1
|
Zhao K, Huang H, Gao E, Qi J, Chen T, Zhao G, Zhao G, Zhang Y, Wang P, Bai J, Zhang Y, Hou Z, Cheng J, Ma X. Distributed parameter model of dynamic contrast-enhanced MRI in the identification of IDH mutation, 1p19q codeletion, and tumor cell proliferation in glioma patients. Front Oncol 2024; 14:1333798. [PMID: 39525622 PMCID: PMC11544007 DOI: 10.3389/fonc.2024.1333798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Objectives To investigate the clinical value of hemodynamic parameters derived from dynamic contrast-enhanced MRI (DCE-MRI) in predicting glioma genotypes including isocitrate dehydrogenase (IDH) mutation, 1p/19q codeletion status and the tumor proliferation index (Ki-67) noninvasively. And to compare the diagnostic performance of parameters of distributed parameter (DP)model and extended Tofts (Ex-Tofts) model. Materials and methods Dynamic contrast-enhanced MRI (DCE-MRI) data of patients with glioma were prospectively enrolled from April 2021 to May 2023. The imaging data were analyzed using DP and Ex-Tofts model for evaluating the perfusion and permeability characteristics of glioma. Comparisons were performed according to IDH genotype in all glioma patients and 1p/19q codeletion in IDH mutation glioma patients. Receiver operating characteristic (ROC) curves were generated for DCE-MRI parameters. The Spearman rank correlation coefficients were calculated between DCE MRI parameters and Ki-67 index. Results In IDH-mutation gliomas, a higher blood flow (F) was found in 1p/19q codeletion gliomas than in 1p/19q intact gliomas. No parameter derived from Ex-Tofts model showed significant differences in predicting 1p/19q status. Fractional volume of interstitial space (V e) derived from both the DP and Ex-Tofts models exhibited optimal performance in predicting IDH genotype (AUC = 0.818, 0.828, respectively). V e also showed the highest correlations with Ki-67 LI within their respective models in all gliomas (ρ = 0.62, 0.61), indicating comparable moderate positive associations. Ki-67. Conclusion DP model showed a clear advantage in predicting 1p/19q status compared to Ex-Tofts model. The DP and Ex-Tofts models performed similarly in predicting IDH mutation and Ki-67 index.
Collapse
Affiliation(s)
- Kai Zhao
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huiyu Huang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Eryuan Gao
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinbo Qi
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ting Chen
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gaoyang Zhao
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guohua Zhao
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peipei Wang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Bai
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zujun Hou
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyue Ma
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Bannykh KS, Fuentes-Fayos AC, Linesch PW, Breunig JJ, Bannykh SI. Laminin Beta 2 Is Localized at the Sites of Blood-Brain Barrier and Its Disruption Is Associated With Increased Vascular Permeability, Histochemical, and Transcriptomic Study. J Histochem Cytochem 2024; 72:641-667. [PMID: 39340425 PMCID: PMC11472343 DOI: 10.1369/00221554241281896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024] Open
Abstract
Heterotrimeric extracellular matrix proteins laminins are mostly deposited at basal membranes and are important in repair and neoplasia. Here, we localize laminin beta 2 (LAMB2) at the sites of blood-brain barrier (BBB). Microvasculature (MV) of normal brain is endowed with complete LAMB2 coverage. In contrast, its cognate protein laminin beta 1 (LAMB1) is absent in MV of normal brain but emerges at the sprouting tip of a growing vessels. Similarly, vascular proliferation in high-grade gliomas (HGG) is accompanied by marked overexpression of LAMB1, whereas LAMB2 shows deficient deposition. We find that many brain pathologies with presence of post-gadolinium enhancement (PGE) on magnetic resonance imaging (MRI) show disruption of LAMB2 vascular ensheathment. Inhibition of vascular endothelial growth factor signaling in HGG blocks angiogenesis, suppresses PGE in HGG, prevents expression of LAMB1, and restores LAMB2 vascular coverage. Analysis of single-cell RNA sequencing (scRNA-seq) databases shows that in quiescent brain LAMB2 is predominantly expressed by BBB-associated pericytes (PCs) and endothelial cells (ECs), whereas neither cell types produce LAMB1. In contrast, in HGG, both LAMB1 and 2 are overexpressed by endothelial precursor cells, a phenotypically unique immature group, specific to proliferating hyperplastic MV.
Collapse
Affiliation(s)
- Katherine S. Bannykh
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Antonio C. Fuentes-Fayos
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Paul W. Linesch
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Joshua J. Breunig
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
- Center for Neural Sciences in Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Serguei I. Bannykh
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
3
|
Roux A, Elia A, Hudelist B, Benzakoun J, Dezamis E, Parraga E, Moiraghi A, Simboli GA, Chretien F, Oppenheim C, Zanello M, Pallud J. Prognostic significance of MRI contrast enhancement in newly diagnosed glioblastoma, IDH-wildtype according to WHO 2021 classification. J Neurooncol 2024; 169:445-455. [PMID: 38913230 DOI: 10.1007/s11060-024-04747-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/11/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND AND OBJECTIVES Contrast enhancement in glioblastoma, IDH-wildtype is common but not systematic. In the era of the WHO 2021 Classification of CNS Tumors, the prognostic impact of a contrast enhancement and the pattern of contrast enhancement is not clearly elucidated. METHODS We performed an observational, retrospective, single-centre cohort study at a tertiary neurosurgical oncology centre (January 2006 - December 2022). We screened adult patients with a newly-diagnosed glioblastoma, IDH-wildtype in order to assess the prognosis role of the contrast enhancement and the pattern of contrast enhancement. RESULTS We included 1149 glioblastomas, IDH-wildtype: 26 (2.3%) had a no contrast enhancement, 45 (4.0%) had a faint and patchy contrast enhancement, 118 (10.5%) had a nodular contrast enhancement, and 960 (85.5%) had a ring-like contrast enhancement. Overall survival was longer in non-contrast enhanced glioblastomas (26.7 months) than in contrast enhanced glioblastomas (10.9 months) (p < 0.001). In contrast enhanced glioblastomas, a ring-like pattern was associated with shorter overall survival than in faint and patchy and nodular patterns (10.0 months versus 13.0 months, respectively) (p = 0.033). Whatever the presence of a contrast enhancement and the pattern of contrast enhancement, surgical resection was an independent predictor of longer overall survival, while age ≥ 70 years, preoperative KPS score < 70, tumour volume ≥ 30cm3, and postoperative residual contrast enhancement were independent predictors of shorter overall survival. CONCLUSION A contrast enhancement is present in the majority (97.7%) of glioblastomas, IDH-wildtype and, regardless of the pattern, is associated with a shorter overall survival. The ring-like pattern of contrast enhancement is typical in glioblastomas, IDH-wildtype (85.5%) and remains an independent predictor of shorter overall survival compared to other patterns (faint and patchy and nodular).
Collapse
Affiliation(s)
- Alexandre Roux
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Site Sainte Anne, 1, rue Cabanis, Paris Cedex 14, F-75014, France.
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, IMA-Brain, Paris, F-75014, France.
| | - Angela Elia
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Site Sainte Anne, 1, rue Cabanis, Paris Cedex 14, F-75014, France
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, IMA-Brain, Paris, F-75014, France
| | - Benoit Hudelist
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Site Sainte Anne, 1, rue Cabanis, Paris Cedex 14, F-75014, France
| | - Joseph Benzakoun
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, IMA-Brain, Paris, F-75014, France
- Service de Neuroradiologie, GHU Paris Psychiatrie et Neurosciences, Site Sainte Anne, Paris, F- 75014, France
| | - Edouard Dezamis
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Site Sainte Anne, 1, rue Cabanis, Paris Cedex 14, F-75014, France
| | - Eduardo Parraga
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Site Sainte Anne, 1, rue Cabanis, Paris Cedex 14, F-75014, France
| | - Alessandro Moiraghi
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Site Sainte Anne, 1, rue Cabanis, Paris Cedex 14, F-75014, France
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, IMA-Brain, Paris, F-75014, France
| | - Giorgia Antonia Simboli
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Site Sainte Anne, 1, rue Cabanis, Paris Cedex 14, F-75014, France
- Service de Neuropathologie, GHU Paris Psychiatrie et Neurosciences, Site Sainte-Anne, Paris, F- 75014, France
| | - Fabrice Chretien
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, IMA-Brain, Paris, F-75014, France
- Service de Neuropathologie, GHU Paris Psychiatrie et Neurosciences, Site Sainte-Anne, Paris, F- 75014, France
| | - Catherine Oppenheim
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, IMA-Brain, Paris, F-75014, France
- Service de Neuroradiologie, GHU Paris Psychiatrie et Neurosciences, Site Sainte Anne, Paris, F- 75014, France
| | - Marc Zanello
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Site Sainte Anne, 1, rue Cabanis, Paris Cedex 14, F-75014, France
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, IMA-Brain, Paris, F-75014, France
| | - Johan Pallud
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Site Sainte Anne, 1, rue Cabanis, Paris Cedex 14, F-75014, France
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, IMA-Brain, Paris, F-75014, France
| |
Collapse
|
4
|
Lee H, Fu JF, Gaudet K, Bryant AG, Price JC, Bennett RE, Johnson KA, Hyman BT, Hedden T, Salat DH, Yen YF, Huang SY. Aberrant vascular architecture in the hippocampus correlates with tau burden in mild cognitive impairment and Alzheimer's disease. J Cereb Blood Flow Metab 2024; 44:787-800. [PMID: 38000018 PMCID: PMC11197134 DOI: 10.1177/0271678x231216144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/04/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023]
Abstract
Cerebrovascular dysfunction is a significant contributor to Alzheimer's disease (AD) progression. AD mouse models show altered capillary morphology, density, and diminished blood flow in areas of tau and beta-amyloid accumulation. The purpose of this study was to examine alterations in vascular structure and their contributions to perfusion deficits in the hippocampus in AD and mild cognitive impairment (MCI). Seven individuals with AD and MCI (1 AD/6 MCI), nine cognitively intact older healthy adults, and seven younger healthy adults underwent pseudo-continuous arterial spin labeling (PCASL) and gradient-echo/spin-echo (GESE) dynamic susceptibility contrast (DSC) MRI. Cerebral blood flow (CBF), cerebral blood volume, relative vessel size index (rVSI), and mean vessel density were calculated from model fitting. Lower CBF from PCASL and SE DSC MRI was observed in the hippocampus of AD/MCI group. rVSI in the hippocampus of the AD/MCI group was larger than that of the two healthy groups (FDR-P = 0.02). No difference in vessel density was detected between the groups. We also explored relationship of tau burden from 18F-flortaucipir positron emission tomography and vascular measures from MRI. Tau burden was associated with larger vessel size and lower CBF in the hippocampus. We postulate that larger vessel size may be associated with vascular alterations in AD/MCI.
