1
|
Peters-Founshtein G, Eshet Y, Sarfaty M, Dotan Z, Catalano OA, Davidson T, Domachevsky L. The Role of Nuclear Medicine in Imaging and Therapy of Prostate Cancer: The State of the Art. Urol Clin North Am 2025; 52:13-24. [PMID: 39537299 DOI: 10.1016/j.ucl.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Prostate cancer (PCa) is the second most diagnosed cancer in men. In recent years, nuclear medicine has played an expanding role in diagnosing, staging, monitoring, and treating PCa. Specifically, the introduction of prostate-specific membrane antigen PET/computed tomography has significantly contributed to detecting locoregional and distant disease. Radioligand therapy, with its capacity to induce highly selective cytotoxic effects, is progressively being integrated into PCa therapy. The advent of novel therapeutic agents, additional indications, and a more comprehensive integration between nuclear imaging and therapy, represent the forefront of nuclear medicine in PCa.
Collapse
Affiliation(s)
- Gregory Peters-Founshtein
- Department of Nuclear Medicine, Sheba Medical Center, Tel-Hashomer, 31 Emek Ha'ela Street, Ramat Gan 52621, Israel.
| | - Yael Eshet
- Department of Nuclear Medicine, Sheba Medical Center, Tel-Hashomer, 31 Emek Ha'ela Street, Ramat Gan 52621, Israel; Faculty of Medicine, Tel Aviv University, 35 klachkin Street, Tel Aviv 69978, Israel
| | - Michal Sarfaty
- Faculty of Medicine, Tel Aviv University, 35 klachkin Street, Tel Aviv 69978, Israel; Genitourinary Oncology Unit, The Jusidman Oncology Hospital, Sheba Medical center, 31 Emek Ha'ela Street, Ramat Gan 52621, Israel
| | - Zohar Dotan
- Faculty of Medicine, Tel Aviv University, 35 klachkin Street, Tel Aviv 69978, Israel; Department of Urology, Sheba Medical Center, Tel-Hashomer, 31 Emek Ha'ela Street, Ramat Gan 52621, Israel
| | - Onofrio Antonio Catalano
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Tima Davidson
- Department of Nuclear Medicine, Sheba Medical Center, Tel-Hashomer, 31 Emek Ha'ela Street, Ramat Gan 52621, Israel; Faculty of Medicine, Tel Aviv University, 35 klachkin Street, Tel Aviv 69978, Israel
| | - Liran Domachevsky
- Department of Nuclear Medicine, Sheba Medical Center, Tel-Hashomer, 31 Emek Ha'ela Street, Ramat Gan 52621, Israel; Faculty of Medicine, Tel Aviv University, 35 klachkin Street, Tel Aviv 69978, Israel
| |
Collapse
|
2
|
Tapper W, Carneiro G, Mikropoulos C, Thomas SA, Evans PM, Boussios S. The Application of Radiomics and AI to Molecular Imaging for Prostate Cancer. J Pers Med 2024; 14:287. [PMID: 38541029 PMCID: PMC10971024 DOI: 10.3390/jpm14030287] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/23/2024] [Accepted: 03/06/2024] [Indexed: 11/11/2024] Open
Abstract
Molecular imaging is a key tool in the diagnosis and treatment of prostate cancer (PCa). Magnetic Resonance (MR) plays a major role in this respect with nuclear medicine imaging, particularly, Prostate-Specific Membrane Antigen-based, (PSMA-based) positron emission tomography with computed tomography (PET/CT) also playing a major role of rapidly increasing importance. Another key technology finding growing application across medicine and specifically in molecular imaging is the use of machine learning (ML) and artificial intelligence (AI). Several authoritative reviews are available of the role of MR-based molecular imaging with a sparsity of reviews of the role of PET/CT. This review will focus on the use of AI for molecular imaging for PCa. It will aim to achieve two goals: firstly, to give the reader an introduction to the AI technologies available, and secondly, to provide an overview of AI applied to PET/CT in PCa. The clinical applications include diagnosis, staging, target volume definition for treatment planning, outcome prediction and outcome monitoring. ML and AL techniques discussed include radiomics, convolutional neural networks (CNN), generative adversarial networks (GAN) and training methods: supervised, unsupervised and semi-supervised learning.
Collapse
Affiliation(s)
- William Tapper
- Centre for Vision Speech and Signal Processing, The University of Surrey, 388 Stag Hill, Surrey, Guildford GU2 7XH, UK; (W.T.); (G.C.); (P.M.E.)
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK;
| | - Gustavo Carneiro
- Centre for Vision Speech and Signal Processing, The University of Surrey, 388 Stag Hill, Surrey, Guildford GU2 7XH, UK; (W.T.); (G.C.); (P.M.E.)
| | - Christos Mikropoulos
- Clinical Oncology, Royal Surrey NHS Foundation Trust, Egerton Road, Surrey, Guildford GU2 7XX, UK;
| | - Spencer A. Thomas
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK;
| | - Philip M. Evans
- Centre for Vision Speech and Signal Processing, The University of Surrey, 388 Stag Hill, Surrey, Guildford GU2 7XH, UK; (W.T.); (G.C.); (P.M.E.)
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, Strand, London WC2R 2LS, UK
- Kent and Medway Medical School, University of Kent, Canterbury CT2 7LX, UK
- Faculty of Medicine, Health, and Social Care, Canterbury Christ Church University, Canterbury CT2 7PB, UK
- AELIA Organisation, 9th km Thessaloniki–Thermi, 57001 Thessaloniki, Greece
| |
Collapse
|
3
|
Cheng L, Yang T, Zhang J, Gao F, Yang L, Tao W. The Application of Radiolabeled Targeted Molecular Probes for the Diagnosis and Treatment of Prostate Cancer. Korean J Radiol 2023; 24:574-589. [PMID: 37271211 DOI: 10.3348/kjr.2022.1002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 06/06/2023] Open
Abstract
Radiopharmaceuticals targeting prostate-specific membrane antigens (PSMA) are essential for the diagnosis, evaluation, and treatment of prostate cancer (PCa), particularly metastatic castration-resistant PCa, for which conventional treatment is ineffective. These molecular probes include [68Ga]PSMA, [18F]PSMA, [Al18F]PSMA, [99mTc]PSMA, and [89Zr]PSMA, which are widely used for diagnosis, and [177Lu]PSMA and [225Ac]PSMA, which are used for treatment. There are also new types of radiopharmaceuticals. Due to the differentiation and heterogeneity of tumor cells, a subtype of PCa with an extremely poor prognosis, referred to as neuroendocrine prostate cancer (NEPC), has emerged, and its diagnosis and treatment present great challenges. To improve the detection rate of NEPC and prolong patient survival, many researchers have investigated the use of relevant radiopharmaceuticals as targeted molecular probes for the detection and treatment of NEPC lesions, including DOTA-TOC and DOTA-TATE for somatostatin receptors, 4A06 for CUB domain-containing protein 1, and FDG. This review focused on the specific molecular targets and various radionuclides that have been developed for PCa in recent years, including those mentioned above and several others, and aimed to provide valuable up-to-date information and research ideas for future studies.
