Neurochirurgie, CHU Clermont Ferrand, F-63000, Clermont-Ferrand, France
| | - Dimitri Gouot
- Universite Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Philip Chennell
- Université Clermont Auvergne, CHU Clermont Ferrand, Clermont Auvergne INP, CNRS, ICCF, F-63000, Clermont-Ferrand, France
| | - Yuri Lapusta
- Universite Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Frédéric Chapelle
- Universite Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Jean-Jacques Lemaire
- Universite Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000, Clermont-Ferrand, France
- Service de Neurochirurgie, CHU Clermont Ferrand, F-63000, Clermont-Ferrand, France
- *Correspondence: Yassine Bouattour, ; Jean-Jacques Lemaire,
| |
Collapse
|
8
|
Assessing radiomics feature stability with simulated CT acquisitions. Sci Rep 2022; 12:4732. [PMID: 35304508 PMCID: PMC8933485 DOI: 10.1038/s41598-022-08301-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/03/2022] [Indexed: 11/29/2022] Open
Abstract
Medical imaging quantitative features had once disputable usefulness in clinical studies. Nowadays, advancements in analysis techniques, for instance through machine learning, have enabled quantitative features to be progressively useful in diagnosis and research. Tissue characterisation is improved via the “radiomics” features, whose extraction can be automated. Despite the advances, stability of quantitative features remains an important open problem. As features can be highly sensitive to variations of acquisition details, it is not trivial to quantify stability and efficiently select stable features. In this work, we develop and validate a Computed Tomography (CT) simulator environment based on the publicly available ASTRA toolbox (www.astra-toolbox.com). We show that the variability, stability and discriminative power of the radiomics features extracted from the virtual phantom images generated by the simulator are similar to those observed in a tandem phantom study. Additionally, we show that the variability is matched between a multi-center phantom study and simulated results. Consequently, we demonstrate that the simulator can be utilised to assess radiomics features’ stability and discriminative power.
Collapse
|
9
|
Rynio P, Wojtuń M, Wójcik Ł, Kawa M, Falkowski A, Gutowski P, Kazimierczak A. The accuracy and reliability of 3D printed aortic templates: a comprehensive three-dimensional analysis. Quant Imaging Med Surg 2022; 12:1385-1396. [PMID: 35111632 DOI: 10.21037/qims-21-529] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 10/13/2021] [Indexed: 12/21/2022]
Abstract
Background Advances in 3D printing technology allow us to continually find new medical applications. One of them is 3D printing of aortic templates to guide vascular surgeons or interventional radiologists to create fenestrations in the stent-graft surface for the implantation procedure called fenestrated endovascular aortic aneurysm repair. It is believed that the use of 3D printing significantly improves the quality of modified fenestrated stent-grafts. However, the accuracy and reliability of personalized 3D printed models of aortic templates are not well established. Methods Thirteen 3D printed templates of the visceral aorta and sixteen of the aortic arch and their corresponding computer tomography of angiography images were included in this accuracy study. The 3D models were scanned in the same conditions on computed tomography (CT) and evaluated by three physicians experienced in vascular CT assessment. Model and patient CT measurements were performed at key landmarks to maintain quality for stent-graft modification, including side branches and aortic diameters. CT-scanned aortic templates were segmented, aligned with sourced patient data, and evaluated for the Hausdorff matrix. Next, Bland-Altman plots determined the degree of agreement. Results The Intraclass Correlation Coefficients values were more than 0.9 for all measurements of aortic diameters and aortic branches diameter in all landmark locations. Therefore, the reliability of the aortic templates was considered excellent. The Bland-Altman plots analysis indicated measurement biases of 0.05 to 0.47 for aortic arch templates and 0.06 to 0.38 for reno-visceral aortic templates. The arithmetic mean of Hausdorff's mean distances of the aortic arch templates was 0.47 mm (SD =0.06) and ranged from 0.34 to 0.58. The mean metrics for abdominal models was 0.24 mm (SD =0.03) and ranged from 0.21 to 0.31. Conclusions The printed models of 3D aortic templates are accurate and reliable, thus can be widely used in endovascular surgery and interventional radiology departments as aortic templates to guide the physician-modified fenestrated stent-graft fabrication.