Collapse
Affiliation(s)
- Hansol Lee
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Jessie Fanglu Fu
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Kyla Gaudet
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Annie G Bryant
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Julie C Price
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Rachel E Bennett
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Keith A Johnson
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Trey Hedden
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David H Salat
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Yi-Fen Yen
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Susie Y Huang
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
5
|
Alafandi A, Tbalvandany SS, Arzanforoosh F, van Der Voort SR, Incekara F, Verhoef L, Warnert EAH, Kruizinga P, Smits M. Probing the glioma microvasculature: a case series of the comparison between perfusion MRI and intraoperative high-frame-rate ultrafast Doppler ultrasound. Eur Radiol Exp 2024; 8:13. [PMID: 38273190 PMCID: PMC10810769 DOI: 10.1186/s41747-023-00406-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/07/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND We aimed to describe the microvascular features of three types of adult-type diffuse glioma by comparing dynamic susceptibility contrast (DSC) perfusion magnetic resonance imaging (MRI) with intraoperative high-frame-rate ultrafast Doppler ultrasound. METHODS Case series of seven patients with primary brain tumours underwent both DSC perfusion MRI and intra-operative high-frame-rate ultrafast Doppler ultrasound. From the ultrasound images, three-dimensional vessel segmentation was obtained of the tumour vascular bed. Relative cerebral blood volume (rCBV) maps were generated with leakage correction and normalised to the contralateral normal-appearing white matter. From tumour histograms, median, mean, and maximum rCBV ratios were extracted. RESULTS Low-grade gliomas (LGGs) showed lower perfusion than high-grade gliomas (HGGs), as expected. Within the LGG subgroup, oligodendroglioma showed higher perfusion than astrocytoma. In HGG, the median rCBV ratio for glioblastoma was 3.1 while astrocytoma grade 4 showed low perfusion with a median rCBV of 1.2. On the high-frame-rate ultrafast Doppler ultrasound images, all tumours showed a range of rich and organised vascular networks with visually apparent abnormal vessels, even in LGG. CONCLUSIONS This unique case series revealed in vivo insights about the microvascular architecture in both LGGs and HGGs. Ultrafast Doppler ultrasound revealed rich vascularisation, also in tumours with low perfusion at DSC MRI. These findings warrant further investigations using advanced MRI postprocessing, in particular for characterising adult-type diffuse glioma. RELEVANCE STATEMENT Our findings challenge the current assumption behind the estimation of relative cerebral blood volume that the distribution of blood vessels in a voxel is random. KEY POINTS • Ultrafast Doppler ultrasound revealed rich vascularity irrespective of perfusion dynamic susceptibility contrast MRI state. • Rich and organised vascularisation was also observed even in low-grade glioma. • These findings challenge the assumptions for cerebral blood volume estimation with MRI.
Collapse
Affiliation(s)
- Ahmad Alafandi
- Department of Radiology & Nuclear Medicine, Erasmus MC, Dr.Molewaterplein 40, 3015, GD, Rotterdam, The Netherlands
- Brain Tumour Centre, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Sadaf Soloukey Tbalvandany
- Department of Neurosurgery, Erasmus MC, Rotterdam, The Netherlands
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Fatemeh Arzanforoosh
- Department of Radiology & Nuclear Medicine, Erasmus MC, Dr.Molewaterplein 40, 3015, GD, Rotterdam, The Netherlands
| | - Sebastian R van Der Voort
- Department of Radiology & Nuclear Medicine, Erasmus MC, Dr.Molewaterplein 40, 3015, GD, Rotterdam, The Netherlands
| | - Fatih Incekara
- Department of Radiology & Nuclear Medicine, Erasmus MC, Dr.Molewaterplein 40, 3015, GD, Rotterdam, The Netherlands
- Department of Neurosurgery, Erasmus MC, Rotterdam, The Netherlands
| | - Luuk Verhoef
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Esther A H Warnert
- Department of Radiology & Nuclear Medicine, Erasmus MC, Dr.Molewaterplein 40, 3015, GD, Rotterdam, The Netherlands
| | - Pieter Kruizinga
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Marion Smits
- Department of Radiology & Nuclear Medicine, Erasmus MC, Dr.Molewaterplein 40, 3015, GD, Rotterdam, The Netherlands.
- Brain Tumour Centre, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
- Medical Delta, Delft, The Netherlands.
| |
Collapse
|
6
|
Cao C, Zhang L, Sorensen MD, Reifenberger G, Kristensen BW, McIntyre TM, Lin F. D-2-hydroxyglutarate regulates human brain vascular endothelial cell proliferation and barrier function. J Neuropathol Exp Neurol 2023; 82:921-933. [PMID: 37740942 PMCID: PMC10588003 DOI: 10.1093/jnen/nlad072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023] Open
Abstract
Gain-of-function mutations in isocitrate dehydrogenase (IDH) genes result in excessive production of (D)-2-hydroxyglutarate (D-2HG) which intrinsically modifies tumor cell epigenetics and impacts surrounding noncancerous cells through nonepigenetic pathways. However, whether D-2HG has a paracrine effect on endothelial cells in the tumor microenvironment needs further clarification. We quantified microvessel density by immunohistochemistry using tissue sections from 60 high-grade astrocytic gliomas with or without IDH mutation. Microvessel density was found to be reduced in tumors carrying an IDH mutation. Ex vivo experiments showed that D-2HG inhibited endothelial cell migration, wound healing, and tube formation by suppressing cell proliferation but not viability, possibly through reduced activation of the mTOR/STAT3 pathway. Further, D-2HG reduced fluorescent dextran permeability and decreased paracellular T-cell transendothelial migration by augmenting expression of junctional proteins thereby collectively increasing endothelial barrier function. These results indicate that D-2HG may influence the tumor vascular microenvironment by reducing the intratumoral vasculature density and by inhibiting the transport of metabolites and extravasation of circulating cells into the astrocytoma microenvironment. These observations provide a rationale for combining IDH inhibition with antitumor immunological/angiogenic approaches and suggest a molecular basis for resistance to antiangiogenic drugs in patients whose tumors express a mutant IDH allele.
Collapse
Affiliation(s)
- Chun Cao
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Lingjun Zhang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Mia D Sorensen
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Guido Reifenberger
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University, and University Hospital Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| | - Bjarne W Kristensen
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Thomas M McIntyre
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Feng Lin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
7
|
Arzanforoosh F, van der Voort SR, Incekara F, Vincent A, Van den Bent M, Kros JM, Smits M, Warnert EAH. Microvasculature Features Derived from Hybrid EPI MRI in Non-Enhancing Adult-Type Diffuse Glioma Subtypes. Cancers (Basel) 2023; 15:cancers15072135. [PMID: 37046796 PMCID: PMC10093697 DOI: 10.3390/cancers15072135] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023] Open
Abstract
In this study, we used the vessel size imaging (VSI) MRI technique to characterize the microvasculature features of three subtypes of adult-type diffuse glioma lacking enhancement. Thirty-eight patients with confirmed non-enhancing glioma were categorized into three subtypes: Oligo (IDH-mut&1p/19q-codeleted), Astro (IDH-mut), and GBM (IDH-wt). The VSI technique provided quantitative maps of cerebral blood volume (CBV), microvasculature (µCBV), and vessel size for each patient. Additionally, tissue samples of 21 patients were histopathologically analyzed, and microvasculature features were quantified. Both MRI- and histology-derived features were compared across the three glioma subtypes with ANOVA or Kruskal–Wallis tests. Group averages of CBV, μCBV, and vessel size were significantly different between the three glioma subtypes (p < 0.01). Astro (IDH-mut) had a significantly lower CBV and µCBV compared to Oligo (IDH-mut&1p/19q-codeleted) (p = 0.004 and p = 0.001, respectively), and a higher average vessel size compared to GBM (IDH-wt) (p = 0.01). The histopathological analysis showed that GBM (IDH-wt) possessed vessels with more irregular shapes than the two other subtypes (p < 0.05). VSI provides a good insight into the microvasculature characteristics of the three adult-type glioma subtypes even when lacking enhancement. Further investigations into the specificity of VSI to differentiate glioma subtypes are thus warranted.