Collapse
Affiliation(s)
- Luyi Cheng
- Department of Nuclear Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Tianshuo Yang
- Department of Nuclear Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Jun Zhang
- Department of Nuclear Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Feng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lingyun Yang
- JYAMS PET Research and Development Limited, Nanjing, Jiangsu, China
| | - Weijing Tao
- Department of Nuclear Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China.
| |
Collapse
|
4
|
Chan TH, Haworth A, Wang A, Osanlouy M, Williams S, Mitchell C, Hofman MS, Hicks RJ, Murphy DG, Reynolds HM. Detecting localised prostate cancer using radiomic features in PSMA PET and multiparametric MRI for biologically targeted radiation therapy. EJNMMI Res 2023; 13:34. [PMID: 37099047 PMCID: PMC10133419 DOI: 10.1186/s13550-023-00984-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/17/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Prostate-Specific Membrane Antigen (PSMA) PET/CT and multiparametric MRI (mpMRI) are well-established modalities for identifying intra-prostatic lesions (IPLs) in localised prostate cancer. This study aimed to investigate the use of PSMA PET/CT and mpMRI for biologically targeted radiation therapy treatment planning by: (1) analysing the relationship between imaging parameters at a voxel-wise level and (2) assessing the performance of radiomic-based machine learning models to predict tumour location and grade. METHODS PSMA PET/CT and mpMRI data from 19 prostate cancer patients were co-registered with whole-mount histopathology using an established registration framework. Apparent Diffusion Coefficient (ADC) maps were computed from DWI and semi-quantitative and quantitative parameters from DCE MRI. Voxel-wise correlation analysis was conducted between mpMRI parameters and PET Standardised Uptake Value (SUV) for all tumour voxels. Classification models were built using radiomic and clinical features to predict IPLs at a voxel level and then classified further into high-grade or low-grade voxels. RESULTS Perfusion parameters from DCE MRI were more highly correlated with PET SUV than ADC or T2w. IPLs were best detected with a Random Forest Classifier using radiomic features from PET and mpMRI rather than either modality alone (sensitivity, specificity and area under the curve of 0.842, 0.804 and 0.890, respectively). The tumour grading model had an overall accuracy ranging from 0.671 to 0.992. CONCLUSIONS Machine learning classifiers using radiomic features from PSMA PET and mpMRI show promise for predicting IPLs and differentiating between high-grade and low-grade disease, which could be used to inform biologically targeted radiation therapy planning.
Collapse
Affiliation(s)
- Tsz Him Chan
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Annette Haworth
- Institute of Medical Physics, School of Physics, The University of Sydney, Sydney, NSW, Australia
| | - Alan Wang
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Centre for Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Mahyar Osanlouy
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Scott Williams
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Catherine Mitchell
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Michael S Hofman
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Rodney J Hicks
- Department of Medicine, St Vincent's Hospital Medical School, The University of Melbourne, Melbourne, VIC, Australia
| | - Declan G Murphy
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Hayley M Reynolds
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
5
|
Prostate specific membrane antigen positron emission tomography in primary prostate cancer diagnosis: First-line imaging is afoot. Cancer Lett 2022; 548:215883. [PMID: 36027998 DOI: 10.1016/j.canlet.2022.215883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022]
Abstract
Prostate specific membrane antigen positron emission tomography (PSMA PET) is an excellent molecular imaging technique for prostate cancer. Currently, PSMA PET for patients with primary prostate cancer is supplementary to conventional imaging techniques, according to guidelines. This supplementary function of PSMA PET is due to a lack of systematic review of its strengths, limitations, and potential development direction. Thus, we review PSMA ligands, detection, T, N, and M staging, treatment management, and false results of PSMA PET in clinical studies. We also discuss the strengths and challenges of PSMA PET. PSMA PET can greatly increase the detection rate of prostate cancer and accuracy of T/N/M staging, which facilitates more appropriate treatment for primary prostate cancer. Lastly, we propose that PSMA PET could become the first-line imaging modality for primary prostate cancer, and we describe its potential expanded application.
Collapse
|
6
|
García Cañamaque L, Field CA, Furtado FS, Plaza DE Las Heras I, Husseini JS, Balza R, Jarraya M, Catalano OA, Mitjavila Casanovas M. Contribution of positron emission tomography/magnetic resonance imaging in musculoskeletal malignancies. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2022; 66:3-14. [PMID: 34881853 DOI: 10.23736/s1824-4785.21.03432-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Positron emission tomography/computed tomography (PET/CT) is a promising hybrid imaging technique for evaluating musculoskeletal malignancies. Both technologies, independently are useful for evaluating this type of tumors. PET/MR has great potential combining metabolic and functional imaging PET with soft tissue contrast and multiparametric sequences of MR. In this paper we review the existing literature and discuss the different protocols, new available radiotracers to conclude with the scarce evidence available the most useful/probable indications of the PET MR for the for musculoskeletal malignancies.
