1
|
Zhang H, Xing Y, Wang L, Hu Y, Xu Z, Chen H, Lu J, Yang J, Ding B, Hu W, Zhong J. Ultra-High-Resolution Photon-Counting Detector CT Benefits Visualization of Abdominal Arteries: A Comparison to Standard-Reconstruction. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2025; 38:1891-1903. [PMID: 39455541 DOI: 10.1007/s10278-024-01232-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 10/28/2024]
Abstract
This study aimed to investigate the potential benefit of ultra-high-resolution (UHR) photon-counting detector CT (PCD-CT) angiography in visualization of abdominal arteries in comparison to standard-reconstruction (SR) images of virtual monoenergetic images (VMI) at low kiloelectron volt (keV). We prospectively included 47 and 47 participants to undergo contrast-enhanced abdominal CT scans within UHR mode on a PCD-CT system using full-dose (FD) and low-dose (LD) protocols, respectively. The data were reconstructed into six series of images: FD_UHR_Br48, FD_UHR_Bv56, FD_UHR_Bv60, FD_SR_Bv40, LD_UHR_Bv48, and LD_SR_Bv40. The UHR reconstructions were performed with three kernels (Bv48, Bv56, and Bv60) within 0.2 mm. The SR were virtual monoenergetic imaging reconstruction with Bv40 kernel at 40-keV within 1 mm. Each series of axial images were reconstructed into coronal and volume-rendered images. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of seven arteries were measured. Three radiologists assessed the image quality, and visibility of nine arteries on all the images. SNR and CNR values of SR images were significantly higher than those of UHR images (P < 0.001). The SR images have higher ratings in image noise (P < 0.001), but the FD_UHR_Bv56 and FD_UHR_Bv60 images has higher rating in vessel sharpness (P < 0.001). The overall quality was not significantly different among FD_VMI_40keV, LD_VMI_40keV, FD_UHR_Bv48, and LD_UHR_Bv48 images (P > 0.05) but higher than those of FD_UHR_Bv56 and FD_UHR_Bv60 images (P < 0.001). There is no significant difference of nine abdominal arteries among six series of images of axial, coronal and volume-rendered images (P > 0.05). To conclude, 1-mm SR image of VMI at 40-keV is superior to 0.2-mm UHR regardless of which kernel is used to visualize abdominal arteries, while 0.2-mm UHR image using a relatively smooth kernel may allow similar image quality and artery visibility when thinner slice image is warranted.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yue Xing
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Lingyun Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yangfan Hu
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Zhihan Xu
- Siemens Healthineers, Shanghai, 201318, China
| | - Haoda Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Junjie Lu
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jiarui Yang
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Bei Ding
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Weiguo Hu
- Department of Geriatrics and Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Medical Center On Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| |
Collapse
|
2
|
Gulizia M, Viry A, Jreige M, Fahrni G, Marro Y, Manasseh G, Chevallier C, Dromain C, Vietti-Violi N. Contrast Volume Reduction in Oncologic Body Imaging Using Dual-Energy CT: A Comparison with Single-Energy CT. Diagnostics (Basel) 2025; 15:707. [PMID: 40150050 PMCID: PMC11941575 DOI: 10.3390/diagnostics15060707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: To evaluate the feasibility of reducing contrast volume in oncologic body imaging using dual-energy CT (DECT) by (1) identifying the optimal virtual monochromatic imaging (VMI) reconstruction using DECT and (2) comparing DECT performed with reduced iodinated contrast media (ICM) volume to single-energy CT (SECT) performed with standard ICM volume. Methods: In this retrospective study, we quantitatively and qualitatively compared the image quality of 35 thoracoabdominopelvic DECT across 9 different virtual monoenergetic image (VMI) levels (from 40 to 80 keV) using a reduced volume of ICM (0.3 gI/kg of body weight) to determine the optimal keV reconstruction level. Out of these 35 patients, 20 had previously performed SECT with standard ICM volume (0.3 gI/kg of body weight + 9 gI), enabling protocol comparison. The qualitative analysis included overall image quality, noise, and contrast enhancement by two radiologists. Quantitative analysis included contrast enhancement measurements, contrast-to-noise ratio, and signal-to-noise ratio of the liver parenchyma and the portal vein. ANOVA was used to identify the optimal VMI level reconstruction, while t-tests and paired t-tests were used to compare both protocols. Results: VMI60 keV provided the highest overall image quality score. DECT with reduced ICM volume demonstrated higher contrast enhancement and lower noise than SECT with standard ICM volume (p < 0.001). No statistical difference was found in the overall image quality between the two protocols (p = 0.290). Conclusions: VMI60 keV with reduced contrast volume provides higher contrast and lower noise than SECT at a standard contrast volume. DECT using a reduced ICM volume is the technique of choice for oncologic body CT.
Collapse
Affiliation(s)
- Marianna Gulizia
- Department of Radiology and Interventional Radiology, Lausanne University Hospital, University of Lausanne (UNIL), 1011 Lausanne, Switzerland; (M.G.); (A.V.); (Y.M.)
- Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), 1015 Lausanne, Switzerland
| | - Anais Viry
- Department of Radiology and Interventional Radiology, Lausanne University Hospital, University of Lausanne (UNIL), 1011 Lausanne, Switzerland; (M.G.); (A.V.); (Y.M.)
| | - Mario Jreige
- Department of Nuclear Medicine, Lausanne University Hospital, University of Lausanne (UNIL), 1011 Lausanne, Switzerland;
| | - Guillaume Fahrni
- Department of Radiology and Interventional Radiology, Lausanne University Hospital, University of Lausanne (UNIL), 1011 Lausanne, Switzerland; (M.G.); (A.V.); (Y.M.)
| | - Yannick Marro
- Department of Radiology and Interventional Radiology, Lausanne University Hospital, University of Lausanne (UNIL), 1011 Lausanne, Switzerland; (M.G.); (A.V.); (Y.M.)
| | - Gibran Manasseh
- Department of Radiology and Interventional Radiology, Lausanne University Hospital, University of Lausanne (UNIL), 1011 Lausanne, Switzerland; (M.G.); (A.V.); (Y.M.)
| | - Christine Chevallier
- Department of Radiology and Interventional Radiology, Lausanne University Hospital, University of Lausanne (UNIL), 1011 Lausanne, Switzerland; (M.G.); (A.V.); (Y.M.)
| | - Clarisse Dromain
- Department of Radiology and Interventional Radiology, Lausanne University Hospital, University of Lausanne (UNIL), 1011 Lausanne, Switzerland; (M.G.); (A.V.); (Y.M.)
| | - Naik Vietti-Violi
- Department of Radiology and Interventional Radiology, Lausanne University Hospital, University of Lausanne (UNIL), 1011 Lausanne, Switzerland; (M.G.); (A.V.); (Y.M.)
| |
Collapse
|
3
|
Ding L, Chen M, Li X, Wu Y, Li J, Deng S, Xu Y, Chen Z, Yan C. Ultra-low dose dual-layer detector spectral CT for pulmonary nodule screening: image quality and diagnostic performance. Insights Imaging 2025; 16:11. [PMID: 39792229 PMCID: PMC11723867 DOI: 10.1186/s13244-024-01888-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 12/15/2024] [Indexed: 01/12/2025] Open
Abstract
OBJECTIVES To investigate the image quality and diagnostic performance with ultra-low dose dual-layer detector spectral CT (DLSCT) by various reconstruction techniques for evaluation of pulmonary nodules. MATERIALS AND METHODS Between April 2023 and December 2023, patients with suspected pulmonary nodules were prospectively enrolled and underwent regular-dose chest CT (RDCT; 120 kVp/automatic tube current) and ultra-low dose CT (ULDCT; 100 kVp/10 mAs) on a DLSCT scanner. ULDCT was reconstructed with hybrid iterative reconstruction (HIR), electron density map (EDM), and virtual monoenergetic images at 40 keV and 70 keV. Quantitative and qualitative image analysis, nodule detectability, and Lung-RADS evaluation were compared using repeated one-way analysis of variance, Friedman test, and weighted kappa coefficient. RESULTS A total of 249 participants (mean age ± standard deviation, 50.0 years ± 12.9; 126 male) with 637 lung nodules were included. ULDCT resulted in a significantly lower mean radiation dose than RDCT (0.3 mSv ± 0.0 vs. 3.6 mSv ± 0.8; p < 0.001). Compared with RDCT, ULDCT EDM showed significantly higher signal-noise-ratio (44.0 ± 77.2 vs. 4.6 ± 6.6; p < 0.001) and contrast-noise-ratio (26.7 ± 17.7 vs. 5.0 ± 4.4; p < 0.001) with qualitative scores ranked higher or equal to the average. Using the regular-dose images as a reference, ULDCT EDM images had a satisfactory nodule detection rate (84.6%) and good inter-observer agreements compared with RDCT (κw > 0.60). CONCLUSION Ultra-low dose dual-layer detector CT with 91.2% radiation dose reduction achieves sufficient image quality and diagnostic performance of pulmonary nodules. CRITICAL RELEVANCE STATEMENT Dual-layer detector spectral CT enables substantial radiation dose reduction without impairing image quality for the follow-up of pulmonary nodules or lung cancer screening. KEY POINTS Radiation dose is a major concern for patients requiring pulmonary nodules CT screening. Ultra-low dose dual-layer detector spectral CT with 91.2% dose reduction demonstrated satisfactory performance. Dual-layer detector spectral CT has the potential for lung cancer screening and management.
Collapse
Affiliation(s)
- Li Ding
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Mingwang Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaomei Li
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuting Wu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jingxu Li
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Shuting Deng
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Zhao Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Chenggong Yan
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
4
|
Wang J, He Y, Yan L, Chen S, Zhang K. Predicting Osteoporosis and Osteopenia by Fusing Deep Transfer Learning Features and Classical Radiomics Features Based on Single-Source Dual-energy CT Imaging. Acad Radiol 2024; 31:4159-4170. [PMID: 38693026 DOI: 10.1016/j.acra.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/14/2024] [Accepted: 04/14/2024] [Indexed: 05/03/2024]
Abstract
RATIONALE AND OBJECTIVES To develop and validate a predictive model for osteoporosis and osteopenia prediction by fusing deep transfer learning (DTL) features and classical radiomics features based on single-source dual-energy computed tomography (CT) virtual monochromatic imaging. METHODS A total of 606 lumbar vertebrae with dual-energy CT imaging and quantitative CT (QCT) evaluation were included in the retrospective study and randomly divided into the training (n = 424) and validation (n = 182) cohorts. Radiomics features and DTL features were extracted from 70-keV monochromatic CT images, followed by feature selection and model construction, radiomics and DTL features models were established. Then, we integrated the selected two types of features into a features fusion model. We developed a two-level classifier for the hierarchical pairwise classification of each vertebra. All the vertebrae were first classified into osteoporosis and non-osteoporosis groups, then non-osteoporosis group was classified into osteopenia and normal groups. QCT was used as reference. The predictive performance and clinical usefulness of three models were evaluated and compared. RESULTS The area under the curve (AUC) of the features fusion, radiomics and DTL models for the classification between osteoporosis and non-osteoporosis were 0.981, 0.999, 0.997 in the training cohort and 0.979, 0.943, 0.848 in the validation cohort. Furthermore, the AUCs of the previously mentioned models for the differentiation between osteopenia and normal were 0.994, 0.971, 0.996 in the training cohort and 0.990, 0.968, 0.908 in the validation cohort. The overall accuracy of the previously mentioned models for two-level classifications was 0.979, 0.955, 0.908 in the training cohort and 0.918, 0.885, 0.841 in the validation cohort. Decision curve analysis showed that all models had high clinical value. CONCLUSION The feature fusion model can be used for osteoporosis and osteopenia prediction with improved predictive ability over a radiomics model or a DTL model alone.