Collapse
Affiliation(s)
- Fatemeh Arzanforoosh
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Brain Tumor Center, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Sebastian R. van der Voort
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Brain Tumor Center, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Fatih Incekara
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Department of Neurosurgery, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Arnaud Vincent
- Brain Tumor Center, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
- Department of Neurosurgery, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Martin Van den Bent
- Brain Tumor Center, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
- Department of Neurology, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Johan M. Kros
- Brain Tumor Center, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
- Department of Pathology, Erasmus MC, 3000 CB Rotterdam, The Netherlands
| | - Marion Smits
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Brain Tumor Center, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
- Medical Delta, 2629 JH Delft, The Netherlands
| | - Esther A. H. Warnert
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Brain Tumor Center, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
8
|
Hemorrhagic presentation of previously silent brain tumors. NEUROCIRUGIA (ENGLISH EDITION) 2023:S2529-8496(22)00098-3. [PMID: 36775742 DOI: 10.1016/j.neucie.2022.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/12/2022] [Indexed: 02/12/2023]
Abstract
INTRODUCTION AND OBJECTIVES Acute presentation with intracranial hemorrhage owing to a previously silent brain tumor (BT) is rare. Although any BT can bleed, the frequency and type of bleeding varies across tumor types. MATERIALS AND METHODS We aimed to retrospectively review our experience with 55 patients with BTs presenting with ICH. RESULTS Signs of increased intracranial pressure were the most common symptoms. The temporal lobe was the most common lesion site (n=22). Hemorrhages were mainly confined to the tumor margins (HCTs) (n=34). Extensive intraparenchymal hemorrhages (EIHs) were mainly associated with moderately/severely decreased levels of consciousness (LOCs) (n=15/16). High-grade glioma (HGGT) (n=25) was the leading pathological diagnosis followed by metastasis (MBT) (n=16/55). The hemorrhage type was associated with the pathological diagnosis of the tumor. Patients with HGGT (n=19/25) and MBT (n=9/16) mainly presented with HCTs, whereas low-grade gliomas (LGGT) primarily caused EIHs (n=6/7). CONCLUSIONS Hemorrhagic presentation is a rare occurrence in BTs. Among all, MBT and HGGT are responsible for majority of the cases. Importantly, despite their relatively benign characteristics, LGGTs mainly result in extensive parenchymal destruction once they bleed. Maximum surgical resection of hemorrhagic BTs and decompression of the affected brain regions followed by histological confirmation of the diagnosis should be the main goals of treatment in cases with hemorrhagic BTs.
Collapse
|
9
|
Three-dimensional visualization of human brain tumors using the CUBIC technique. Brain Tumor Pathol 2023; 40:4-14. [PMID: 36370248 DOI: 10.1007/s10014-022-00445-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Application of tissue clearing techniques on human brain tumors is still limited. This study was to investigate the application of CUBIC on 3D pathological studies of human brain tumors. Brain tumor specimens derived from 21 patients were cleared with CUBIC. Immunostaining was conducted on cleared specimens to label astrocytes, microglia and microvessels, respectively. All tumor specimens achieved transparency after clearing. Immunostaining and CUBIC are well compatible in a variety of human brain tumors. Spatial morphologies of microvessels, astrocytes and microglia of tumors were clearly visualized in 3D, and their 3D morphological parameters were easily quantified. By comparing the quantitative morphological parameters of microvessels among brain tumors of different malignancy, we found that mean vascular diameter was positively correlated with tumor malignancy. Our study demonstrates that CUBIC can be successfully applied to 3D pathological studies of various human brain tumors, and 3D studies of human brain tumors hold great promise in helping us better understand brain tumor pathology in the future.
Collapse
|
10
|
Asija S, Chatterjee A, Yadav S, Chekuri G, Karulkar A, Jaiswal AK, Goda JS, Purwar R. Combinatorial approaches to effective therapy in glioblastoma (GBM): Current status and what the future holds. Int Rev Immunol 2022; 41:582-605. [PMID: 35938932 DOI: 10.1080/08830185.2022.2101647] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The aggressive and recurrent nature of glioblastoma is multifactorial and has been attributed to its biological heterogeneity, dysfunctional metabolic signaling pathways, rigid blood-brain barrier, inherent resistance to standard therapy due to the stemness property of the gliomas cells, immunosuppressive tumor microenvironment, hypoxia and neoangiogenesis which are very well orchestrated and create the tumor's own highly pro-tumorigenic milieu. Once the relay of events starts amongst these components, eventually it becomes difficult to control the cascade using only the balanced contemporary care of treatment consisting of maximal resection, radiotherapy and chemotherapy with temozolamide. Over the past few decades, implementation of contemporary treatment modalities has shown benefit to some extent, but no significant overall survival benefit is achieved. Therefore, there is an unmet need for advanced multifaceted combinatorial strategies. Recent advances in molecular biology, development of innovative therapeutics and novel delivery platforms over the years has resulted in a paradigm shift in gliomas therapeutics. Decades of research has led to emergence of several treatment molecules, including immunotherapies such as immune checkpoint blockade, oncolytic virotherapy, adoptive cell therapy, nanoparticles, CED and BNCT, each with the unique proficiency to overcome the mentioned challenges, present research. Recent years are seeing innovative combinatorial strategies to overcome the multifactorial resistance put forth by the GBM cell and its TME. This review discusses the contemporary and the investigational combinatorial strategies being employed to treat GBM and summarizes the evidence accumulated till date.
Collapse
Affiliation(s)
- Sweety Asija
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Abhishek Chatterjee
- Department of Radiation Oncology, Tata Memorial Center, Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sandhya Yadav
- Department of Radiation Oncology, Tata Memorial Center, Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Godhanjali Chekuri
- Department of Radiation Oncology, Tata Memorial Center, Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Atharva Karulkar
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Ankesh Kumar Jaiswal
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Jayant S Goda
- Department of Radiation Oncology, Tata Memorial Center, Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Rahul Purwar
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| |
Collapse
|
11
|
Turkkan A, Khezri MK, Eser P, Kuytu T, Tolunay S, Bekar A. Hemorrhagic presentation of previously silent brain tumors. Neurocirugia (Astur) 2022. [DOI: 10.1016/j.neucir.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
12
|
Khan I, Baig MH, Mahfooz S, Imran MA, Khan MI, Dong JJ, Cho JY, Hatiboglu MA. Nanomedicine for Glioblastoma: Progress and Future Prospects. Semin Cancer Biol 2022; 86:172-186. [PMID: 35760272 DOI: 10.1016/j.semcancer.2022.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022]
Abstract
Glioblastoma is the most aggressive form of brain tumor, accounting for the highest mortality and morbidity rates. Current treatment for patients with glioblastoma includes maximal safe tumor resection followed by radiation therapy with concomitant temozolomide (TMZ) chemotherapy. The addition of TMZ to the conformal radiation therapy has improved the median survival time only from 12 months to 16 months in patients with glioblastoma. Despite these aggressive treatment strategies, patients' prognosis remains poor. This therapeutic failure is primarily attributed to the blood-brain barrier (BBB) that restricts the transport of TMZ from reaching the tumor site. In recent years, nanomedicine has gained considerable attention among researchers and shown promising developments in clinical applications, including the diagnosis, prognosis, and treatment of glioblastoma tumors. This review sheds light on the morphological and physiological complexity of the BBB. It also explains the development of nanomedicine strategies to enhance the permeability of drug molecules across the BBB.
Collapse
Affiliation(s)
- Imran Khan
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, Istanbul, Turkey
| | - Mohammad Hassan Baig
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 120-752, Republic of Korea
| | - Sadaf Mahfooz
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, Istanbul, Turkey
| | - Mohammad Azhar Imran
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 120-752, Republic of Korea
| | - Mohd Imran Khan
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 120-752, Republic of Korea
| | - Jae-June Dong
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 120-752, Republic of Korea
| | - Jae Yong Cho
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 120-752, Republic of Korea.
| | - Mustafa Aziz Hatiboglu
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, Istanbul, Turkey; Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, Istanbul, Turkey.
| |
Collapse
|
13
|
Wang D, Lu Y, Li X, Mei N, Wu PY, Geng D, Wu H, Yin B. Evaluation of HIF-1α Expression in a Rat Glioma Model Using Intravoxel Incoherent Motion and R2* Mapping. Front Oncol 2022; 12:902612. [PMID: 35785202 PMCID: PMC9248438 DOI: 10.3389/fonc.2022.902612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Accurate evaluation of HIF-1α levels can facilitate the detection of hypoxia niches in glioma and treatment decisions. To investigate the feasibility of intravoxel incoherent motion (IVIM) and R2* Mapping for detecting HIF-1α expression levels, sixteen rats with intracranial C6 gliomas were subjected to IVIM and R2* Mapping using a 7 Tesla MRI scanner. For each model, the brain tissue on the HIF-1α-stained slices was subdivided into multiple square regions of interest (ROIs) with areas of 1 mm2, for which HIF-1α expression was assessed by HALO software to form a maps of HIF scores with a 0–300 range. The IVIM and R2* Mapping images were processed to create maps of the D, D*, f and R2* that were then paired with the corresponding HIF score maps. The average D, D*, f, perfusion (f × D*) and R2* values were calculated for the ROIs in the tumor and normal brain regions with different HIF-1α levels and used in further analysis. In this study, the average tumor size of sixteen C6 model rats was 458 ± 46.52 mm3, and the 482 included ROIs consisted of 280 tumoral and 202 normal ROIs. The average HIF score for the tumor regions was significantly higher than normal brain tissue (p < 0.001), and higher HIF scores were obtained for the central part of tumors than peripheral parts (p=0.03). Compared with normal brain tissues, elevated perfusion and f values were observed in tumor regions (p = 0.021, 0.004). In tumoral ROIs, the R2* values were higher in the group with high HIF-1α expression than in the group with low HIF-1α expression (p = 0.003). A correlation analysis revealed a positive correlation between the R2* value and HIF scores (r = 0.43, p < 0.001) and a negative correlation between D* and the HIF scores (r = -0.30, p = 0.001). Discrepancies in HIF-1α expression were found among different intratumoral areas, and IVIM and R2* Mapping were found to be promising means of noninvasive detection of the distribution and expression level of HIF-1α.