Collapse
Affiliation(s)
- Pawel Rynio
- Department of Vascular Surgery, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Maciej Wojtuń
- Department of Radiology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Łukasz Wójcik
- Department of Radiology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Miłosz Kawa
- Department of Radiology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Aleksander Falkowski
- Department of Radiology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Piotr Gutowski
- Department of Vascular Surgery, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Arkadiusz Kazimierczak
- Department of Vascular Surgery, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
10
|
Kaufmann R, Zech CJ, Takes M, Brantner P, Thieringer F, Deutschmann M, Hergan K, Scharinger B, Hecht S, Rezar R, Wernly B, Meissnitzer M. Vascular 3D Printing with a Novel Biological Tissue Mimicking Resin for Patient-Specific Procedure Simulations in Interventional Radiology: a Feasibility Study. J Digit Imaging 2022; 35:9-20. [PMID: 34997376 PMCID: PMC8854516 DOI: 10.1007/s10278-021-00553-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 10/31/2021] [Accepted: 11/22/2021] [Indexed: 12/24/2022] Open
Abstract
Three-dimensional (3D) printing of vascular structures is of special interest for procedure simulations in Interventional Radiology, but remains due to the complexity of the vascular system and the lack of biological tissue mimicking 3D printing materials a technical challenge. In this study, the technical feasibility, accuracy, and usability of a recently introduced silicone-like resin were evaluated for endovascular procedure simulations and technically compared to a commonly used standard clear resin. Fifty-four vascular models based on twenty-seven consecutive embolization cases were fabricated from preinterventional CT scans and each model was checked for printing success and accuracy by CT-scanning and digital comparison to its original CT data. Median deltas (Δ) of luminal diameters were 0.35 mm for clear and 0.32 mm for flexible resin (216 measurements in total) with no significant differences (p > 0.05). Printing success was 85.2% for standard clear and 81.5% for the novel flexible resin. In conclusion, vascular 3D printing with silicone-like flexible resin was technically feasible and highly accurate. This is the first and largest consecutive case series of 3D-printed embolizations with a novel biological tissue mimicking material and is a promising next step in patient-specific procedure simulations in Interventional Radiology.
Collapse
Affiliation(s)
- R. Kaufmann
- Department of Radiology, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
- Clinic of Radiology & Nuclear Medicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - C. J. Zech
- Clinic of Radiology & Nuclear Medicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - M. Takes
- Clinic of Radiology & Nuclear Medicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - P. Brantner
- Clinic of Radiology & Nuclear Medicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - F. Thieringer
- Clinic for Oral and Maxillofacial Surgery, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - M. Deutschmann
- Department of Radiology, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - K. Hergan
- Department of Radiology, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - B. Scharinger
- Department of Radiology, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - S. Hecht
- Department of Radiology, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - R. Rezar
- Clinic of Internal Medicine II, Department of Cardiology and Internal Intensive Care Medicine, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - B. Wernly
- Clinic of Internal Medicine II, Department of Cardiology and Internal Intensive Care Medicine, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - M. Meissnitzer
- Department of Radiology, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
11
|
Braun VPB, Nunninger M, Hamm B, Scheel M, Jahnke P. Training of CT-guided Periradicular Therapy in a Realistic Simulation Environment - Evaluation and Recommendations for a Training Curriculum. Acad Radiol 2021; 28:1296-1303. [PMID: 32807605 DOI: 10.1016/j.acra.2020.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/07/2020] [Accepted: 07/17/2020] [Indexed: 11/28/2022]
Abstract