Collapse
Affiliation(s)
- Jinling Wang
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha 410007, PR China
| | - Yewen He
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha 410007, PR China
| | - Luyou Yan
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha 410007, PR China
| | - Suping Chen
- GE Healthcare (Shanghai) Co., Ltd., Shanghai 201203, PR China
| | - Kun Zhang
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha 410007, PR China; College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha 410208, PR China.
| |
Collapse
|
5
|
Zhou X, Liu Y, Chen S, Xiang J, Li J, Li J, You T, Zhong Z, Zhang K. Increased water content in multifidus muscles of young adults with chronic nonspecific low back pain detected by dual-energy CT and MRI. Eur J Radiol 2024; 176:111515. [PMID: 38772163 DOI: 10.1016/j.ejrad.2024.111515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
OBJECTIVES To demonstrate the feasibility of better diagnosing young adults with chronic nonspecific low back pain (CNLBP) by measuring water content in paraspinal muscles using water-muscle decomposition technique in dual-energy CT (DECT) and T2-mapping in MRI. METHODS This prospective cross-sectional study included 110 young individuals (56 with CNLBP at age of 25.7 ± 2.0 years and 54 of asymptomatic at age of 25.1 ± 1.9 years) who underwent both MRI and DECT on the spine. T2 values on T2 mapping in MRI and water density (WD) value on water(muscle) images in DECT were generated at the L1-L4 levels for erector spinae muscle and L2-L5 for multifidus muscle. Pain duration time, Oswestry Disability Index (ODI), Visual Analogue Scale (VAS) were recorded for CNLBP patients. Difference of T2 value and WD between the two patient groups, and correlations between T2 value and WD, and T2 value and WD with clinical indicators were analyzed. RESULTS Compared with asymptomatic participants, the mean WD of multifidus muscle at L4-L5 and mean T2 values of multifidus muscle at L5 were significantly higher in CNLBP patients (all P < 0.05). T2 values had moderate to strong positive correlations (r = 0.34-0.60, all P < 0.05) with DECT WD in CNLBP patients and healthy volunteers. There was a weak correlation between VAS and WD in L5-level multifidus muscle (r = 0.29, P < 0.05). CONCLUSIONS The T2 values in MRI and WD in DECT are higher in multifidus muscles of lower vertebra levels for young CNLBP patients, and there exists positive correlation between WD and T2 values, providing useful information for diagnosing CNLBP.
Collapse
Affiliation(s)
- Xiaona Zhou
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha 410007, PR China; First Clinical College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, Hunan 410208, PR China
| | - Yinqi Liu
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha 410007, PR China
| | - Suping Chen
- GE Healthcare (Shanghai) Co., Ltd., Shanghai 201203, PR China
| | - Jian Xiang
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha 410007, PR China; First Clinical College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, Hunan 410208, PR China
| | - Jianying Li
- GE Healthcare (Shanghai) Co., Ltd., Shanghai 201203, PR China
| | - Jianyu Li
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha 410007, PR China
| | - Tian You
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha 410007, PR China
| | - Zeya Zhong
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha 410007, PR China
| | - Kun Zhang
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha 410007, PR China; College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha 410208, PR China.
| |
Collapse
|
6
|
Wang H, Yue S, Liu N, Chen Y, Zhan P, Liu X, Shang B, Wang L, Li Z, Gao J, Lyu P. Deep learning reconstruction vs standard reconstruction for abdominal CT: the influence of BMI. Eur Radiol 2024; 34:1614-1623. [PMID: 37650972 DOI: 10.1007/s00330-023-10179-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 07/17/2023] [Accepted: 08/03/2023] [Indexed: 09/01/2023]
Abstract
OBJECTIVE This study aimed to evaluate the image quality and lesion conspicuity of the deep learning image reconstruction (DLIR) algorithm compared with standard image reconstruction algorithms on abdominal enhanced computed tomography (CT) scanning with a wide range of body mass indexes (BMIs). METHODS A total of 112 participants who underwent contrast-enhanced abdominal CT scans were divided into three groups according to BMIs: the 80-kVp group (BMI ≤ 23.9 kg/m2), 100-kVp group (BMI 24-28.9 kg/m2), and 120-kVp group (BMI ≥ 29 kg/m2). All images were reconstructed using filtered back projection (FBP), adaptive statistical iterative reconstruction-V of 50% level (IR), and DLIR at low, medium, and high levels (DL, DM, and DH, respectively). Subjective noise, artifact, overall image quality, and low- and high-contrast hepatic lesion conspicuity were all graded on a 5-point scale. The CT attenuation value (in HU), image noise, and contrast-to-noise ratio (CNR) were quantified and compared. RESULTS DM and DH improved the qualitative and quantitative parameters compared with FBP and IR for all three BMI groups. DH had the lowest image noise and highest CNR value, while DM had the highest subjective overall image quality and low- and high-contrast lesion conspicuity scores for the three BMI groups. Based on the FBP, the improvement in image quality and lesion conspicuity of DM and DH images was greater in the 80-kVp group than in the 100-kVp and 120-kVp groups. CONCLUSION For all BMIs, DLIR improves both image quality and hepatic lesion conspicuity, of which DM would be the best choice to balance both. CLINICAL RELEVANCE STATEMENT The study suggests that utilizing DLIR, particularly at the medium level, can significantly enhance image quality and lesion visibility on abdominal CT scans across a wide range of BMIs. KEY POINTS • DLIR improved the image quality and lesion conspicuity across a wide range of BMIs. • DLIR at medium level had the highest subjective parameters and lesion conspicuity scores among all reconstruction levels. • On the basis of the FBP, the 80-kVp group had improved image quality and lesion conspicuity more than the 100-kVp and 120-kVp groups.