Collapse
Affiliation(s)
- Dongdong Wang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiping Lu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xuanxuan Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Nan Mei
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Pu-Yeh Wu
- Department of MR Research, GE Healthcare, Shanghai, China
| | - Daoying Geng
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hao Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Hao Wu, ; Bo Yin,
| | - Bo Yin
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Hao Wu, ; Bo Yin,
| |
Collapse
|
14
|
You G, Wu H, Lei B, Wan X, Chen S, Zheng N. Diagnostic accuracy of arterial spin labeling in differentiating between primary central nervous system lymphoma and high-grade glioma: a systematic review and meta-analysis. Expert Rev Anticancer Ther 2022; 22:763-771. [PMID: 35612545 DOI: 10.1080/14737140.2022.2082948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Existing studies have confirmed the accuracy of arterial spin labeling (ASL) in differentiating between primary central nervous system lymphoma (PCNSL) and high-grade glioma (HGG). We aimed to consolidate the existing evidence with a meta-analysis. METHODS Six literature databases were searched for relevant papers. After assessing the quality of studies, bivariate regression was performed, and the pooled sensitivity (SEN), specificity (SPE), positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic score, diagnostic odds ratio (DOR), and the area under the curve (AUC) of the summary receiver operating characteristic (SROC) curve were calculated, along with the corresponding 95% confidence intervals (CIs). Deeks' test was used to determine risk of publication bias. RESULTS Ten high-quality studies, comprising 151 patients with PCNSL and 455 with HGG, were included. The pooled SEN was 0.79 (95% CI: 0.72-0.85), pooled SPE was 0.90 (95% CI: 0.84-0.94), pooled PLR was 8.07 (95% CI: 5.01-13.02), pooled NLR was 0.23 (95% CI: 0.17-0.32), pooled diagnostic score was 3.56 (95% CI: 2.94-4.18), and pooled DOR was 35.10 (95% CI: 18.83-65.45). The AUC of SROC was 0.86 (95% CI: 0.83-0.89). No publication bias was found. CONCLUSIONS ASL demonstrated high diagnostic accuracy in differentiating between PCNSL and HGG.
Collapse
Affiliation(s)
- Guoliang You
- Department of Cerebrovascular Diseases, The People's Hospital of Leshan City, Leshan 614000, China
| | - Honggang Wu
- Department of Cerebrovascular Diseases, The People's Hospital of Leshan City, Leshan 614000, China
| | - Bo Lei
- Department of Cerebrovascular Diseases, The People's Hospital of Leshan City, Leshan 614000, China
| | - Xiaoqiang Wan
- Department of Cerebrovascular Diseases, The People's Hospital of Leshan City, Leshan 614000, China
| | - Shu Chen
- Department of Cerebrovascular Diseases, The People's Hospital of Leshan City, Leshan 614000, China
| | - Niandong Zheng
- Department of Cerebrovascular Diseases, The People's Hospital of Leshan City, Leshan 614000, China
| |
Collapse
|
15
|
A Comparative Study Between Tumor Blood Vessels and Dynamic Contrast-enhanced MRI for Identifying Isocitrate Dehydrogenase Gene 1 (IDH1) Mutation Status in Glioma. Curr Med Sci 2022; 42:650-657. [PMID: 35606665 DOI: 10.1007/s11596-022-2563-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 07/09/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Isocitrate dehydrogenase gene (IDH) mutations are associated with tumor angiogenesis and therefore play an important role in glioma management. This study compared the performance of tumor blood vessels counted from contrast-enhanced 3D brain volume (3D-BRAVO) sequence and dynamic contrast-enhanced (DCE) MRI in differentiating IDH1 status in gliomas. METHODS Forty-four glioma patients [16 with IDH1 mutant-type (IDH1-MT), 28 with IDH1 wild-type (IDH1-WT)] were retrospectively analyzed. A blood vessel entering a tumor was defined as an intratumoral vessel; a blood vessel adjacent to the edge of a tumor was defined as a peritumoral vessel. Combined vessels were defined as the sum of the intratumoral and peritumoral vessels. DCE-derived metrics of tumor were normalized to the contralateral normal-appearing white matter. RESULTS Intratumoral, peritumoral, and combined tumor blood vessels were all significantly different between IDH1-MT and IDH1-WT gliomas, and the range of area under curves (AUCs) was 0.816-0.855. For DCE-derived parameters, cerebral blood volume, cerebral blood flow, mean transit time, and volume transfer constant were significantly different between IDH1-MT and IDH1-WT gliomas, and the range of AUCs was 0.703-0.756. Combined vessels possessed the best performance for identifying IDH1 mutations in gliomas (AUC: 0.855, sensitivity: 0.857, specificity: 0.812, P<0.001). CONCLUSION The number of tumor blood vessels has comparable diagnostic performance with DCE-derived parameters for differentiating IDH1 mutations and can serve as a potential imaging biomarker to reflect IDH1 mutations in gliomas.
Collapse
|
16
|
Advances in Hydrogel-Based Microfluidic Blood–Brain-Barrier Models in Oncology Research. Pharmaceutics 2022; 14:pharmaceutics14050993. [PMID: 35631579 PMCID: PMC9144371 DOI: 10.3390/pharmaceutics14050993] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 12/10/2022] Open
Abstract
The intrinsic architecture and complexity of the brain restricts the capacity of therapeutic molecules to reach their potential targets, thereby limiting therapeutic possibilities concerning neurological ailments and brain malignancy. As conventional models fail to recapitulate the complexity of the brain, progress in the field of microfluidics has facilitated the development of advanced in vitro platforms that could imitate the in vivo microenvironments and pathological features of the blood–brain barrier (BBB). It is highly desirous that developed in vitro BBB-on-chip models serve as a platform to investigate cancer metastasis of the brain along with the possibility of efficiently screening chemotherapeutic agents against brain malignancies. In order to improve the proficiency of BBB-on-chip models, hydrogels have been widely explored due to their unique physical and chemical properties, which mimic the three-dimensional (3D) micro architecture of tissues. Hydrogel-based BBB-on-chip models serves as a stage which is conducive for cell growth and allows the exchange of gases and nutrients and the removal of metabolic wastes between cells and the cell/extra cellular matrix (ECM) interface. Here, we present recent advancements in BBB-on-chip models targeting brain malignancies and examine the utility of hydrogel-based BBB models that could further strengthen the future application of microfluidic devices in oncology research.
Collapse
|
17
|
Gong X, Jin T, Wang Y, Zhang R, Qi W, Xi L. Photoacoustic microscopy visualizes glioma-induced disruptions of cortical microvascular structure and function. J Neural Eng 2022; 19. [PMID: 35316796 DOI: 10.1088/1741-2552/ac5fcc] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/22/2022] [Indexed: 11/12/2022]
Abstract
Glioma growth may cause pervasive disruptions of brain vascular structure and function. Revealing both structural and functional alterations at a fine spatial scale is challenging for existing imaging techniques, which could confound the understanding of the basic mechanisms of brain diseases. In this study, we apply photoacoustic microscopy with a high spatial-temporal resolution and a wide field of view (FOV) to investigate the glioma-induced alterations of cortical vascular morphology, hemodynamic response, as well as functional connectivity at resting- and stimulated- states. We find that glioma promotes the growth of microvessels and leads to the increase of vascular proportion in the cerebral cortex by deriving structural parameters. The glioma also causes the loss of response in the ipsilateral hemisphere and abnormal response in the contralateral hemisphere, and further induces brain-wide alterations of functional connectivity in resting and stimulated states. The observed results show the foundation of employing photoacoustic microscopy as a potential technique in revealing the underlying mechanisms of brain diseases.
Collapse
Affiliation(s)
- Xinrui Gong
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P.R. China, Shenzhen, 518055, CHINA
| | - Tian Jin
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P.R. China, Shenzhen, Guangdong, 518055, CHINA
| | - Yongchao Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P.R. China, Shenzhen, Guangdong, 518055, CHINA
| | - Ruoxi Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P.R. China, Shenzhen, Guangdong, 518055, CHINA
| | - Weizhi Qi
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P.R. China, Shenzhen, Guangdong, 518055, CHINA
| | - Lei Xi
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P.R. China, Shenzhen, Guangdong, 518055, CHINA
| |
Collapse
|
18
|
Foda A, Kellner E, Gunawardana A, Gao X, Janz M, Kufner A, Khalil AA, Geran R, Mekle R, Fiebach JB, Galinovic I. Differentiation of Cerebral Neoplasms with Vessel Size Imaging (VSI). Clin Neuroradiol 2022; 32:239-248. [PMID: 34940899 PMCID: PMC8894153 DOI: 10.1007/s00062-021-01129-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/03/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE Cerebral neoplasms of various histological origins may show comparable appearances on conventional Magnetic Resonance Imaging (MRI). Vessel size imaging (VSI) is an MRI technique that enables noninvasive assessment of microvasculature by providing quantitative estimates of microvessel size and density. In this study, we evaluated the potential of VSI to differentiate between brain tumor types based on their microvascular morphology. METHODS Using a clinical 3T MRI scanner, VSI was performed on 25 patients with cerebral neoplasms, 10 with glioblastoma multiforme (GBM), 8 with primary CNS lymphoma (PCNSL) and 7 with cerebral lung cancer metastasis (MLC). Following the postprocessing of VSI maps, mean vessel diameter (vessel size index, vsi) and microvessel density (Q) were compared across tumors, peritumoral areas, and healthy tissues. RESULTS The MLC tumors have larger and less dense microvasculature compared to PCNSLs in terms of vsi and Q (p = 0.0004 and p < 0.0001, respectively). GBM tumors have higher yet non-significantly different vsi values than PCNSLs (p = 0.065) and non-significant differences in Q. No statistically significant differences in vsi or Q were present between GBMs and MLCs. GBM tumor volume was positively correlated with vsi (r = 0.502, p = 0.0017) and negatively correlated with Q (r = -0.531, p = 0.0007). CONCLUSION Conventional MRI parameters are helpful in differentiating between PCNSLs, GBMs, and MLCs. Additionally incorporating VSI parameters into the diagnostic protocol could help in further differentiating between PCNSLs and metastases and potentially between PCNSLs and GBMs. Future studies in larger patient cohorts are required to establish diagnostic cut-off values for VSI.