RATIONALE AND OBJECTIVES To evaluate the training of computed tomography (CT)-guided periradicular therapy in a realistic simulation environment and to derive recommendations for a training curriculum. MATERIALS AND METHODS A novel simulation environment including the use of a 3D printed, patient-mimicking phantom was used to train medical students to perform CT-guided periradicular therapy of the lumbar spine. Seventeen participants underwent three training sessions (day 0, day 7, and after day 28) with six procedures per session. Procedure duration and the number of fluoroscopy image acquisitions were recorded. Participants' performance was assessed by an independent investigator using a six-point checklist scale (0 = lowest, 6 = highest). In addition, participants self-evaluated their skills and the simulation training in questionnaires. RESULTS Procedure durations and image acquisitions decreased after one training session (p < 0.001) without further improvement thereafter (p > 0.6). They also decreased within training sessions and were lowest after five procedures in all sessions. Performance scores improved after the first session to nearly perfect scores in the second session (mean 5.7; 95%CI: 5.5-6.0; p < 0.001) and decreased again in the third session (mean 4.9; 95%CI: 4.6-5.3; p = 0.008). Participants were satisfied with their training progress and felt adequately prepared to perform CT-guided periradicular therapies on patients after the training. CONCLUSION Simulation-based training of CT-guided periradicular therapy in a realistic environment is effective and should ideally be performed with one training session consisting of five procedures shortly before treating the first patient.
Collapse
Affiliation(s)
- Victor Paul Bela Braun
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany
| | - Maximilian Nunninger
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany
| | - Bernd Hamm
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany
| | - Michael Scheel
- Department of Neuroradiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Paul Jahnke
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany.
| |
Collapse
|
12
|
Cruz-Bastida JP, Marshall EL, Reiser N, George J, Pearson EA, Feinstein KA, Al-Hallaq HA, Burton CS, Beaulieu D, MacDougall RD, Reiser I. Development of a neonate X-ray phantom for 2D imaging applications using single-tone inkjet printing. Med Phys 2021; 48:4944-4954. [PMID: 34255871 DOI: 10.1002/mp.15086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 04/16/2021] [Accepted: 06/17/2021] [Indexed: 11/11/2022] Open
Abstract
PURPOSE Inkjet printers can be used to fabricate anthropomorphic phantoms by the use of iodine-doped ink. However, challenges persist in implementing this technique. The calibration from grayscale to ink density is complex and time-consuming. The purpose of this work is to develop a printing methodology that requires a simpler calibration and is less dependent on printer characteristics to produce the desired range of x-ray attenuation values. METHODS Conventional grayscale printing was substituted by single-tone printing; that is, the superposition of pure black layers of iodinated ink. Printing was performed with a consumer-grade inkjet printer using ink made of potassium-iodide (KI) dissolved in water at 1 g/ml. A calibration for the attenuation of ink was measured using a commercial x-ray system at 70 kVp. A neonate radiograph obtained at 70 kVp served as an anatomical model. The attenuation map of the neonate radiograph was processed into a series of single-tone images. Single-tone images were printed, stacked, and imaged at 70 kVp. The phantom was evaluated by comparing attenuation values between the printed phantom and the original radiograph; attenuation maps were compared using the structural similarity index measure (SSIM), while attenuation histograms were compared using the Kullback-Leibler (KL) divergence. A region of interest (ROI)-based analysis was also performed, where the attenuation distribution within given ROIs was compared between phantom and patient. The phantom sharpness was evaluated in terms of modulation transfer function (MTF) estimates and signal spread profiles of high spatial resolution features in the image. RESULTS The printed phantom required 36 pages. The printing queue was automated and it took about 2 h to print the phantom. The radiograph of the printed phantom demonstrated a close resemblance to the original neonate radiograph. The SSIM of the phantom with respect to that of the patient was 0.53. Both patient and phantom attenuation histograms followed similar distributions, and the KL divergence between such histograms was 0.20. The ROI-based analysis showed that the largest deviations from patient attenuation values were observed at the higher and lower ends of the attenuation range. The limiting resolution of the proposed methodology was about 1 mm. CONCLUSION A methodology to generate a neonate phantom for 2D imaging applications, using single-tone printing, was developed. This method only requires a single-value calibration and required less than 2 h to print a complete phantom.