Collapse
Affiliation(s)
- Huixia Wang
- The Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1, Eastern Jianshe Road, Zhengzhou, 450052, Henan Province, China
| | - Songwei Yue
- The Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1, Eastern Jianshe Road, Zhengzhou, 450052, Henan Province, China
| | - Nana Liu
- The Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1, Eastern Jianshe Road, Zhengzhou, 450052, Henan Province, China
| | - Yan Chen
- The Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1, Eastern Jianshe Road, Zhengzhou, 450052, Henan Province, China
| | - Pengchao Zhan
- The Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1, Eastern Jianshe Road, Zhengzhou, 450052, Henan Province, China
| | - Xing Liu
- The Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1, Eastern Jianshe Road, Zhengzhou, 450052, Henan Province, China
| | - Bo Shang
- The Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1, Eastern Jianshe Road, Zhengzhou, 450052, Henan Province, China
| | - Luotong Wang
- CT Imaging Research Center, GE Healthcare China, Beijing, 100176, China
| | - Zhen Li
- The Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, No.1, Eastern Jianshe Road, Zhengzhou, 450052, Henan Province, China
| | - Jianbo Gao
- The Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1, Eastern Jianshe Road, Zhengzhou, 450052, Henan Province, China.
| | - Peijie Lyu
- The Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1, Eastern Jianshe Road, Zhengzhou, 450052, Henan Province, China.
| |
Collapse
|
7
|
Shu G, Zhao L, Li F, Jiang Y, Zhang X, Yu C, Pan J, Sun SK. Metallic artifacts-free spectral computed tomography angiography based on renal clearable bismuth chelate. Biomaterials 2024; 305:122422. [PMID: 38128318 DOI: 10.1016/j.biomaterials.2023.122422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Computed tomography angiography (CTA) is one of the most important diagnosis techniques for various vascular diseases in clinic. However, metallic artifacts caused by metal implants and calcified plaques in more and more patients severely hinder its wide applications. Herein, we propose an improved metallic artifacts-free spectral CTA technique based on renal clearable bismuth chelate (Bi-DTPA dimeglumine) for the first time. Bi-DTPA dimeglumine owns the merits of ultra-simple synthetic process, approximately 100% of yield, large-scale production capability, good biocompatibility, and favorable renal clearable ability. More importantly, Bi-DTPA dimeglumine shows superior contrast-enhanced effect in CTA compared with clinical iohexol at a wide range of X-ray energies especially in higher X-ray energy. In rabbits' model with metallic transplants, Bi-DTPA dimeglumine assisted-spectral CTA can not only effectively mitigate metallic artifacts by reducing beam hardening effect under high X-ray energy, but also enables accurate delineation of vascular structure. Our proposed strategy opens a revolutionary way to solve the bottleneck problem of metallic artifacts in CTA examinations.
Collapse
Affiliation(s)
- Gang Shu
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China; Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Lu Zhao
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Fengtan Li
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yingjian Jiang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xuening Zhang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Chunshui Yu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China.
| |
Collapse
|
8
|
Gao K, Ma ZP, Zhang TL, Liu YW, Zhao YX. Comparative study of abdominal CT enhancement in overweight and obese patients based on different scanning modes combined with different contrast medium concentrations. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2024; 32:569-581. [PMID: 38217636 DOI: 10.3233/xst-230327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
PURPOSE To compare image quality, iodine intake, and radiation dose in overweight and obese patients undergoing abdominal computed tomography (CT) enhancement using different scanning modes and contrast medium. METHODS Ninety overweight and obese patients (25 kg/m2≤body mass index (BMI)< 30 kg/m2 and BMI≥30 kg/m2) who underwent abdominal CT-enhanced examinations were randomized into three groups (A, B, and C) of 30 each and scanned using gemstone spectral imaging (GSI) +320 mgI/ml, 100 kVp + 370 mgI/ml, and 120 kVp + 370 mgI/ml, respectively. Reconstruct monochromatic energy images of group A at 50-70 keV (5 keV interval). The iodine intake and radiation dose of each group were recorded and calculated. The CT values, contrast-to-noise ratios (CNRs), and subjective scores of each subgroup image in group A versus images in groups B and C were by using one-way analysis of variance or Kruskal-Wallis H test, and the optimal keV of group A was selected. RESULTS The dual-phase CT values and CNRs of each part in group A were higher than or similar to those in groups B and C at 50-60 keV, and similar to or lower than those in groups B and C at 65 keV and 70 keV. The subjective scores of the dual-phase images in group A were lower than those of groups B and C at 50 keV and 55 keV, whereas no significant difference was seen at 60-70 keV. Compared to groups B and C, the iodine intake in group A decreased by 12.5% and 13.3%, respectively. The effective doses in groups A and B were 24.7% and 25.8% lower than those in group C, respectively. CONCLUSION GSI +320 mgI/ml for abdominal CT-enhanced in overweight patients satisfies image quality while reducing iodine intake and radiation dose, and the optimal keV was 60 keV.