Collapse
Affiliation(s)
- Asmaa Foda
- International Graduate Program Medical Neurosciences, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12200, Berlin, Germany
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Elias Kellner
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Freiburg, Germany
| | - Asanka Gunawardana
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178, Berlin, Germany
| | - Xiang Gao
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Freiburg, Germany
| | - Martin Janz
- Department of Hematology, Oncology and Cancer Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anna Kufner
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178, Berlin, Germany
- Klinik und Hochschulambulanz für Neurologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ahmed A Khalil
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt Universität zu Berlin, Berlin, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Berlin, Germany
| | - Rohat Geran
- Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ralf Mekle
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jochen B Fiebach
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ivana Galinovic
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
19
|
Batalov AI, Zakharova NE, Pronin IN, Belyaev AY, Pogosbekyan EL, Goryaynov SA, Bykanov AE, Tyurina AN, Shevchenko AM, Solozhentseva KD, Nikitin PV, Potapov AA. 3D pCASL-perfusion in preoperative assessment of brain gliomas in large cohort of patients. Sci Rep 2022; 12:2121. [PMID: 35136119 PMCID: PMC8826414 DOI: 10.1038/s41598-022-05992-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 01/18/2022] [Indexed: 01/02/2023] Open
Abstract
The aim of the study was to evaluate the role of pseudocontinuous arterial spin labeling perfusion (pCASL-perfusion) in preoperative assessment of cerebral glioma grades. The study group consisted of 253 patients, aged 7-78 years with supratentorial gliomas (65 low-grade gliomas (LGG), 188 high-grade gliomas (HGG)). We used 3D pCASL-perfusion for each patient in order to calculate the tumor blood flow (TBF). We obtained maximal tumor blood flow (maxTBF) in small regions of interest (30 ± 10 mm2) and then normalized absolute maximum tumor blood flow (nTBF) to that of the contralateral normal-appearing white matter of the centrum semiovale. MaxTBF and nTBF values significantly differed between HGG and LGG groups (p < 0.001), as well as between patient groups separated by the grades (grade II vs. grade III) (p < 0.001). Moreover, we performed ROC-analysis which demonstrated high sensitivity and specificity in differentiating between HGG and LGG. We found significant differences for maxTBF and nTBF between grade III and IV gliomas, however, ROC-analysis showed low sensitivity and specificity. We did not observe a significant difference in TBF for astrocytomas and oligodendrogliomas. Our study demonstrates that 3D pCASL-perfusion as an effective diagnostic tool for preoperative differentiation of glioma grades.
Collapse
Affiliation(s)
- A I Batalov
- Federal State Autonomous Institution N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - N E Zakharova
- Federal State Autonomous Institution N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - I N Pronin
- Federal State Autonomous Institution N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - A Yu Belyaev
- Federal State Autonomous Institution N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - E L Pogosbekyan
- Federal State Autonomous Institution N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - S A Goryaynov
- Federal State Autonomous Institution N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - A E Bykanov
- Federal State Autonomous Institution N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - A N Tyurina
- Federal State Autonomous Institution N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - A M Shevchenko
- Federal State Autonomous Institution N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russian Federation.
| | - K D Solozhentseva
- Federal State Autonomous Institution N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - P V Nikitin
- Federal State Autonomous Institution N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - A A Potapov
- Federal State Autonomous Institution N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| |
Collapse
|
20
|
Hu M, Li Z, Qiu J, Zhang R, Feng J, Hu G, Ren J. CKS2 (CDC28 protein kinase regulatory subunit 2) is a prognostic biomarker in lower grade glioma: a study based on bioinformatic analysis and immunohistochemistry. Bioengineered 2021; 12:5996-6009. [PMID: 34494924 PMCID: PMC8806895 DOI: 10.1080/21655979.2021.1972197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gliomas account for the highest cases of primary brain malignancies. Whereas previous studies have demonstrated the roles of CDC28 Protein Kinase Regulatory Subunit 2 (CKS2) in various cancer types, its functions in lower grade gliomas (LGGs) remain elusive. This study aimed to profile the expression and functions of CKS2 in LGG. Multiple online databases such as The Cancer Genome Atlas (TCGA), the Chinese Glioma Genome Atlas (CGGA), Gene Expression Profiling Interactive Analysis 2nd edition (GEPIA2), Tumor Immune Estimation Resource 2nd edition (TIMER2.0) as well as Gene Expression Omnibus (GEO) were used in this study. Immunohistochemistry (IHC) was performed to evaluate CKS2 protein expression. Our data demonstrated upregulation of CKS2 in LGG tissues at both mRNA and protein level, especially in grade III gliomas. Similarly, there was increased expression of CKS2 in isocitrate dehydrogenase 1 (IDH1) wildtype gliomas. In addition, increased DNA copy number and DNA hypomethylation might be associated with the upregulation of the CKS2 in LGG. Using the Kaplan–Meier survival analysis and the Cox regression analysis, CKS2 was shown to be independently associated with poor prognosis of LGG patients. Receiver operating characteristic (ROC) analysis revealed that CKS2 could effectively predict the 1-, 3- and 5-year survival rates of LGG patients. Enrichment analyses revealed that CKS2 was mainly involved in the regulation of the cell cycle in LGG. Taken together, our study demonstrated that CKS2 might be a candidate prognostic biomarker for LGG and could predict the survival rates of LGG patients. Abbreviations: LGG: lower grade glioma; CKS2: CDC28 protein kinase regulatory subunit 2; TCGA: The Cancer Genome Atlas; CGGA: the Chinese Glioma Genome Atlas; GEO: Gene Expression Omnibus; GEPIA: Gene Expression Profiling Interactive Analysis; TIMER: Tumor Immune Estimation Resource; IHC: immunohistochemistry; qRT-PCR: quantitative real-time polymerase chain reaction; PBS: phosphate buffered saline; DAB: diaminobenzidine tetrachloride; OS: overall survival; CAN: copy number alteration; IDH: Isocitrate dehydrogenase; GSEA: Gene Set Enrichment Analysis; DEG: differentially expressed gene; KEGG: Kyoto encyclopedia of genes and genomes; GO: Gene ontology; BP: biological process; CC: cellular component; MF: molecular function; NES: normalized enrichment score; NOM: nominal; FDR: false discovery rate
Collapse
Affiliation(s)
- Menglong Hu
- Department of Pathology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zongkuo Li
- Department of Pathology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jinhuan Qiu
- Department of Pathology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ruizhen Zhang
- Department of Pathology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junkai Feng
- Department of Pathology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Guiming Hu
- Department of Pathology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jingli Ren
- Department of Pathology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
21
|
Waqar M, Lewis D, Agushi E, Gittins M, Jackson A, Coope D. Cerebral and tumoral blood flow in adult gliomas: a systematic review of results from magnetic resonance imaging. Br J Radiol 2021; 94:20201450. [PMID: 34106749 PMCID: PMC9327770 DOI: 10.1259/bjr.20201450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Objective: Blood flow is the rate of blood movement and relevant to numerous processes, though understudied in gliomas. The aim of this review was to pool blood flow metrics obtained from MRI modalities in adult supratentorial gliomas. Methods: MEDLINE, EMBASE and the Cochrane database were queried 01/01/2000–31/12/2019. Studies measuring blood flow in adult Grade II–IV supratentorial gliomas using dynamic susceptibility contrast (DSC) MRI, dynamic contrast enhanced MRI (DCE-MRI) or arterial spin labelling (ASL) were included. Absolute and relative cerebral blood flow (CBF), peritumoral blood flow and tumoral blood flow (TBF) were reported. Results: 34 studies were included with 1415 patients and 1460 scans. The mean age was 52.4 ± 7.3 years. Most patients had glioblastoma (n = 880, 64.6%). The most common imaging modality was ASL (n = 765, 52.4%) followed by DSC (n = 538, 36.8%). Most studies were performed pre-operatively (n = 1268, 86.8%). With increasing glioma grade (II vs IV), TBF increased (70.8 vs 145.5 ml/100 g/min, p < 0.001) and CBF decreased (85.3 vs 49.6 ml/100 g/min, p < 0.001). In Grade IV gliomas, following treatment, CBF increased in ipsilateral (24.9 ± 1.2 vs 26.1 ± 0.0 ml/100 g/min, p < 0.001) and contralateral white matter (25.6 ± 0.2 vs 26.0± 0.0 ml/100 g/min, p < 0.001). Conclusion: Our findings demonstrate that increased mass effect from high-grade gliomas impairs blood flow within the surrounding brain that can improve with surgery. Advances in knowledge: This systematic review demonstrates how mass effect from brain tumours impairs blood flow in the surrounding brain parenchyma that can improve with treatment.