Collapse
Affiliation(s)
| | - Emily L Marshall
- Department of Radiology, University of Chicago, Chicago, IL, 60637, USA
| | - Nikolaj Reiser
- Department of Radiology, University of Chicago, Chicago, IL, 60637, USA
| | - Jonathan George
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, 60637, USA
| | - Erik A Pearson
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, 60637, USA
| | - Kate A Feinstein
- Department of Radiology, University of Chicago, Chicago, IL, 60637, USA
| | - Hania A Al-Hallaq
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, 60637, USA
| | - Christiane S Burton
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Danielle Beaulieu
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Robert D MacDougall
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ingrid Reiser
- Department of Radiology, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
13
|
Haleem A, Javaid M, Suman R, Singh RP. 3D Printing Applications for Radiology: An Overview. Indian J Radiol Imaging 2021; 31:10-17. [PMID: 34316106 PMCID: PMC8299499 DOI: 10.1055/s-0041-1729129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Three-dimensional (3D) printing technologies are part of additive manufacturing processes and are used to manufacture a 3D physical model from a digital computer-aided design model as per the required shape and size. These technologies are now used for advanced radiology applications by providing all information through 3D physical model. It provides innovation in radiology for clinical applications, treatment planning, procedural simulation, medical and patient education. Radiological advancements have been made in diagnosis and communication through medical digital imaging techniques like computed tomography, magnetic resonance imaging. These images are converted into Digital Imaging and Communications in Medicine in Standard Triangulate Language file format, easily printable in 3D printing technologies. This 3D model provides in-depth information about pathologic and anatomic states. It is useful to create new opportunities related to patient care. This article discusses the potential of 3D printing technology in radiology. The steps involved in 3D printing for radiology are discussed diagrammatically, and finally identified 12 significant applications of 3D printing technology for radiology with a brief description. A radiologist can incorporate this technology to fulfil different challenges such as training, planning, guidelines, and better communications.
Collapse
Affiliation(s)
- Abid Haleem
- Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi, India
| | - Mohd Javaid
- Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi, India
| | - Rajiv Suman
- Department of Industrial and Production Engineering, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Ravi Pratap Singh
- Department of Industrial and Production Engineering, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab, India
| |
Collapse
|
14
|
Anwari V, Lai A, Ursani A, Rego K, Karasfi B, Sajja S, Paul N. 3D printed CT-based abdominal structure mannequin for enabling research. 3D Print Med 2020; 6:3. [PMID: 32026130 PMCID: PMC7003364 DOI: 10.1186/s41205-020-0056-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/23/2020] [Indexed: 12/29/2022] Open
Abstract
An anthropomorphic phantom is a radiologically accurate, tissue realistic model of the human body that can be used for research into innovative imaging and interventional techniques, education simulation and calibration of medical imaging equipment. Currently available CT phantoms are appropriate tools for calibration of medical imaging equipment but have major disadvantages for research and educational simulation. They are expensive, lacking the realistic appearance and characteristics of anatomical organs when visualized during X-ray based image scanning. In addition, CT phantoms are not modular hence users are not able to remove specific organs from inside the phantom for research or training purposes. 3D printing technology has evolved and can be used to print anatomically accurate abdominal organs for a modular anthropomorphic mannequin to address limitations of existing phantoms. In this study, CT images from a clinical patient were used to 3D print the following organ shells: liver, kidneys, spleen, and large and small intestines. In addition, fatty tissue was made using modelling beeswax and musculature was modeled using liquid urethane rubber to match the radiological density of real tissue in CT Hounsfield Units at 120kVp. Similarly, all 3D printed organ shells were filled with an agar-based solution to mimic the radiological density of real tissue in CT Hounsfield Units at 120kVp. The mannequin has scope for applications in various aspects of medical imaging and education, allowing us to address key areas of clinical importance without the need for scanning patients.