Collapse
Affiliation(s)
- Lina García Cañamaque
- Department of Nuclear Medicine, Madrid Sanchinarro University Hospital, Madrid, Spain -
| | - Caroline A Field
- Department of Nuclear Medicine, Madrid Sanchinarro University Hospital, Madrid, Spain
| | - Felipe S Furtado
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Jad S Husseini
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Rene Balza
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Mohamed Jarraya
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
7
|
A deep learning masked segmentation alternative to manual segmentation in biparametric MRI prostate cancer radiomics. Eur Radiol 2022; 32:6526-6535. [PMID: 35420303 PMCID: PMC9381625 DOI: 10.1007/s00330-022-08712-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 01/19/2023]
Abstract
OBJECTIVES To determine the value of a deep learning masked (DLM) auto-fixed volume of interest (VOI) segmentation method as an alternative to manual segmentation for radiomics-based diagnosis of clinically significant (CS) prostate cancer (PCa) on biparametric magnetic resonance imaging (bpMRI). MATERIALS AND METHODS This study included a retrospective multi-center dataset of 524 PCa lesions (of which 204 are CS PCa) on bpMRI. All lesions were both semi-automatically segmented with a DLM auto-fixed VOI method (averaging < 10 s per lesion) and manually segmented by an expert uroradiologist (averaging 5 min per lesion). The DLM auto-fixed VOI method uses a spherical VOI (with its center at the location of the lowest apparent diffusion coefficient of the prostate lesion as indicated with a single mouse click) from which non-prostate voxels are removed using a deep learning-based prostate segmentation algorithm. Thirteen different DLM auto-fixed VOI diameters (ranging from 6 to 30 mm) were explored. Extracted radiomics data were split into training and test sets (4:1 ratio). Performance was assessed with receiver operating characteristic (ROC) analysis. RESULTS In the test set, the area under the ROC curve (AUCs) of the DLM auto-fixed VOI method with a VOI diameter of 18 mm (0.76 [95% CI: 0.66-0.85]) was significantly higher (p = 0.0198) than that of the manual segmentation method (0.62 [95% CI: 0.52-0.73]). CONCLUSIONS A DLM auto-fixed VOI segmentation can provide a potentially more accurate radiomics diagnosis of CS PCa than expert manual segmentation while also reducing expert time investment by more than 97%. KEY POINTS • Compared to traditional expert-based segmentation, a deep learning mask (DLM) auto-fixed VOI placement is more accurate at detecting CS PCa. • Compared to traditional expert-based segmentation, a DLM auto-fixed VOI placement is faster and can result in a 97% time reduction. • Applying deep learning to an auto-fixed VOI radiomics approach can be valuable.
Collapse
|
8
|
Ferro M, de Cobelli O, Musi G, del Giudice F, Carrieri G, Busetto GM, Falagario UG, Sciarra A, Maggi M, Crocetto F, Barone B, Caputo VF, Marchioni M, Lucarelli G, Imbimbo C, Mistretta FA, Luzzago S, Vartolomei MD, Cormio L, Autorino R, Tătaru OS. Radiomics in prostate cancer: an up-to-date review. Ther Adv Urol 2022; 14:17562872221109020. [PMID: 35814914 PMCID: PMC9260602 DOI: 10.1177/17562872221109020] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is the most common worldwide diagnosed malignancy in male population. The diagnosis, the identification of aggressive disease, and the post-treatment follow-up needs a more comprehensive and holistic approach. Radiomics is the extraction and interpretation of images phenotypes in a quantitative manner. Radiomics may give an advantage through advancements in imaging modalities and through the potential power of artificial intelligence techniques by translating those features into clinical outcome prediction. This article gives an overview on the current evidence of methodology and reviews the available literature on radiomics in PCa patients, highlighting its potential for personalized treatment and future applications.
Collapse
Affiliation(s)
- Matteo Ferro
- Department of Urology, European Institute of Oncology, IRCCS, Milan, Italy, via Ripamonti 435 Milano, Italy
| | - Ottavio de Cobelli
- Department of Urology, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Gennaro Musi
- Department of Urology, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Francesco del Giudice
- Department of Urology, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Carrieri
- Department of Urology and Organ Transplantation, University of Foggia, Foggia, Italy
| | - Gian Maria Busetto
- Department of Urology and Organ Transplantation, University of Foggia, Foggia, Italy
| | | | - Alessandro Sciarra
- Department of Urology, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Martina Maggi
- Department of Urology, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Felice Crocetto
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples ‘Federico II’, Naples, Italy
| | - Biagio Barone
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples ‘Federico II’, Naples, Italy
| | - Vincenzo Francesco Caputo
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples ‘Federico II’, Naples, Italy
| | - Michele Marchioni
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio, University of Chieti, Chieti, Italy; Urology Unit, ‘SS. Annunziata’ Hospital, Chieti, Italy
- Department of Urology, ASL Abruzzo 2, Chieti, Italy
| | - Giuseppe Lucarelli
- Department of Emergency and Organ Transplantation, Urology, Andrology and Kidney Transplantation Unit, University of Bari, Bari, Italy
| | - Ciro Imbimbo
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples ‘Federico II’, Naples, Italy
| | - Francesco Alessandro Mistretta
- Department of Urology, European Institute of Oncology, IRCCS, Milan, Italy
- Università degli Studi di Milano, Milan, Italy
| | - Stefano Luzzago
- Department of Urology, European Institute of Oncology, IRCCS, Milan, Italy
- Università degli Studi di Milano, Milan, Italy
| | - Mihai Dorin Vartolomei
- Department of Cell and Molecular Biology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, Târgu Mures, Romania
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Luigi Cormio
- Urology and Renal Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
- Urology Unit, Bonomo Teaching Hospital, Foggia, Italy
| | | | - Octavian Sabin Tătaru
- Institution Organizing University Doctoral Studies, I.O.S.U.D., George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, Târgu Mures, Romania
| |
Collapse
|
9
|
Quartuccio N, Marrale M, Laudicella R, Alongi P, Siracusa M, Sturiale L, Arnone G, Cutaia G, Salvaggio G, Midiri M, Baldari S, Arnone G. The role of PET radiomic features in prostate cancer: a systematic review. Clin Transl Imaging 2021; 9:579-588. [DOI: 10.1007/s40336-021-00436-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
|
10
|
Ghezzo S, Bezzi C, Presotto L, Mapelli P, Bettinardi V, Savi A, Neri I, Preza E, Samanes Gajate AM, De Cobelli F, Scifo P, Picchio M. State of the art of radiomic analysis in the clinical management of prostate cancer: A systematic review. Crit Rev Oncol Hematol 2021; 169:103544. [PMID: 34801699 DOI: 10.1016/j.critrevonc.2021.103544] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 02/04/2023] Open
Abstract
We present the current clinical applications of radiomics in the context of prostate cancer (PCa) management. Several online databases for original articles using a combination of the following keywords: "(radiomic or radiomics) AND (prostate cancer or prostate tumour or prostate tumor or prostate neoplasia)" have been searched. The selected papers have been pooled as focus on (i) PCa detection, (ii) assessing the clinical significance of PCa, (iii) biochemical recurrence prediction, (iv) radiation-therapy outcome prediction and treatment efficacy monitoring, (v) metastases detection, (vi) metastases prediction, (vii) prediction of extra-prostatic extension. Seventy-six studies were included for qualitative analyses. Classifiers powered with radiomic features were able to discriminate between healthy tissue and PCa and between low- and high-risk PCa. However, before radiomics can be proposed for clinical use its methods have to be standardized, and these first encouraging results need to be robustly replicated in large and independent cohorts.