Collapse
Affiliation(s)
- Mueez Waqar
- Division of Informatics, Imaging and Data Sciences, Wolfson Molecular Imaging Centre, Manchester, UK.,Department of Neurosurgery, Salford Royal NHS Foundation Trust, Salford, UK
| | - Daniel Lewis
- Division of Informatics, Imaging and Data Sciences, Wolfson Molecular Imaging Centre, Manchester, UK.,Department of Neurosurgery, Salford Royal NHS Foundation Trust, Salford, UK
| | - Erjon Agushi
- Division of Informatics, Imaging and Data Sciences, Wolfson Molecular Imaging Centre, Manchester, UK.,Department of Neurosurgery, Salford Royal NHS Foundation Trust, Salford, UK
| | - Matthew Gittins
- Department of Biostatistics, Division of Population Health, Health Services Research& Primary Care, The University of Manchester, Manchester, UK
| | - Alan Jackson
- Division of Informatics, Imaging and Data Sciences, Wolfson Molecular Imaging Centre, Manchester, UK.,Department of Neuroradiology, Salford Royal NHS Foundation Trust, Salford, UK
| | - David Coope
- Department of Neurosurgery, Salford Royal NHS Foundation Trust, Salford, UK.,Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, Manchester, UK
| |
Collapse
|
22
|
Nagaraja TN, Lee IY. Cerebral microcirculation in glioblastoma: A major determinant of diagnosis, resection, and drug delivery. Microcirculation 2021; 28:e12679. [PMID: 33474805 DOI: 10.1111/micc.12679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/12/2021] [Indexed: 12/25/2022]
Abstract
Glioblastoma (GBM) is the most common primary brain tumor with a dismal prognosis. Current standard of treatment is safe maximal tumor resection followed by chemotherapy and radiation. Altered cerebral microcirculation and elevated blood-tumor barrier (BTB) permeability in tumor periphery due to glioma-induced vascular dysregulation allow T1 contrast-enhanced visualization of resectable tumor boundaries. Newer tracers that label the tumor and its vasculature are being increasingly used for intraoperative delineation of glioma boundaries for even more precise resection. Fluorescent 5-aminolevulinic acid (5-ALA) and indocyanine green (ICG) are examples of such intraoperative tracers. Recently, magnetic resonance imaging (MRI)-based MR thermometry is being employed for laser interstitial thermal therapy (LITT) for glioma debulking. However, aggressive, fatal recurrence always occurs. Postsurgical chemotherapy is hampered by the inability of most drugs to cross the blood-brain barrier (BBB). Understanding postsurgical changes in brain microcirculation and permeability is crucial to improve chemotherapy delivery. It is important to understand whether any microcirculatory indices can differentiate between true recurrence and radiation necrosis. LITT leads to peri-ablation BBB opening that persists for several weeks. Whether it can be a conduit for chemotherapy delivery is yet to be explored. This review will address the role of cerebral microcirculation in such emerging ideas in GBM diagnosis and therapy.
Collapse
Affiliation(s)
| | - Ian Y Lee
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|
23
|
Roux A, Tran S, Edjlali M, Saffroy R, Tauziede-Espariat A, Zanello M, Gareton A, Dezamis E, Dhermain F, Chretien F, Lechapt-Zalcman E, Oppenheim C, Pallud J, Varlet P. Prognostic relevance of adding MRI data to WHO 2016 and cIMPACT-NOW updates for diffuse astrocytic tumors in adults. Working toward the extended use of MRI data in integrated glioma diagnosis. Brain Pathol 2020; 31:e12929. [PMID: 33336392 PMCID: PMC8412115 DOI: 10.1111/bpa.12929] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 11/27/2022] Open
Abstract
Assess the contribution of preoperative MRI data in improving grading of adult astrocytomas reclassified according to the WHO 2016 and cIMPACT-NOW update 3. Retrospective unicentric cohort study of 679 adult patients treated for newly diagnosed diffuse astrocytic and oligodendroglial tumors (January 2006-December 2016). We first systematically compared radiological (contrast enhancement present [CE+] vs. absent [CE-]) and histopathological findings (microvascular proliferation present [MPV+] vs. absent [MPV-]) to validate whether this comparing step of neoangiogenesis represents an efficient method to appreciate the representativity of the tumoral sampling. We focused on 629 cases of astrocytomas for radio-histological integrated analyses. In 598 cases (95.1%), neoangiogenesis evaluated by MRI or histology (CE+/MPV+ or CE-/MPV-) was identical. For the CE+/MPV- and CE-/MPV+ groups (23 cases), the radio-histological face-to-face evaluation allowed us to assess that for 13 cases (56.5%) the reason for this discrepancy was an undersampled tumor. We analyzed the group of CE+/MPV- (n = 8) and CE-/MPV+ (n = 2) in verified image-guided tumoral samples. Finally, we identified three new prognostic subgroups for molecular glioblastomas: (1) "non-representative sampling" (n = 9), (2) "Non neoangiogenic glioblastoma at the time of diagnosis, without contrast enhancement and microvascular proliferation" (n = 8), and (3) "contrast enhancing glioblastoma but without microvascular proliferation in a representative sample" (n = 4). Neoangiogenesis processes should be assessed to improve the prognosis accuracy of the current integrated diagnosis. We suggest adding imaging analyses during the neuropathological analysis of astrocytomas in adults.
Collapse
Affiliation(s)
- Alexandre Roux
- Service de Neurochirurgie, GHU Paris-Psychiatrie et Neurosciences-Hôpital Sainte-Anne, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France.,Inserm, UMR1266, IMA-Brain, Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| | - Stéphane Tran
- Service de Neuropathologie, GHU Paris-Psychiatrie et Neurosciences-Hôpital Sainte-Anne, Paris, France
| | - Myriam Edjlali
- Université de Paris, Sorbonne Paris Cité, Paris, France.,Inserm, UMR1266, IMA-Brain, Institut de Psychiatrie et Neurosciences de Paris, Paris, France.,Service de Neuroradiologie, GHU Paris-Psychiatrie et Neurosciences-Hôpital Sainte-Anne, Paris, France
| | - Raphaël Saffroy
- Service de Biochimie, Hôpital Paul-Brousse, AP-HP, Villejuif, France
| | - Arnault Tauziede-Espariat
- Université de Paris, Sorbonne Paris Cité, Paris, France.,Inserm, UMR1266, IMA-Brain, Institut de Psychiatrie et Neurosciences de Paris, Paris, France.,Service de Neuropathologie, GHU Paris-Psychiatrie et Neurosciences-Hôpital Sainte-Anne, Paris, France
| | - Marc Zanello
- Service de Neurochirurgie, GHU Paris-Psychiatrie et Neurosciences-Hôpital Sainte-Anne, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France.,Inserm, UMR1266, IMA-Brain, Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| | - Albane Gareton
- Université de Paris, Sorbonne Paris Cité, Paris, France.,Service de Neuropathologie, GHU Paris-Psychiatrie et Neurosciences-Hôpital Sainte-Anne, Paris, France
| | - Edouard Dezamis
- Service de Neurochirurgie, GHU Paris-Psychiatrie et Neurosciences-Hôpital Sainte-Anne, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France.,Inserm, UMR1266, IMA-Brain, Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| | - Frédéric Dhermain
- Département d'Oncologie Radiothérapie, Gustave Roussy Cancer Campus Grand Paris, Villejuif, France
| | - Fabrice Chretien
- Université de Paris, Sorbonne Paris Cité, Paris, France.,Inserm, UMR1266, IMA-Brain, Institut de Psychiatrie et Neurosciences de Paris, Paris, France.,Service de Neuropathologie, GHU Paris-Psychiatrie et Neurosciences-Hôpital Sainte-Anne, Paris, France
| | - Emmanuèle Lechapt-Zalcman
- Université de Paris, Sorbonne Paris Cité, Paris, France.,Inserm, UMR1266, IMA-Brain, Institut de Psychiatrie et Neurosciences de Paris, Paris, France.,Service de Neuropathologie, GHU Paris-Psychiatrie et Neurosciences-Hôpital Sainte-Anne, Paris, France
| | - Catherine Oppenheim
- Université de Paris, Sorbonne Paris Cité, Paris, France.,Inserm, UMR1266, IMA-Brain, Institut de Psychiatrie et Neurosciences de Paris, Paris, France.,Service de Neuroradiologie, GHU Paris-Psychiatrie et Neurosciences-Hôpital Sainte-Anne, Paris, France
| | - Johan Pallud
- Service de Neurochirurgie, GHU Paris-Psychiatrie et Neurosciences-Hôpital Sainte-Anne, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France.,Inserm, UMR1266, IMA-Brain, Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| | - Pascale Varlet
- Université de Paris, Sorbonne Paris Cité, Paris, France.,Inserm, UMR1266, IMA-Brain, Institut de Psychiatrie et Neurosciences de Paris, Paris, France.,Service de Neuropathologie, GHU Paris-Psychiatrie et Neurosciences-Hôpital Sainte-Anne, Paris, France
| |
Collapse
|
24
|
Kang H, Chen P, Guo H, Zhang L, Tan Y, Xiao H, Yang A, Fang J, Zhang W. Vessel Size Imaging is Associated with IDH Mutation and Patient Survival in Diffuse Lower-Grade Glioma. Cancer Manag Res 2020; 12:9801-9811. [PMID: 33116839 PMCID: PMC7550213 DOI: 10.2147/cmar.s266533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/07/2020] [Indexed: 11/23/2022] Open
Abstract
Background Patients with isocitrate dehydrogenase (IDH) mutant gliomas have better survival and appear to be more sensitive to chemotherapy than their IDH wild-type counterparts. We attempted to assess the correlations of vessel size imaging (VSI) values with IDH mutation status and patient survival in diffuse lower-grade glioma (LGG). Methods We enrolled 60 patients with diffuse LGGs, among which 43 had IDH-mutant tumors. All patients underwent VSI examination and VSI values for active tumors were calculated. Receiver operating characteristic (ROC) curves were established to evaluate the detection efficiency. Logistic regression was employed to determine the ability of variables to discriminate IDH mutational status. Kaplan–Meier survival analysis and Cox proportional hazards models were utilized to estimate the correlations of VSI values and other risk factors with patient survival. Results We observed that VSI values were lower in IDH-mutant LGGs than IDH wild-type LGGs. The VSImax and VSImean values had AUC values of 0.7305 and 0.7401, respectively, in distinguishing IDH-mutant LGGs from IDH wild-type LGGs. Logistic regression showed that VSImean values, age and tumor location were associated with IDH-mutant status, and the formula integrating the three factors had an AUC value of 0.7798 when distinguishing IDH-mutant LGGs from IDH wild-type LGGs. Moreover, LGG patients with high VSI values exhibited worse survival rates than those with low VSI values for both progression-free survival (PFS) and overall survival (OS). Multivariate Cox proportional hazards regression analysis suggested that IDH mutation status, VSImean values and multiple lesions or lobes were risk factors for PFS of LGG patients. Conclusion VSI value is associated with IDH genotype and maybe an independent predictor of the survival of patients with LGGs.