Collapse
Affiliation(s)
- Vahid Anwari
- Joint Department of Medical Imaging, University Health Network, Toronto, Ontario Canada
- University of Toronto, Toronto, Ontario Canada
| | - Ashley Lai
- Joint Department of Medical Imaging, University Health Network, Toronto, Ontario Canada
| | - Ali Ursani
- Joint Department of Medical Imaging, University Health Network, Toronto, Ontario Canada
| | | | - Behruz Karasfi
- Joint Department of Medical Imaging, University Health Network, Toronto, Ontario Canada
| | - Shailaja Sajja
- Quantitative Imaging for Personalized Cancer Medicine (QIPCM) Advanced Imaging Core Lab, Techna Institute, University Health Network, Toronto, Ontario Canada
| | - Narinder Paul
- Joint Department of Medical Imaging, University Health Network, Toronto, Ontario Canada
- Western University, London, Ontario Canada
- Department of Medical Imaging, London Health Sciences Centre, London, Ontario Canada
| |
Collapse
|
15
|
Shibata E, Takao H, Amemiya S, Ohtomo K, Abe O. Embolization of visceral arterial aneurysms: Simulation with 3D-printed models. Vascular 2020; 28:259-266. [PMID: 31955665 PMCID: PMC7294531 DOI: 10.1177/1708538119900834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Objectives The present technical article aimed to describe the efficacy of three-dimensional (3D)-printed hollow vascular models as a tool in the preoperative simulation of endovascular embolization of visceral artery aneurysms. Methods From November 2015 to November 2016, four consecutive endovascular treatments of true visceral artery aneurysms were preoperatively simulated with 3D-printed hollow models. The mean age of the patients (one male and three females) was 54 (range: 40–71) years. Three patients presented with splenic artery aneurysm and one with anterior pancreaticoduodenal artery aneurysm. The average diameter of the aneurysms was 16.5 (range: 10–25) mm. The 3D-printed hollow models of the visceral artery aneurysms and involved arteries were created using computed tomography angiography data of the patients. After establishing treatment plans by simulations with the 3D-printed models, all patients received endovascular treatment. Results All four hollow aneurysm models were successfully fabricated and used in the preoperative simulation of endovascular treatment. In the preoperative simulations with 3D-printed hollow models, splenic aneurysms were embolized with coils and/or n-butyl-2-cyanoacrylate to establish the actual treatment plans, and a small arterial branch originating from an anterior pancreaticoduodenal artery aneurysm was selected to obtain feedback regarding the behavior of catheters and guidewires. After establishing treatment plans by simulations, the visceral artery aneurysms of all patients were successfully embolized without major complications and recanalization. Conclusions Simulation with 3D-printed hollow models can help establish an optimal treatment plan and may improve the safety and efficacy of endovascular treatment for visceral artery aneurysms.