Collapse
Affiliation(s)
| | | | - Luca Presotto
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Mapelli
- Vita-Salute San Raffaele University, Milan, Italy; Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valentino Bettinardi
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Annarita Savi
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ilaria Neri
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Erik Preza
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Francesco De Cobelli
- Vita-Salute San Raffaele University, Milan, Italy; Radiology Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Scifo
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Picchio
- Vita-Salute San Raffaele University, Milan, Italy; Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
11
|
Margel D, Bernstine H, Groshar D, Ber Y, Nezrit O, Segal N, Yakimov M, Baniel J, Domachevsky L. Diagnostic Performance of 68Ga Prostate-specific Membrane Antigen PET/MRI Compared with Multiparametric MRI for Detecting Clinically Significant Prostate Cancer. Radiology 2021; 301:379-386. [PMID: 34463555 DOI: 10.1148/radiol.2021204093] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Gallium 68 (68Ga) prostate-specific membrane antigen (PSMA) PET/MRI may improve detection of clinically significant prostate cancer (CSPC). Purpose To compare the sensitivity and specificity of 68Ga-PSMA PET/MRI with multiparametric MRI for detecting CSPC. Materials and Methods Men with prostate specific antigen levels of 2.5-20 ng/mL prospectively underwent 68Ga-PSMA PET/MRI, including multiparametric MRI sequences, between June 2019 and March 2020. Imaging was evaluated independently by two radiologists by using the Prostate Imaging Reporting and Data System (PI-RADS) version 2.1. Sensitivity and specificity for CSPC (International Society of Urological Pathology grade group ≥ 2) were compared for 68Ga-PSMA PET/MRI and multiparametric MRI by using the McNemar test. Decision curve analysis compared the net benefit of each imaging strategy. Results Ninety-nine men (median age, 67 years; interquartile range, 62-71 years) were included; 79% (78 of 99) underwent biopsy. CSPC was detected in 32% (25 of 78). For CSPC, specificity was higher for 68Ga-PSMA PET/MRI than multiparametric MRI (76% [95% CI: 62, 86] vs 49% [95% CI: 35, 63], respectively; P < .001). Sensitivity was similar (88% [95% CI: 69, 98] vs 92% [95% CI: 74, 99], respectively; P > .99). For PI-RADS 3 lesions, specificity was also higher for 68Ga-PSMA PET/MRI than for multiparametric MRI: 86% (95% CI: 73, 95) versus 59% (95% CI: 43, 74), respectively (P = .002). Decision curve analysis showed that biopsies targeted to PSMA uptake increased the net benefit of multiparametric MRI only among PI-RADS 3 lesions. The net benefit of targeted biopsy for a PI-RADS 3 lesion with PSMA uptake was higher across all threshold probabilities over 8%. The net benefit of targeted biopsy was similar for PI-RADS 4 and 5 lesions, regardless of PSMA uptake. Conclusions Gallium 68 prostate-specific membrane antigen PET/MRI improved specificity for clinically significant prostate cancer compared with multiparametric MRI, particularly in Prostate Imaging Reporting and Data System grade 3 lesions. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Williams and Estes in this issue.
Collapse
Affiliation(s)
- David Margel
- From the Division of Urology (D.M., Y.B., O.N., N.S., J.B.), Department of Nuclear Medicine (H.B., D.G.), and Department of Pathology (M.Y.), Rabin Medical Center, 39 Jabotinski Rd, Petah-Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (D.M., H.B., D.G., J.B., L.D.); Department of Nuclear Medicine, Assuta Medical Center, Tel Aviv, Israel (H.B., D.G.); and Department of Nuclear Medicine, Sheba Medical Center, Tel Hashomer, Israel (L.D.)
| | - Hanna Bernstine
- From the Division of Urology (D.M., Y.B., O.N., N.S., J.B.), Department of Nuclear Medicine (H.B., D.G.), and Department of Pathology (M.Y.), Rabin Medical Center, 39 Jabotinski Rd, Petah-Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (D.M., H.B., D.G., J.B., L.D.); Department of Nuclear Medicine, Assuta Medical Center, Tel Aviv, Israel (H.B., D.G.); and Department of Nuclear Medicine, Sheba Medical Center, Tel Hashomer, Israel (L.D.)
| | - David Groshar
- From the Division of Urology (D.M., Y.B., O.N., N.S., J.B.), Department of Nuclear Medicine (H.B., D.G.), and Department of Pathology (M.Y.), Rabin Medical Center, 39 Jabotinski Rd, Petah-Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (D.M., H.B., D.G., J.B., L.D.); Department of Nuclear Medicine, Assuta Medical Center, Tel Aviv, Israel (H.B., D.G.); and Department of Nuclear Medicine, Sheba Medical Center, Tel Hashomer, Israel (L.D.)
| | - Yaara Ber
- From the Division of Urology (D.M., Y.B., O.N., N.S., J.B.), Department of Nuclear Medicine (H.B., D.G.), and Department of Pathology (M.Y.), Rabin Medical Center, 39 Jabotinski Rd, Petah-Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (D.M., H.B., D.G., J.B., L.D.); Department of Nuclear Medicine, Assuta Medical Center, Tel Aviv, Israel (H.B., D.G.); and Department of Nuclear Medicine, Sheba Medical Center, Tel Hashomer, Israel (L.D.)