Collapse
Affiliation(s)
- Houyi Kang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, People's Republic of China.,Chongqing Clinical Research Center of Imaging and Nuclear Medicine, Chongqing, People's Republic of China
| | - Peng Chen
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, People's Republic of China.,Chongqing Clinical Research Center of Imaging and Nuclear Medicine, Chongqing, People's Republic of China
| | - Hong Guo
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, People's Republic of China.,Chongqing Clinical Research Center of Imaging and Nuclear Medicine, Chongqing, People's Republic of China
| | - Letian Zhang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, People's Republic of China.,Chongqing Clinical Research Center of Imaging and Nuclear Medicine, Chongqing, People's Republic of China
| | - Yong Tan
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, People's Republic of China.,Chongqing Clinical Research Center of Imaging and Nuclear Medicine, Chongqing, People's Republic of China
| | - Hualiang Xiao
- Department of Pathology, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Ao Yang
- Department of Traffic Injury Research Office, Daping Hospital, Army Medical Center of PLA, Chongqing, People's Republic of China
| | - Jingqin Fang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, People's Republic of China.,Chongqing Clinical Research Center of Imaging and Nuclear Medicine, Chongqing, People's Republic of China
| | - Weiguo Zhang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, People's Republic of China.,Chongqing Clinical Research Center of Imaging and Nuclear Medicine, Chongqing, People's Republic of China
| |
Collapse
|
25
|
Hu Y, Zhang N, Yu MH, Zhou XJ, Ge M, Shen DD, Hua Y, Shi JL, Jia ZZ. Volume-based histogram analysis of dynamic contrast-enhanced MRI for estimation of gliomas IDH1 mutation status. Eur J Radiol 2020; 131:109247. [PMID: 32891974 DOI: 10.1016/j.ejrad.2020.109247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/17/2020] [Accepted: 08/16/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE The study aimed to investigate whether isocitrate dehydrogenase 1 (IDH1) mutation status in gliomas can be estimated by volume-based histogram analysis of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). MATERIALS AND METHODS Preoperative DCE-MRI data of 85 pathologically confirmed glioma patients including 33 carrying IDH1 mutant type (IDH1mut) and 52 with IDH1 wildtype (IDH1wt) were reviewed in a retrospective approach. Regions of interest (ROI) covering entire tumor volume were manually delineated using O.K. software (OmniKinetics, GE Healthcare, China). Histogram parameters of volume transfer constant (Ktrans) and volume of extravascular /extracellular space per unit volume of tissue (Ve) derived from DCE-MRI were obtained. Mann-Whitney U tests were made to compare the differences in histogram parameters of Ktrans and Ve between IDH1mut and IDH1wt in all gliomas and high-grade gliomas (HGGs, grade III and IV). Receiver operator characteristic (ROC) analysis were implemented to assess the diagnostic performance. RESULTS In histogram parameters of Ktrans and Ve, pairwise comparisons demonstrated statistically significant differences in mean, standard deviation (SD), 90th and 95th percentiles (90%, 95%) values between IDH1mut and IDH1wt in all cases of gliomas and HGGs (P < 0.05, respectively). The ROC analysis revealed that the cut-off values of 95% value of Ktrans (0.097 min-1) and mean value of Ve (0.099) provided the best combination of sensitivity and specificity to distinguish all gliomas with IDH1mut from IDH1wt. In HGGs, the cut-off values of mean value of Ktrans and Ve (0.044 min-1, 0.099) played similar role. CONCLUSION Volume-based histogram analysis of DCE-MRI performs well in identification of IDH1mut gliomas.
Collapse
Affiliation(s)
- Yue Hu
- Department of Medical Imaging, Affiliated Hospital of Nantong University, NO. 20 Xisi Road Nantong 226001, Jiangsu, People's Republic of China.
| | - Ni Zhang
- Department of Medical Imaging, Affiliated Hospital of Nantong University, NO. 20 Xisi Road Nantong 226001, Jiangsu, People's Republic of China.
| | - Min Hao Yu
- Department of Medical Imaging, Affiliated Hospital of Nantong University, NO. 20 Xisi Road Nantong 226001, Jiangsu, People's Republic of China.
| | - Xue Jun Zhou
- Department of Medical Imaging, Affiliated Hospital of Nantong University, NO. 20 Xisi Road Nantong 226001, Jiangsu, People's Republic of China.
| | - Min Ge
- Department of Medical Imaging, Affiliated Hospital of Nantong University, NO. 20 Xisi Road Nantong 226001, Jiangsu, People's Republic of China.
| | - Dan Dan Shen
- Department of Medical Imaging, Affiliated Hospital of Nantong University, NO. 20 Xisi Road Nantong 226001, Jiangsu, People's Republic of China.
| | - Ye Hua
- Department of Medical Imaging, Affiliated Hospital of Nantong University, NO. 20 Xisi Road Nantong 226001, Jiangsu, People's Republic of China.
| | - Jin Long Shi
- Department of Neurosurgery, Affiliated Hospital of Nantong University, NO. 20 Xisi Road, Nantong 226001, Jiangsu, People's Republic of China.
| | - Zhong Zheng Jia
- Department of Medical Imaging, Affiliated Hospital of Nantong University, NO. 20 Xisi Road Nantong 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
26
|
Tatekawa H, Hagiwara A, Yao J, Oughourlian TC, Ueda I, Uetani H, Raymond C, Lai A, Cloughesy TF, Nghiemphu PL, Liau LM, Pope WB, Salamon N, Ellingson BM. Voxelwise and Patientwise Correlation of 18F-FDOPA PET, Relative Cerebral Blood Volume, and Apparent Diffusion Coefficient in Treatment-Naïve Diffuse Gliomas with Different Molecular Subtypes. J Nucl Med 2020; 62:319-325. [PMID: 32646876 DOI: 10.2967/jnumed.120.247411] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/11/2020] [Indexed: 11/16/2022] Open
Abstract
Our purpose was to identify correlations between 18F-fluorodihydroxyphenylalanine (18F-FDOPA) uptake and physiologic MRI, including relative cerebral blood volume (rCBV) and apparent diffusion coefficient (ADC), in gliomas with different molecular subtypes and to evaluate their prognostic values. Methods: Sixty-eight treatment-naïve glioma patients who underwent 18F-FDOPA PET and physiologic MRI were retrospectively selected (36 with isocitrate dehydrogenase wild-type [IDHwt], 16 with mutant 1p/19q noncodeleted [IDHm-noncodel], and 16 with mutant codeleted [IDHm-codel]). Fluid-attenuated inversion recovery hyperintense areas were segmented and used as regions of interest. For voxelwise and patientwise analyses, Pearson correlation coefficients (r voxelwise and r patientwise) between the normalized SUV (nSUV), rCBV, and ADC were evaluated. Cox regression analysis was performed to investigate the associations between overall survival and r voxelwise, maximum or median nSUV, median rCBV, or median ADC. Results: For IDHwt and IDHm-noncodel gliomas, nSUV demonstrated significant positive correlations with rCBV (r voxelwise = 0.25 and 0.31, respectively; r patientwise = 0.50 and 0.70, respectively) and negative correlations with ADC (r voxelwise = -0.19 and -0.19, respectively; r patientwise = -0.58 and -0.61, respectively) in both voxelwise and patientwise analyses. IDHm-codel gliomas demonstrated a significant positive correlation between nSUV and ADC only in voxelwise analysis (r voxelwise = 0.18). In Cox regression analysis, r voxelwise between nSUV and rCBV (hazard ratio, 28.82) or ADC (hazard ratio, 0.085) had significant associations with overall survival for only IDHwt gliomas. Conclusion: IDHm-codel gliomas showed distinctive patterns of correlations between amino acid PET and physiologic MRI. Stronger correlations between nSUV and rCBV or ADC may result in a worse prognosis for IDHwt gliomas.