Collapse
Affiliation(s)
- Kai Gao
- Affiliated Hospital of Hebei University/Clinical Medical College, Hebei University, Baoding, China
| | - Ze-Peng Ma
- Affiliated Hospital of Hebei University/Clinical Medical College, Hebei University, Baoding, China
- Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Baoding, China
| | - Tian-Le Zhang
- Affiliated Hospital of Hebei University/Clinical Medical College, Hebei University, Baoding, China
- Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Baoding, China
| | - Yi-Wen Liu
- Affiliated Hospital of Hebei University/Clinical Medical College, Hebei University, Baoding, China
| | - Yong-Xia Zhao
- Affiliated Hospital of Hebei University/Clinical Medical College, Hebei University, Baoding, China
- Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Baoding, China
| |
Collapse
|
9
|
Lyu P, Li Z, Chen Y, Wang H, Liu N, Liu J, Zhan P, Liu X, Shang B, Wang L, Gao J. Deep learning reconstruction CT for liver metastases: low-dose dual-energy vs standard-dose single-energy. Eur Radiol 2024; 34:28-38. [PMID: 37532899 DOI: 10.1007/s00330-023-10033-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 08/04/2023]
Abstract
OBJECTIVES To assess image quality and liver metastasis detection of reduced-dose dual-energy CT (DECT) with deep learning image reconstruction (DLIR) compared to standard-dose single-energy CT (SECT) with DLIR or iterative reconstruction (IR). METHODS In this prospective study, two groups of 40 participants each underwent abdominal contrast-enhanced scans with full-dose SECT (120-kVp images, DLIR and IR algorithms) or reduced-dose DECT (40- to 60-keV virtual monochromatic images [VMIs], DLIR algorithm), with 122 and 106 metastases, respectively. Groups were matched by age, sex ratio, body mass index, and cross-sectional area. Noise power spectrum of liver images and task-based transfer function of metastases were calculated to assess the noise texture and low-contrast resolution. The image noise, signal-to-noise ratios (SNR) of liver and portal vein, liver-to-lesion contrast-to-noise ratio (LLR), lesion conspicuity, lesion detection rate, and the subjective image quality metrics were compared between groups on 1.25-mm reconstructed images. RESULTS Compared to 120-kVp images with IR, 40- and 50-keV VMIs with DLIR showed similar noise texture and LLR, similar or higher image noise and low-contrast resolution, improved SNR and lesion conspicuity, and similar or better perceptual image quality. When compared to 120-kVp images with DLIR, 50-keV VMIs with DLIR had similar low-contrast resolution, SNR, LLR, lesion conspicuity, and perceptual image quality but lower frequency noise texture and higher image noise. For the detection of hepatic metastases, reduced-dose DECT by 34% maintained observer lesion detection rates. CONCLUSION DECT assisted with DLIR enables a 34% dose reduction for detecting hepatic metastases while maintaining comparable perceptual image quality to full-dose SECT. CLINICAL RELEVANCE STATEMENT Reduced-dose dual-energy CT with deep learning image reconstruction is as accurate as standard-dose single-energy CT for the detection of liver metastases and saves more than 30% of the radiation dose. KEY POINTS • The 40- and 50-keV virtual monochromatic images (VMIs) with deep learning image reconstruction (DLIR) improved lesion conspicuity compared with 120-kVp images with iterative reconstruction while providing similar or better perceptual image quality. • The 50-keV VMIs with DLIR provided comparable perceptual image quality and lesion conspicuity to 120-kVp images with DLIR. • The reduction of radiation by 34% by DLIR in low-keV VMIs is clinically sufficient for detecting low-contrast hepatic metastases.
Collapse
Affiliation(s)
- Peijie Lyu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhen Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yan Chen
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Huixia Wang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Nana Liu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jie Liu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Pengchao Zhan
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xing Liu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Bo Shang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Luotong Wang
- CT Imaging Research Center, GE Healthcare China, Beijing, China
| | - Jianbo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
| |
Collapse
|
10
|
Kawashima H, Ichikawa K, Ueta H, Takata T, Mitsui W, Nagata H. Virtual monochromatic images of dual-energy CT as an alternative to single-energy CT: performance comparison using a detectability index for different acquisition techniques. Eur Radiol 2023; 33:5752-5760. [PMID: 36892640 DOI: 10.1007/s00330-023-09491-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/24/2022] [Accepted: 01/27/2023] [Indexed: 03/10/2023]
Abstract
OBJECTIVES To investigate the performance of virtual monochromatic (VM) images with the same dose and iodine contrast as those for single-energy (SE) images using five dual-energy (DE) scanners with DE techniques: two generations of fast kV switching (FKS), two generations of dual source (DS), and one split filter (SF). METHODS A water-bath phantom with a diameter of 300 mm, which contains one rod-shaped phantom made of a material equivalent to soft-tissue and two rod-shaped phantoms made of diluted iodine (2 and 12 mg/mL), was scanned using both SE (120, 100, and 80 kV) and DE techniques with the same CT dose index in each scanner. The VM energy at which the CT number of the iodine rod is closest to that of each SE tube voltage was determined as the equivalent energy (Eeq). A detectability index (d') was calculated from the noise power spectrum, the task transfer functions, and a task function corresponding to each rod. The percentage of the d' value of the VM image to that of the corresponding SE image was calculated for performance comparison. RESULTS The average percentages of d' of FKS1, FKS2, DS1, DS2, and SF were 84.6%, 96.2%, 94.3%, 107%, and 104% for 120 kV-Eeq; 75.9%, 91.2%, 88.2%, 99.2%, and 82.6% for 100 kV-Eeq; 71.6%, 88.9%, 82.6%, 85.2%, and 62.3% for 80 kV-Eeq, respectively. CONCLUSION The performance of VM images was on the whole inferior to that of SE images especially at low equivalent energy levels, depending on the DE techniques and their generations. KEY POINTS • This study evaluated the performance of VM images with the same dose and iodine contrast as those for SE images using five DE scanners. • The performance of VM images varied with the DE techniques and their generations and was mostly inferior at low equivalent energy levels. • The results highlight the importance of distribution of available dose over the two energy levels and spectral separation for the performance improvement of VM images.