| | - Orian Nezrit
- From the Division of Urology (D.M., Y.B., O.N., N.S., J.B.), Department of Nuclear Medicine (H.B., D.G.), and Department of Pathology (M.Y.), Rabin Medical Center, 39 Jabotinski Rd, Petah-Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (D.M., H.B., D.G., J.B., L.D.); Department of Nuclear Medicine, Assuta Medical Center, Tel Aviv, Israel (H.B., D.G.); and Department of Nuclear Medicine, Sheba Medical Center, Tel Hashomer, Israel (L.D.)
| | - Niv Segal
- From the Division of Urology (D.M., Y.B., O.N., N.S., J.B.), Department of Nuclear Medicine (H.B., D.G.), and Department of Pathology (M.Y.), Rabin Medical Center, 39 Jabotinski Rd, Petah-Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (D.M., H.B., D.G., J.B., L.D.); Department of Nuclear Medicine, Assuta Medical Center, Tel Aviv, Israel (H.B., D.G.); and Department of Nuclear Medicine, Sheba Medical Center, Tel Hashomer, Israel (L.D.)
| | - Maxim Yakimov
- From the Division of Urology (D.M., Y.B., O.N., N.S., J.B.), Department of Nuclear Medicine (H.B., D.G.), and Department of Pathology (M.Y.), Rabin Medical Center, 39 Jabotinski Rd, Petah-Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (D.M., H.B., D.G., J.B., L.D.); Department of Nuclear Medicine, Assuta Medical Center, Tel Aviv, Israel (H.B., D.G.); and Department of Nuclear Medicine, Sheba Medical Center, Tel Hashomer, Israel (L.D.)
| | - Jack Baniel
- From the Division of Urology (D.M., Y.B., O.N., N.S., J.B.), Department of Nuclear Medicine (H.B., D.G.), and Department of Pathology (M.Y.), Rabin Medical Center, 39 Jabotinski Rd, Petah-Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (D.M., H.B., D.G., J.B., L.D.); Department of Nuclear Medicine, Assuta Medical Center, Tel Aviv, Israel (H.B., D.G.); and Department of Nuclear Medicine, Sheba Medical Center, Tel Hashomer, Israel (L.D.)
| | - Liran Domachevsky
- From the Division of Urology (D.M., Y.B., O.N., N.S., J.B.), Department of Nuclear Medicine (H.B., D.G.), and Department of Pathology (M.Y.), Rabin Medical Center, 39 Jabotinski Rd, Petah-Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (D.M., H.B., D.G., J.B., L.D.); Department of Nuclear Medicine, Assuta Medical Center, Tel Aviv, Israel (H.B., D.G.); and Department of Nuclear Medicine, Sheba Medical Center, Tel Hashomer, Israel (L.D.)
| |
Collapse
|
12
|
Jiao J, Kang F, Zhang J, Quan Z, Wen W, Zhao X, Ma S, Wu P, Yang F, Guo W, Yang X, Yuan J, Shi Y, Wang J, Qin W. Establishment and prospective validation of an SUV max cutoff value to discriminate clinically significant prostate cancer from benign prostate diseases in patients with suspected prostate cancer by 68Ga-PSMA PET/CT: a real-world study. Am J Cancer Res 2021; 11:8396-8411. [PMID: 34373749 PMCID: PMC8344003 DOI: 10.7150/thno.58140] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/20/2021] [Indexed: 02/07/2023] Open
Abstract
Background and Aims: The aims of this study were to establish a maximum standardized uptake value (SUVmax) cutoff to discriminate clinically significant prostate cancer (csPCa) from benign prostate disease (BPD) by 68Ga-labeled prostate-specific membrane antigen (68Ga-PSMA-11) positron emission tomography/computed tomography (PET/CT) in patients with suspected prostate cancer (PCa), and to perform a prospective real-world validation of this cutoff value. Methods: The study included a training cohort to identify an SUVmax cutoff value and a prospective real-world cohort to validate it. A retrospective analysis assessed 135 patients with suspected PCa in a large tertiary care hospital in China who underwent 68Ga-PSMA-11 PET/CT. All patients were suspected of having PCa based on symptoms, digital rectal examination (DRE), total prostate-specific antigen (tPSA) level, and multiparameter magnetic resonance imaging (mpMRI). The 68Ga-PSMA PET/CT results were evaluated using histopathological results from transrectal ultrasound-guided 12-core biopsy with necessary targeted biopsy as references. Patients with Gleason scores (GS) ≥7 from the biopsy results were diagnosed with csPCa, and patients with negative biopsy and follow-up results were diagnosed with BPD. Receiver operating characteristic (ROC) curve analysis was used to identify the optimal SUVmax cutoff value. The cutoff value was prospectively validated in 58 patients with suspected PCa. The diagnostic benefits of the cutoff value for clinical decision making were also evaluated. Results: According to ROC curve analysis, the most appropriate SUVmax cutoff value for discriminating csPCa from BPD was 5.30 (sensitivity, 85.85%; specificity, 86.21%; area under the curve [AUC], 0.893). The cutoff achieved a sensitivity of 83.33%, a specificity of 81.25%, a positive predictive value (PPV) of 92.11%, a negative predictive value (NPV) of 65.00%, and an accuracy of 82.76% in the prospective validation cohort. Metastases were used as an indicator to reduce false negative results in patients with SUVmax ≤ 5.30. In patients without metastases, an SUVmax value of 5.30 was also the best cutoff to diagnose localized csPCa (sensitivity, 80.43%; specificity, 86.21%; AUC, 0.852). The cutoff discriminated localized csPCa from BPD with a sensitivity of 76.19%, a specificity of 81.25%, a PPV of 84.21%, an NPV of 72.22%, and an accuracy of 78.38% in the prospective validation cohort. The cutoff, combined with metastases, achieved an accuracy of 89.12% in all patients, increasing accuracy by 8.29% and reducing equivocal results compared with manual reading. There was a strong correlation between SUVmax and PSMA expression (rs = 0.831, P < 0.001) and a moderate correlation between SUVmax and GS (rs = 0.509, P < 0.001). The PSMA expression and SUVmax values of patients with csPCa were significantly higher than those of patients with BPD (P < 0.001). Conclusion: We established and prospectively validated the best SUVmax cutoff value (5.30) for discriminating csPCa from BPD with high accuracy in patients with suspected PCa. 5.30 is an effective cutoff to discriminate csPCa patients with or without metastases. The cutoff may provide a potential tool for the precise identification of csPCa by 68Ga-PSMA PET/CT, ensuring high accuracy and reducing equivocal results.