Collapse
Affiliation(s)
- Hiroyuki Tatekawa
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, UCLA, Los Angeles, California.,Department of Radiological Science, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Akifumi Hagiwara
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, UCLA, Los Angeles, California.,Department of Radiological Science, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Jingwen Yao
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, UCLA, Los Angeles, California.,Department of Radiological Science, David Geffen School of Medicine, UCLA, Los Angeles, California.,Department of Bioengineering, Henry Samueli School of Engineering, UCLA, Los Angeles, California
| | - Talia C Oughourlian
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, UCLA, Los Angeles, California.,Department of Radiological Science, David Geffen School of Medicine, UCLA, Los Angeles, California.,Neuroscience Interdepartmental Program, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Issei Ueda
- Department of Radiological Science, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Hiroyuki Uetani
- Department of Radiological Science, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Catalina Raymond
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, UCLA, Los Angeles, California.,Department of Radiological Science, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Albert Lai
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, UCLA, Los Angeles, California.,Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California; and
| | - Timothy F Cloughesy
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, UCLA, Los Angeles, California.,Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California; and
| | - Phioanh L Nghiemphu
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, UCLA, Los Angeles, California.,Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California; and
| | - Linda M Liau
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, UCLA, Los Angeles, California.,Department of Neurosurgery, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Whitney B Pope
- Department of Radiological Science, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Noriko Salamon
- Department of Radiological Science, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, UCLA, Los Angeles, California .,Department of Radiological Science, David Geffen School of Medicine, UCLA, Los Angeles, California.,Department of Bioengineering, Henry Samueli School of Engineering, UCLA, Los Angeles, California.,Neuroscience Interdepartmental Program, David Geffen School of Medicine, UCLA, Los Angeles, California.,UCLA Neuro-Oncology Program, David Geffen School of Medicine, UCLA, Los Angeles, California
| |
Collapse
|
27
|
Belykh E, Shaffer KV, Lin C, Byvaltsev VA, Preul MC, Chen L. Blood-Brain Barrier, Blood-Brain Tumor Barrier, and Fluorescence-Guided Neurosurgical Oncology: Delivering Optical Labels to Brain Tumors. Front Oncol 2020; 10:739. [PMID: 32582530 PMCID: PMC7290051 DOI: 10.3389/fonc.2020.00739] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/17/2020] [Indexed: 12/17/2022] Open
Abstract
Recent advances in maximum safe glioma resection have included the introduction of a host of visualization techniques to complement intraoperative white-light imaging of tumors. However, barriers to the effective use of these techniques within the central nervous system remain. In the healthy brain, the blood-brain barrier ensures the stability of the sensitive internal environment of the brain by protecting the active functions of the central nervous system and preventing the invasion of microorganisms and toxins. Brain tumors, however, often cause degradation and dysfunction of this barrier, resulting in a heterogeneous increase in vascular permeability throughout the tumor mass and outside it. Thus, the characteristics of both the blood-brain and blood-brain tumor barriers hinder the vascular delivery of a variety of therapeutic substances to brain tumors. Recent developments in fluorescent visualization of brain tumors offer improvements in the extent of maximal safe resection, but many of these fluorescent agents must reach the tumor via the vasculature. As a result, these fluorescence-guided resection techniques are often limited by the extent of vascular permeability in tumor regions and by the failure to stain the full volume of tumor tissue. In this review, we describe the structure and function of both the blood-brain and blood-brain tumor barriers in the context of the current state of fluorescence-guided imaging of brain tumors. We discuss features of currently used techniques for fluorescence-guided brain tumor resection, with an emphasis on their interactions with the blood-brain and blood-tumor barriers. Finally, we discuss a selection of novel preclinical techniques that have the potential to enhance the delivery of therapeutics to brain tumors in spite of the barrier properties of the brain.
Collapse
Affiliation(s)
- Evgenii Belykh
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Kurt V. Shaffer
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Chaoqun Lin
- Department of Neurosurgery, School of Medicine, Southeast University, Nanjing, China
| | - Vadim A. Byvaltsev
- Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Mark C. Preul
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Lukui Chen
- Department of Neurosurgery, Neuroscience Center, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
28
|
Xue W, Ton H, Zhang J, Xie T, Chen X, Zhou B, Guo Y, Fang J, Wang S, Zhang W. Patient‑derived orthotopic xenograft glioma models fail to replicate the magnetic resonance imaging features of the original patient tumor. Oncol Rep 2020; 43:1619-1629. [PMID: 32323818 PMCID: PMC7107810 DOI: 10.3892/or.2020.7538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/12/2020] [Indexed: 12/14/2022] Open
Abstract
Patient-derived orthotopic glioma xenograft models are important platforms used for pre-clinical research of glioma. In the present study, the diagnostic ability of magnetic resonance imaging (MRI) was examined with regard to the identification of biomarkers obtained from patient-derived glioma xenografts and human tumors. Conventional MRI, diffusion weighted imaging and dynamic contrast-enhanced (DCE)-MRI were used to analyze seven pairs of high grade gliomas with their corresponding xenografts obtained from non-obese diabetic-severe-combined immunodeficiency nude mice. Tumor samples were collected for transcriptome sequencing and histopathological staining, and differentially expressed genes were screened between the original tumors and the corresponding xenografts. Gene Ontology (GO) analysis was performed to predict the functions of these genes. In 6 cases of xenografts with diffuse growth, the degree of enhancement was significantly lower compared with the original tumors. Histopathological staining indicated that the microvascular area and microvascular diameter of the xenografts were significantly lower compared with the original tumors (P=0.009 and P=0.007, respectively). In one case, there was evidence of nodular tumor growth in the mouse. Both MRI and histopathological staining showed a clear demarcation between the transplanted tumors and the normal brain tissues. The relative apparent diffusion coefficient values of the 7 cases examined were significantly higher compared with the corresponding original tumors (P=0.001) and transfer coefficient values derived from DCE-MRI of the tumor area was significantly lower compared with the original tumors (P=0.016). GO analysis indicated that the expression levels of extracellular matrix-associated genes, angiogenesis-associated genes and immune function-associated genes in the original tumors were higher compared with the corresponding xenografts. In conclusion, the data demonstrated that the MRI features of patient-derived xenograft glioma models in mice were different compared with those of the original patient tumors. Differential gene expression may underlie the differences noted in the MRI features between original tumors and corresponding xenografts. The results of the present study highlight the precautions that should be taken when extrapolating data from patient-derived xenograft studies, and their applicability to humans.
Collapse
Affiliation(s)
- Wei Xue
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Haipeng Ton
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Junfeng Zhang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Tian Xie
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Xiao Chen
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Bo Zhou
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Yu Guo
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Jingqin Fang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Shunan Wang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Weiguo Zhang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
29
|
Sharma HS, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Tian ZR, Sahib S, Bryukhovetskiy I, Bryukhovetskiy A, Buzoianu AD, Patnaik R, Wiklund L, Sharma A. Pathophysiology of blood-brain barrier in brain tumor. Novel therapeutic advances using nanomedicine. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 151:1-66. [PMID: 32448602 DOI: 10.1016/bs.irn.2020.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Kesler SR, Harrison RA, Petersen ML, Rao V, Dyson H, Alfaro-Munoz K, Weathers SP, de Groot J. Pre-surgical connectome features predict IDH status in diffuse gliomas. Oncotarget 2019; 10:6484-6493. [PMID: 31741712 PMCID: PMC6849657 DOI: 10.18632/oncotarget.27301] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/21/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Gliomas are the most common type of malignant brain tumor. Clinical outcomes depend on many factors including tumor molecular characteristics. Mutation of the isocitrate dehydrogenase (IDH) gene confers significant benefits in terms of survival and quality of life. Preoperative determination of IDH genotype can facilitate surgical planning, allow for novel clinical trial designs, and assist clinical counseling surrounding the individual patient's disease. METHODS In this study, we aimed to evaluate a novel approach for non-invasively predicting IDH status from conventional MRI via connectomics, a whole-brain network-based technique. We retrospectively extracted 93 connectome features from the preoperative, T1-weighted MRI data of 234 adult patients (148 IDH mutated) and evaluated the performance of four common machine learning models to predict IDH genotype. RESULTS Area under the curve (AUC) of the receiver operator characteristic were 0.76 to 0.94 with random forest (RF) showing significantly higher performance (p < 0.01) than other algorithms. Feature selection schemes and the addition of age and tumor location did not change RF performance. CONCLUSIONS Our findings suggest that connectomics is a feasible approach for preoperatively predicting IDH genotype in patients with gliomas. Our results support prior evidence that RF is an ideal machine learning method for this area of research. Additionally, connectomics provides unique insights regarding potential mechanisms of tumor genotype on large-scale brain network organization.
Collapse
Affiliation(s)
- Shelli R. Kesler
- Cancer Neuroscience Laboratory, School of Nursing, The University of Texas at Austin, Austin, Texas, USA
- Department of Diagnostic Medicine, Dell School of Medicine, The University of Texas at Austin, Austin, Texas, USA
- These authors contributed equally to this work
| | - Rebecca A. Harrison
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- These authors contributed equally to this work
| | - Melissa L. Petersen
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vikram Rao
- Cancer Neuroscience Laboratory, School of Nursing, The University of Texas at Austin, Austin, Texas, USA
- Department of Diagnostic Medicine, Dell School of Medicine, The University of Texas at Austin, Austin, Texas, USA
| | - Hannah Dyson
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kristin Alfaro-Munoz
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shiao-Pei Weathers
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John de Groot
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|