Collapse
Affiliation(s)
- Hiroki Kawashima
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, 920-0942, Japan.
| | - Katsuhiro Ichikawa
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, 920-0942, Japan
| | - Hiroshi Ueta
- Radiology Division, Kanazawa University Hospital, 13-1 Takara-Machi, Kanazawa, 920-8641, Japan
| | - Tadanori Takata
- Radiology Division, Kanazawa University Hospital, 13-1 Takara-Machi, Kanazawa, 920-8641, Japan
| | - Wataru Mitsui
- Radiology Division, Kanazawa University Hospital, 13-1 Takara-Machi, Kanazawa, 920-8641, Japan
| | - Hiroji Nagata
- Section of Radiological Technology, Department of Medical Technology, Kanazawa Medical University Hospital, Daigaku 1-1, Uchinada, Kahoku, 920-0293, Japan
| |
Collapse
|
11
|
Huflage H, Kunz AS, Hendel R, Kraft J, Weick S, Razinskas G, Sauer ST, Pennig L, Bley TA, Grunz JP. Obesity-Related Pitfalls of Virtual versus True Non-Contrast Imaging-An Intraindividual Comparison in 253 Oncologic Patients. Diagnostics (Basel) 2023; 13:diagnostics13091558. [PMID: 37174949 PMCID: PMC10177533 DOI: 10.3390/diagnostics13091558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
OBJECTIVES Dual-source dual-energy CT (DECT) facilitates reconstruction of virtual non-contrast images from contrast-enhanced scans within a limited field of view. This study evaluates the replacement of true non-contrast acquisition with virtual non-contrast reconstructions and investigates the limitations of dual-source DECT in obese patients. MATERIALS AND METHODS A total of 253 oncologic patients (153 women; age 64.5 ± 16.2 years; BMI 26.6 ± 5.1 kg/m2) received both multi-phase single-energy CT (SECT) and DECT in sequential staging examinations with a third-generation dual-source scanner. Patients were allocated to one of three BMI clusters: non-obese: <25 kg/m2 (n = 110), pre-obese: 25-29.9 kg/m2 (n = 73), and obese: >30 kg/m2 (n = 70). Radiation dose and image quality were compared for each scan. DECT examinations were evaluated regarding liver coverage within the dual-energy field of view. RESULTS While arterial contrast phases in DECT were associated with a higher CTDIvol than in SECT (11.1 vs. 8.1 mGy; p < 0.001), replacement of true with virtual non-contrast imaging resulted in a considerably lower overall dose-length product (312.6 vs. 475.3 mGy·cm; p < 0.001). The proportion of DLP variance predictable from patient BMI was substantial in DECT (R2 = 0.738) and SECT (R2 = 0.620); however, DLP of SECT showed a stronger increase in obese patients (p < 0.001). Incomplete coverage of the liver within the dual-energy field of view was most common in the obese subgroup (17.1%) compared with non-obese (0%) and pre-obese patients (4.1%). CONCLUSION DECT facilitates a 30.8% dose reduction over SECT in abdominal oncologic staging examinations. Employing dual-source scanner architecture, the risk for incomplete liver coverage increases in obese patients.
Collapse
Affiliation(s)
- Henner Huflage
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Andreas Steven Kunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Robin Hendel
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Johannes Kraft
- Department of Radiation Oncology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Stefan Weick
- Department of Radiation Oncology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Gary Razinskas
- Department of Radiation Oncology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Stephanie Tina Sauer
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Lenhard Pennig
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany
| | - Thorsten Alexander Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
12
|
Lyu P, Liu N, Harrawood B, Solomon J, Wang H, Chen Y, Rigiroli F, Ding Y, Schwartz FR, Jiang H, Lowry C, Wang L, Samei E, Gao J, Marin D. Is it possible to use low-dose deep learning reconstruction for the detection of liver metastases on CT routinely? Eur Radiol 2023; 33:1629-1640. [PMID: 36323984 DOI: 10.1007/s00330-022-09206-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/28/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES To compare the image quality and hepatic metastasis detection of low-dose deep learning image reconstruction (DLIR) with full-dose filtered back projection (FBP)/iterative reconstruction (IR). METHODS A contrast-detail phantom consisting of low-contrast objects was scanned at five CT dose index levels (10, 6, 3, 2, and 1 mGy). A total of 154 participants with 305 hepatic lesions who underwent abdominal CT were enrolled in a prospective non-inferiority trial with a three-arm design based on phantom results. Data sets with full dosage (13.6 mGy) and low dosages (9.5, 6.8, or 4.1 mGy) were acquired from two consecutive portal venous acquisitions, respectively. All images were reconstructed with FBP (reference), IR (control), and DLIR (test). Eleven readers evaluated phantom data sets for object detectability using a two-alternative forced-choice approach. Non-inferiority analyses were performed to interpret the differences in image quality and metastasis detection of low-dose DLIR relative to full-dose FBP/IR. RESULTS The phantom experiment showed the dose reduction potential from DLIR was up to 57% based on the reference FBP dose index. Radiation decreases of 30% and 50% resulted in non-inferior image quality and hepatic metastasis detection with DLIR compared to full-dose FBP/IR. Radiation reduction of 70% by DLIR performed inferiorly in detecting small metastases (< 1 cm) compared to full-dose FBP (difference: -0.112; 95% confidence interval [CI]: -0.178 to 0.047) and full-dose IR (difference: -0.123; 95% CI: -0.182 to 0.053) (p < 0.001). CONCLUSION DLIR enables a 50% dose reduction for detecting low-contrast hepatic metastases while maintaining comparable image quality to full-dose FBP and IR. KEY POINTS • Non-inferiority study showed that deep learning image reconstruction (DLIR) can reduce the dose to oncological patients with low-contrast lesions without compromising the diagnostic information. • Radiation dose levels for DLIR can be reduced to 50% of full-dose FBP and IR for detecting low-contrast hepatic metastases, while maintaining comparable image quality. • The reduction of radiation by 70% by DLIR is clinically acceptable but insufficient for detecting small low-contrast hepatic metastases (< 1 cm).