Collapse
|
13
|
Husseini JS, Amorim BJ, Torrado-Carvajal A, Prabhu V, Groshar D, Umutlu L, Herrmann K, Cañamaque LG, Garzón JRG, Palmer WE, Heidari P, Shih TTF, Sosna J, Matushita C, Cerci J, Queiroz M, Muglia VF, Nogueira-Barbosa MH, Borra RJH, Kwee TC, Glaudemans AWJM, Evangelista L, Salvatore M, Cuocolo A, Soricelli A, Herold C, Laghi A, Mayerhoefer M, Mahmood U, Catana C, Daldrup-Link HE, Rosen B, Catalano OA. An international expert opinion statement on the utility of PET/MR for imaging of skeletal metastases. Eur J Nucl Med Mol Imaging 2021; 48:1522-1537. [PMID: 33619599 PMCID: PMC8240455 DOI: 10.1007/s00259-021-05198-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/10/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND MR is an important imaging modality for evaluating musculoskeletal malignancies owing to its high soft tissue contrast and its ability to acquire multiparametric information. PET provides quantitative molecular and physiologic information and is a critical tool in the diagnosis and staging of several malignancies. PET/MR, which can take advantage of its constituent modalities, is uniquely suited for evaluating skeletal metastases. We reviewed the current evidence of PET/MR in assessing for skeletal metastases and provided recommendations for its use. METHODS We searched for the peer reviewed literature related to the usage of PET/MR in the settings of osseous metastases. In addition, expert opinions, practices, and protocols of major research institutions performing research on PET/MR of skeletal metastases were considered. RESULTS Peer-reviewed published literature was included. Nuclear medicine and radiology experts, including those from 13 major PET/MR centers, shared the gained expertise on PET/MR use for evaluating skeletal metastases and contributed to a consensus expert opinion statement. [18F]-FDG and non [18F]-FDG PET/MR may provide key advantages over PET/CT in the evaluation for osseous metastases in several primary malignancies. CONCLUSION PET/MR should be considered for staging of malignancies where there is a high likelihood of osseous metastatic disease based on the characteristics of the primary malignancy, hight clinical suspicious and in case, where the presence of osseous metastases will have an impact on patient management. Appropriate choice of tumor-specific radiopharmaceuticals, as well as stringent adherence to PET and MR protocols, should be employed.
Collapse
Affiliation(s)
- Jad S Husseini
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Bárbara Juarez Amorim
- Division of Nuclear Medicine, Department of Radiology, School of Medical Sciences,, State University of Campinas, Campinas, Brazil
| | - Angel Torrado-Carvajal
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Medical Image Analysis and Biometry Laboratory, Universidad Rey Juan Carlos, Madrid, Spain
| | - Vinay Prabhu
- Department of Radiology, NYU Langone Health, New York, NY, USA
| | - David Groshar
- Department of Nuclear Medicine, Assuta Medical Center, Tel Aviv, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Lina García Cañamaque
- Department of Nuclear Medicine, Hospital Universitario Madrid Sanchinarro, Madrid, Spain
| | | | - William E Palmer
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Pedram Heidari
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Tiffany Ting-Fang Shih
- Department of Radiology and Medical Imaging, National Taiwan University College of Medicine and Hospital, Taipei City, Taiwan
| | - Jacob Sosna
- Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Cristina Matushita
- Department of Nuclear Medicine, Hospital São Lucas of Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Juliano Cerci
- Department of Nuclear Medicine, Quanta Diagnóstico Nuclear, Curitiba, Brazil
| | - Marcelo Queiroz
- Department of Radiology and Oncology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Valdair Francisco Muglia
- Department of Medical Images, Radiation Therapy and Oncohematology, Ribeirao Preto Medical School, Hospital Clinicas, University of São Paulo, Ribeirão Prêto, Brazil
| | - Marcello H Nogueira-Barbosa
- Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School. University of São Paulo (USP), Ribeirão Prêto, Brazil
| | - Ronald J H Borra
- Medical Imaging Center, University Medical Center Groningen, Groningen, The Netherlands
| | - Thomas C Kwee
- Medical Imaging Center, University Medical Center Groningen, Groningen, The Netherlands
| | - Andor W J M Glaudemans
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands
| | - Laura Evangelista
- Department of Clinical and Experimental Medicine, University of Padova, Padua, Italy
| | - Marco Salvatore
- Department of Radiology and Nuclear Medicine, Università Suor Orsola Benincasa di Napoli, Naples, Italy
- Department of Radiology and Nuclear Medicine, Institute for Hospitalization and Healthcare (IRCCS) SDN, Istituto di Ricerca, Naples, Italy
| | - Alberto Cuocolo
- Department of Radiology and Nuclear Medicine, Institute for Hospitalization and Healthcare (IRCCS) SDN, Istituto di Ricerca, Naples, Italy
- Department of Advanced Biomedical Science, University of Naples Federico II, Naples, Italy
| | - Andrea Soricelli
- Department of Radiology and Nuclear Medicine, Institute for Hospitalization and Healthcare (IRCCS) SDN, Istituto di Ricerca, Naples, Italy
- Department of Movement and Wellness Sciences, Parthenope University of Naples, Naples, Italy
| | - Christian Herold
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Andrea Laghi
- Department of Radiology, University of Rome "La Sapienza", Rome, Italy
| | - Marius Mayerhoefer
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Umar Mahmood
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Bruce Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
14
|
Miyahira AK, Pienta KJ, Babich JW, Bander NH, Calais J, Choyke P, Hofman MS, Larson SM, Lin FI, Morris MJ, Pomper MG, Sandhu S, Scher HI, Tagawa ST, Williams S, Soule HR. Meeting report from the Prostate Cancer Foundation PSMA theranostics state of the science meeting. Prostate 2020; 80:1273-1296. [PMID: 32865839 PMCID: PMC8442561 DOI: 10.1002/pros.24056] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The Prostate Cancer Foundation (PCF) convened a PCF prostate-specific membrane antigen (PSMA) Theranostics State of the Science Meeting on 18 November 2019, at Weill Cornell Medicine, New York, NY. METHODS The meeting was attended by 22 basic, translational, and clinical researchers from around the globe, with expertise in PSMA biology, development and use of PSMA theranostics agents, and clinical trials. The goal of this meeting was to discuss the current state of knowledge, the most important biological and clinical questions, and critical next steps for the clinical development of PSMA positron emission tomography (PET) imaging agents and PSMA-targeted radionuclide agents for patients with prostate cancer. RESULTS Several major topic areas were discussed including the biology of PSMA, the role of PSMA-targeted PET imaging in prostate cancer, the physics and performance of different PSMA-targeted PET imaging agents, the current state of clinical development of PSMA-targeted radionuclide therapy (RNT) agents, the role of dosimetry in PSMA RNT treatment planning, barriers and challenges in PSMA RNT clinical development, optimization of patient selection for PSMA RNT trials, and promising combination treatment approaches with PSMA RNT. DISCUSSION This article summarizes the presentations from the meeting for the purpose of globally disseminating this knowledge to advance the use of PSMA-targeted theranostic agents for imaging and treatment of patients with prostate cancer.