Collapse
Affiliation(s)
- Eisuke Shibata
- Department of Radiology, The University of Tokyo, Graduate School of Medicine, Tokyo, Japan
| | - Hidemasa Takao
- Department of Radiology, The University of Tokyo, Graduate School of Medicine, Tokyo, Japan
| | - Shiori Amemiya
- Department of Radiology, The University of Tokyo, Graduate School of Medicine, Tokyo, Japan
| | - Kuni Ohtomo
- Department of Radiology, The University of Tokyo, Graduate School of Medicine, Tokyo, Japan.,International University of Health and Welfare, Tochigi, Japan
| | - Osamu Abe
- Department of Radiology, The University of Tokyo, Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
16
|
Tomov ML, Cetnar A, Do K, Bauser‐Heaton H, Serpooshan V. Patient-Specific 3-Dimensional-Bioprinted Model for In Vitro Analysis and Treatment Planning of Pulmonary Artery Atresia in Tetralogy of Fallot and Major Aortopulmonary Collateral Arteries. J Am Heart Assoc 2019; 8:e014490. [PMID: 31818221 PMCID: PMC6951056 DOI: 10.1161/jaha.119.014490] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022]
Abstract
Background Tetralogy of Fallot with major aortopulmonary collateral arteries is a heterogeneous form of pulmonary artery (PA) stenosis that requires multiple forms of intervention. We present a patient-specific in vitro platform capable of sustained flow that can be used to train proceduralists and surgical teams in current interventions, as well as in developing novel therapeutic approaches to treat various vascular anomalies. Our objective is to develop an in vitro model of PA stenosis based on patient data that can be used as an in vitro phantom to model cardiovascular disease and explore potential interventions. Methods and Results From patient-specific scans obtained via computer tomography or 3-dimensional (3D) rotational angiography, we generated digital 3D models of the arteries. Subsequently, in vitro models of tetralogy of Fallot with major aortopulmonary collateral arteries were first 3D printed using biocompatible resins and next bioprinted using gelatin methacrylate hydrogel to simulate neonatal vasculature or second-order branches of an older patient with tetralogy of Fallot with major aortopulmonary collateral arteries. Printed models were used to study creation of extraluminal connection between an atretic PA and a major aortopulmonary collateral artery using a catheter-based interventional method. Following the recanalization, engineered PA constructs were perfused and flow was visualized using contrast agents and x-ray angiography. Further, computational fluid dynamics modeling was used to analyze flow in the recanalized model. Conclusions New 3D-printed and computational fluid dynamics models for vascular atresia were successfully created. We demonstrated the unique capability of a printed model to develop a novel technique for establishing blood flow in atretic vessels using clinical imaging, together with 3D bioprinting-based tissue engineering techniques. Additive biomanufacturing technologies can enable fabrication of functional vascular phantoms to model PA stenosis conditions that can help develop novel clinical applications.
Collapse
Affiliation(s)
- Martin L. Tomov
- Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA
| | - Alexander Cetnar
- Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA
| | - Katherine Do
- Department of PediatricsEmory University School of MedicineAtlantaGA
| | - Holly Bauser‐Heaton
- Department of PediatricsEmory University School of MedicineAtlantaGA
- Children's Healthcare of AtlantaAtlantaGA
- Sibley Heart Center at Children's Healthcare of AtlantaAtlantaGA
| | - Vahid Serpooshan
- Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA
- Department of PediatricsEmory University School of MedicineAtlantaGA
- Children's Healthcare of AtlantaAtlantaGA
| |
Collapse
|
17
|
Scout-guided needle placement-a technical approach for dose reduction in CT-guided periradicular infiltration. Neuroradiology 2019; 62:341-346. [PMID: 31838562 DOI: 10.1007/s00234-019-02339-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/04/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE To develop and evaluate a technical approach for CT-guided periradicular infiltration using quantitative needle access and guidance parameters extracted from CT scout images. METHODS Five 3D-printed phantoms of the abdomen mimicking different patients were used to develop a technical approach for scout-guided periradicular infiltration. The needle access point, puncture depth, and needle angulation were calculated using measurements extracted from anterior-posterior and lateral CT scout images. Fifty needle placements were performed with the technique thus developed. Dose exposure and number of image acquisitions were compared with ten procedures performed using a conventional free-hand technique. Data were analyzed with the Mann-Whitney U test. RESULTS Parameters derived solely from scout images provided adequate guidance for successful and reliable needle placement. Needle guidance was performed with the same equipment as the standard periradicular infiltration. Two scout images and 3.5 ± 2.3 (mean ± SD) single-shot images for needle positioning were acquired. Mean DLP ± SD was 3.8 ± 2.5 mGy cm. The number of single-shot acquisitions was reduced by 68% and the overall dose was reduced by 84% in comparison with the conventional free-hand technique (p < 0.0001). CONCLUSION Scout-guided needle placement for periradicular infiltration is feasible and reduces radiation exposure significantly.
Collapse
|