Collapse
Affiliation(s)
- Peijie Lyu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Zhengzhou, 450052, Henan Province, China.,Department of Radiology, Duke University Medical Center, 2301 Erwin Rd, Box 3808, Durham, NC, 27710, USA
| | - Nana Liu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Zhengzhou, 450052, Henan Province, China
| | - Brian Harrawood
- Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, 2424 Erwin Road, Suite 302, Durham, NC, 27705, USA
| | - Justin Solomon
- Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, 2424 Erwin Road, Suite 302, Durham, NC, 27705, USA
| | - Huixia Wang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Zhengzhou, 450052, Henan Province, China
| | - Yan Chen
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Zhengzhou, 450052, Henan Province, China
| | - Francesca Rigiroli
- Beth Israel Deaconess Medical Center Department of Radiology, Harvard Medical School, 1 Deaconess Rd, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Yuqin Ding
- Department of Radiology, Duke University Medical Center, 2301 Erwin Rd, Box 3808, Durham, NC, 27710, USA.,Department of Radiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 20032, China
| | - Fides Regina Schwartz
- Department of Radiology, Duke University Medical Center, 2301 Erwin Rd, Box 3808, Durham, NC, 27710, USA
| | - Hanyu Jiang
- Department of Radiology, Duke University Medical Center, 2301 Erwin Rd, Box 3808, Durham, NC, 27710, USA.,Department of Radiology, West China Hospital of Sichuan University, 37 Guoxue Alley, Chengdu, 610041, Sichuan Province, China
| | - Carolyn Lowry
- Clinical Imaging Physics Group, Duke University Health System, 2424 Erwin Rd, Ste. 302, Durham, NC, 27705, USA
| | - Luotong Wang
- CT Imaging Research Center, GE Healthcare China, No.1 Tongji South Road, Beijing, 100176, China
| | - Ehsan Samei
- Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, 2424 Erwin Road, Suite 302, Durham, NC, 27705, USA
| | - Jianbo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Zhengzhou, 450052, Henan Province, China.
| | - Daniele Marin
- Department of Radiology, Duke University Medical Center, 2301 Erwin Rd, Box 3808, Durham, NC, 27710, USA
| |
Collapse
|
13
|
Wang J, Zhou S, Chen S, He Y, Gao H, Yan L, Hu X, Li P, Shen H, Luo M, You T, Li J, Zhong Z, Zhang K. Prediction of osteoporosis using radiomics analysis derived from single source dual energy CT. BMC Musculoskelet Disord 2023; 24:100. [PMID: 36750927 PMCID: PMC9903590 DOI: 10.1186/s12891-022-06096-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 12/15/2022] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND With the aging population of society, the incidence rate of osteoporosis is increasing year by year. Early diagnosis of osteoporosis plays a significant role in the progress of disease prevention. As newly developed technology, computed tomography (CT) radiomics could discover radiomic features difficult to recognize visually, providing convenient, comprehensive and accurate osteoporosis diagnosis. This study aimed to develop and validate a clinical-radiomics model based on the monochromatic imaging of single source dual-energy CT for osteoporosis prediction. METHODS One hundred sixty-four participants who underwent both single source dual-energy CT and quantitative computed tomography (QCT) lumbar-spine examination were enrolled in a study cohort including training datasets (n = 114 [30 osteoporosis and 84 non-osteoporosis]) and validation datasets (n = 50 [12 osteoporosis and 38 non-osteoporosis]). One hundred seven radiomics features were extracted from 70-keV monochromatic CT images. With QCT as the reference standard, a radiomics signature was built by using least absolute shrinkage and selection operator (LASSO) regression on the basis of reproducible features. A clinical-radiomics model was constructed by incorporating the radiomics signature and a significant clinical predictor (age) using multivariate logistic regression analysis. Model performance was assessed by its calibration, discrimination and clinical usefulness. RESULTS The radiomics signature comprised 14 selected features and showed good calibration and discrimination in both training and validation cohorts. The clinical-radiomics model, which incorporated the radiomics signature and a significant clinical predictor (age), also showed good discrimination, with an area under the receiver operating characteristic curve (AUC) of 0.938 (95% confidence interval, 0.903-0.952) in the training cohort and an AUC of 0.988 (95% confidence interval, 0.967-0.998) in the validation cohort, and good calibration. The clinical-radiomics model stratified participants into groups with osteoporosis and non-osteoporosis with an accuracy of 94.0% in the validation cohort. Decision curve analysis (DCA) demonstrated that the radiomics signature and the clinical-radiomics model were clinically useful. CONCLUSIONS The clinical-radiomics model incorporating the radiomics signature and a clinical parameter had a good ability to predict osteoporosis based on dual-energy CT monoenergetic imaging.