Collapse
Affiliation(s)
- Andrea K. Miyahira
- Science Department, Prostate Cancer Foundation, Santa Monica, California
| | - Kenneth J. Pienta
- Department of Urology, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John W. Babich
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Neil H. Bander
- Laboratory of Urologic Oncology, Department of Urology and Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Jeremie Calais
- Ahmanson Translational Theranostics Division, Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Peter Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Michael S. Hofman
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, Australia
- Department of Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, Australia
| | - Steven M. Larson
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Frank I. Lin
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Michael J. Morris
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Martin G. Pomper
- Department of Urology, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shahneen Sandhu
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, Australia
| | - Howard I. Scher
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Scott T. Tagawa
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Scott Williams
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, Australia
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, Australia
| | - Howard R. Soule
- Science Department, Prostate Cancer Foundation, Santa Monica, California
| |
Collapse
|
15
|
Stanzione A, Gambardella M, Cuocolo R, Ponsiglione A, Romeo V, Imbriaco M. Prostate MRI radiomics: A systematic review and radiomic quality score assessment. Eur J Radiol 2020; 129:109095. [PMID: 32531722 DOI: 10.1016/j.ejrad.2020.109095] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Radiomics have the potential to further increase the value of MRI in prostate cancer management. However, implementation in clinical practice is still far and concerns have been raised regarding the methodological quality of radiomic studies. Therefore, we aimed to systematically review the literature to assess the quality of prostate MRI radiomic studies using the radiomics quality score (RQS). METHODS Multiple medical literature archives (PubMed, Web of Science and EMBASE) were searched to retrieve original investigations focused on prostate MRI radiomic approaches up to the end of June 2019. Three researchers independently assessed each paper using the RQS. Data from the most experienced researcher were used for descriptive analysis. Inter-rater reproducibility was assessed using the intraclass correlation coefficient (ICC) on the total RQS score. RESULTS 73 studies were included in the analysis. Overall, the average RQS total score was 7.93 ± 5.13 on a maximum of 36 points, with a final average percentage of 23 ± 13%. Among the most critical items, the lack of feature robustness testing strategies and external validation datasets. The ICC resulted poor to moderate, with an average value of 0.57 and 95% Confidence Intervals between 0.44 and 0.69. CONCLUSIONS Current studies on prostate MRI radiomics still lack the quality required to allow their introduction in clinical practice.
Collapse
Affiliation(s)
- Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Michele Gambardella
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Renato Cuocolo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.
| | - Andrea Ponsiglione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Valeria Romeo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Massimo Imbriaco
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| |
Collapse
|
16
|
Domachevsky L, Goldberg N, Gorenberg M, Bernstine H, Groshar D, Catalano OA. Prostate cancer evaluation using PET quantification in 68Ga-PSMA-11 PET/MR with attenuation correction of bones as a fifth compartment. Quant Imaging Med Surg 2020; 10:40-47. [PMID: 31956527 DOI: 10.21037/qims.2019.11.19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Tissues with low magnetic resonance (MR) signals, such as bones and lungs differ considerably in their attenuation properties, requiring special considerations for attenuation correction. We evaluated the impact of using the five-compartment segmentation model, which incorporates bones, in 68Ga-PSMA-11 PET/MR studies in patients undergoing evaluation for prostate cancer. Methods Prostate cancer patients underwent dedicated prostate 68Ga-PSMA-11 PET/MR followed by whole-body 68Ga-PSMA-11 PET/CT. Coronal µmap images of the pelvis derived from four- and five-compartment segmentation models of magnetic resonance attenuation correction (MRAC) were produced. Standardized uptake values (SUV) calculated by the four and five-compartment MRAC models and by computed tomography attenuation correction (CTAC) were compared and correlated in normal prostate tissue, gluteus muscle, sacrum, intra-prostatic lesions and metastases (i.e., bone lesions and involved lymph nodes), and prostatic lesions to gluteus (L/G) ratio. Results Twenty-six patients (mean age 69.4±9.3 years) were included in the study. Twenty-five patients presented for prostate cancer staging and one patient was evaluated for recurrent disease. There was a statistically significant difference between SUVs of the gluteus, sacrum, prostatic lesions and normal prostate tissue measured by the four-compartment vs. the five-compartment MRAC models, with a medium effect size. Very good to good correlation between SUV measured using the four-compartment MRAC model and SUV measured using the five-compartment model were noted in all lesional and non-lesional areas. Very good to good correlation was noted between four-compartment MRAC and CTAC SUVs of prostatic lesions and L/G ratio and between five-compartment MRAC and CTAC SUVs of prostatic lesions, L/G ratio and metastatic lesions. Conclusions 68Ga-PSMA-11 PET/MR using the five-compartment segmentation model affects SUV measurements in prostate lesions and in the normal prostate and therefore patient follow-up studies must be conducted using the same segmentation model.
Collapse
Affiliation(s)
- Liran Domachevsky
- Department of Nuclear Medicine, Assuta Medical Centers, Tel Aviv 6971028, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Natalia Goldberg
- Department of Nuclear Medicine, Assuta Medical Centers, Tel Aviv 6971028, Israel
| | - Miguel Gorenberg
- Department of Nuclear Medicine, Bnai Zion Medical Center and Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa 3339419, Israel
| | - Hanna Bernstine
- Department of Nuclear Medicine, Assuta Medical Centers, Tel Aviv 6971028, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - David Groshar
- Department of Nuclear Medicine, Assuta Medical Centers, Tel Aviv 6971028, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Onofrio A Catalano
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
17
|
Domachevsky L, Bernstine H, Goldberg N, Nidam M, Catalano OA, Groshar D. Comparison between pelvic PSMA-PET/MR and whole-body PSMA-PET/CT for the initial evaluation of prostate cancer: a proof of concept study. Eur Radiol 2019; 30:328-336. [PMID: 31332559 DOI: 10.1007/s00330-019-06353-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 06/20/2019] [Accepted: 07/01/2019] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Despite the advantages of prostate-specific membrane antigen (PSMA)-PET/MR over PSMA-PET/CT, its relatively long scanning time and suboptimal PET attenuation correction necessitate careful assessment of the most appropriate setting for this type of study. We assessed lesion agreement between PSMA-PET/MR and PSMA-PET/CT in patients undergoing initial evaluation of prostate cancer. METHODS This was a prospective study of consecutive patients with histological biopsy-proven prostate cancer who underwent pelvic PSMA-PET/MR followed by whole-body PSMA-PET/CT. All conspicuous PSMA-avid foci were counted on PSMA-PET/CT and PSMA-PET/MR with CT or MR correlation. Analysis was performed for intra-prostatic lesions, capsular invasion, seminal vesicle involvement and lymph node and bone involvement. Incidental and significant findings seen on PSMA-PET/CT outside the PSMA-PET/MR field of view were also analysed. Agreements between PSMA-PET/CT and PSMA-PET/MR findings were performed using Cohen's kappa test. RESULTS Image analysis was performed on 140 patients (mean age, 67.3 ± 8.2 years). Agreement between PSMA PET/CT and PSMA-PET/MR was very good for intra-prostatic PSMA-avid foci (K = 0.85) and pelvic lymph nodes (K = 0.98), good for PSMA-avid bone metastases (K = 0.76) and fair for prostatic capsular invasion (K = 0.25) and seminal vesicle involvement (K = 0.31). Twelve patients (8.5%) had incidental findings and two patients (1.4%) had clinically significant findings. CONCLUSION Limited pelvic PSMA-PET/MR has very good agreement with PET/CT regarding PSMA-avid prostatic, regional lymph nodes and bone lesions, and is superior to PET/CT with regard to capsular invasion and seminal vesicle involvement. KEY POINTS • Limited pelvic PSMA-PET/MR is superior to whole-body PSMA-PET/CT in detecting extensions of localised disease, mainly due to the high soft tissue resolution of MR. • Limited pelvic PSMA-PET/MR may be useful for initial evaluation of histological biopsy-proven prostate cancer. • Further studies are warranted to evaluate limited pelvic PSMA-PET/MR for screening and active surveillance in selected populations.
Collapse
Affiliation(s)
- Liran Domachevsky
- Department of Nuclear Medicine, Assuta Medical Centers, 20 Habarzel Street, 6971028, Tel Aviv, Israel
| | - Hanna Bernstine
- Department of Nuclear Medicine, Assuta Medical Centers, 20 Habarzel Street, 6971028, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, P.O. Box 39040, 6997801, Tel Aviv, Israel
| | - Natalia Goldberg
- Department of Nuclear Medicine, Assuta Medical Centers, 20 Habarzel Street, 6971028, Tel Aviv, Israel
| | - Meital Nidam
- Department of Nuclear Medicine, Assuta Medical Centers, 20 Habarzel Street, 6971028, Tel Aviv, Israel
| | - Onofrio A Catalano
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - David Groshar
- Department of Nuclear Medicine, Assuta Medical Centers, 20 Habarzel Street, 6971028, Tel Aviv, Israel. .,Sackler School of Medicine, Tel Aviv University, P.O. Box 39040, 6997801, Tel Aviv, Israel.
| |
Collapse
|
18
|
Zamboglou C, Eiber M, Fassbender TR, Eder M, Kirste S, Bock M, Schilling O, Reichel K, van der Heide UA, Grosu AL. Multimodal imaging for radiation therapy planning in patients with primary prostate cancer. Phys Imaging Radiat Oncol 2018; 8:8-16. [PMID: 33458410 PMCID: PMC7807571 DOI: 10.1016/j.phro.2018.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/22/2022] Open
Abstract
Implementation of advanced imaging techniques like multiparametric magnetic resonance imaging (mpMRI) or Positron Emission Tomography (PET) in radiation therapy (RT) planning of patients with primary prostate cancer demands several preconditions: accurate staging of the extraprostatic and intraprostatic tumor mass, robust delineation of the intraprostatic gross tumor volume (GTV) and a reproducible characterization of the prostate cancer's biological properties. In the current review we searched for the currently available imaging techniques and we discussed their ability to fulfill these preconditions. We found that current pretreatment imaging was mainly performed with mpMRI and/or Prostate-specific membrane antigen PET imaging. Both techniques offered an accurate detection of the extraprostatic and intraprostatic tumor burden and had a major impact on RT concepts. However, some studies postulated that mpMRI and PSMA PET had complementary information for intraprostatic GTV detection. Moreover, interobserver differences for intraprostatic tumor delineation based on mpMRI were observed. It is currently unclear whether PET based GTV delineation underlies also interobserver heterogeneity. Further research is warranted to answer whether multimodal imaging is able to visualize biological processes related to prostate cancer pathophysiology and radiation resistance.
Collapse
Affiliation(s)
- Constantinos Zamboglou
- Department of Radiation Oncology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Germany
- Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Germany
| | - Matthias Eiber
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Germany
| | - Thomas R. Fassbender
- Department of Nuclear Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Matthias Eder
- Department of Nuclear Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Simon Kirste
- Department of Radiation Oncology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Germany
| | - Michael Bock
- Division of Medical Physics, Department of Radiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Germany
| | - Oliver Schilling
- Institute of Surgical Pathology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Germany
| | - Kathrin Reichel
- Department of Urology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Uulke A. van der Heide
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Anca L. Grosu
- Department of Radiation Oncology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Germany
| |
Collapse
|