Collapse
Affiliation(s)
- Jinling Wang
- grid.488482.a0000 0004 1765 5169Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha, 410007 People’s Republic of China ,grid.488482.a0000 0004 1765 5169College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208 People’s Republic of China
| | - Shuwei Zhou
- grid.488482.a0000 0004 1765 5169Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha, 410007 People’s Republic of China ,grid.488482.a0000 0004 1765 5169College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208 People’s Republic of China
| | - Suping Chen
- GE Healthcare (Shanghai) Co., Ltd., Shanghai, 201203 People’s Republic of China
| | - Yewen He
- grid.488482.a0000 0004 1765 5169Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha, 410007 People’s Republic of China
| | - Hui Gao
- grid.488482.a0000 0004 1765 5169Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha, 410007 People’s Republic of China
| | - Luyou Yan
- grid.488482.a0000 0004 1765 5169Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha, 410007 People’s Republic of China
| | - Xiaoli Hu
- grid.488482.a0000 0004 1765 5169Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha, 410007 People’s Republic of China
| | - Ping Li
- grid.488482.a0000 0004 1765 5169Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha, 410007 People’s Republic of China
| | - Hongrong Shen
- grid.488482.a0000 0004 1765 5169Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha, 410007 People’s Republic of China
| | - Muqing Luo
- grid.488482.a0000 0004 1765 5169Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha, 410007 People’s Republic of China
| | - Tian You
- grid.488482.a0000 0004 1765 5169Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha, 410007 People’s Republic of China
| | - Jianyu Li
- grid.488482.a0000 0004 1765 5169Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha, 410007 People’s Republic of China
| | - Zeya Zhong
- grid.488482.a0000 0004 1765 5169Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha, 410007 People’s Republic of China
| | - Kun Zhang
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha, 410007, People's Republic of China. .,College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, People's Republic of China.
| |
Collapse
|
14
|
Noda Y, Takai Y, Asano M, Yamada N, Seko T, Kawai N, Kaga T, Miyoshi T, Hyodo F, Kato H, Matsuo M. Comparison of image quality and pancreatic ductal adenocarcinoma conspicuity between the low-kVp and dual-energy CT reconstructed with deep-learning image reconstruction algorithm. Eur J Radiol 2023; 159:110685. [PMID: 36603479 DOI: 10.1016/j.ejrad.2022.110685] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023]
Abstract
PURPOSE To compare the image quality and conspicuity of pancreatic ductal adenocarcinoma (PDAC) between the low-kVp and dual-energy pancreatic protocol CT reconstructed with deep-learning image reconstruction (DLIR). METHOD A cohort of 111 consecutive patients (median age, 72 years; 56 men) undergoing a pancreatic protocol CT were retrospectively analyzed. Among them, 58 patients underwent 80-kVp CT (80-kVp group), and 53 patients underwent dual-energy CT and reconstructed at 40-keV (40-keV group). The medium-strength level of DLIR were used in both groups. Quantitative measurements, qualitative image quality, PDAC conspicuity, and dose-length product (DLP) were compared between the two groups using Mann-Whitney U test. RESULTS A total of 20 and 16 PDACs were found in the 80-kVp and 40-keV groups, respectively. CT numbers of the vasculatures and parenchymal organs (P <.001 for all) and the background noise at both pancreatic and portal venous phases (P <.001) were higher in the 40-keV group than in the 80-kVp group. The signal-to-noise ratio (SNR) of all anatomical structures (P <.001-0.005), except for the liver in reviewer 2 (P =.47), and the tumor-to-pancreas contrast-to-noise ratio (CNR; P <.001-0.01) were higher in the 40-keV group than in the 80-kVp group. No difference was found in the image quality at both phases (P =.30-0.90). PDAC conspicuity was better in the 40-keV group than in the 80-kVp group (P =.007-0.03). DLP at pancreatic (275 vs. 313 mGy*cm; P =.05) and portal venous phases (743 vs. 766 mGy*cm; P =.20) was comparable between the two groups. CONCLUSION Under the same DLP, virtual monoenergetic images at 40-keV demonstrated higher SNR and tumor-to-pancreas CNR and better PDAC conspicuity compared to the 80-kVp setting.
Collapse
Affiliation(s)
- Yoshifumi Noda
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Yukiko Takai
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Masashi Asano
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Nao Yamada
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Takuya Seko
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Nobuyuki Kawai
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Tetsuro Kaga
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Toshiharu Miyoshi
- Department of Radiology Services, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Fuminori Hyodo
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; Institute for Advanced Study, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Hiroki Kato
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Masayuki Matsuo
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| |
Collapse
|
15
|
A feasibility study of different GSI noise indexes and concentrations of contrast medium in hepatic CT angiography of overweight patients: image quality, radiation dose, and iodine intake. Jpn J Radiol 2023; 41:669-679. [PMID: 36607550 DOI: 10.1007/s11604-022-01384-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE To conduct a comparative study of image quality, radiation dose, and iodine intake in hepatic computed tomographic angiography (CTA) of overweight patients with different Gemstone Spectral Imaging (GSI) noise indexes combined with different concentrations of contrast medium. MATERIALS AND METHODS Ninety patients with a body mass index of ≥ 25 kg/m2 were divided into three groups (A, B and C), each with 30 patients. The three groups underwent hepatic CTA with different NI of 7, 11 and 15, respectively, and were injected with different iodine concentrations of 370, 350 and 320 mgI/mL, respectively. Five sets of images at 40-60 keV (interval, 5 keV) were reconstructed in each group. The CT value, image noise, contrast-to-noise ratio (CNR) and subjective score of the hepatic artery and vein, and portal vein in different monochromatic image sets were analyzed to select the optimal energy level in each group. The differences in CT value, image noise, CNR and a subjective score of hepatic artery and vein, portal vein in the optimal monochromatic images among the three groups were compared, the volume CT dose index (CTDIvol) and dose-length product (DLP) were recorded, and the effective dose and iodine intake were calculated. RESULTS The 40 keV was determined to be the optimal energy level for the monochromatic image sets in each group. No significant group differences were noted in the CT value, image noise, CNR, and subjective image scores of the hepatic artery and vein, and portal vein for the optimal monochromatic images (P > 0.05). Compared with group A, the effective dose and iodine intake in group B were reduced by 50.18% and 9.3%, and by 58.12% and 14.23% in group C, respectively. CONCLUSION A low-concentration contrast medium combined with a high-noise GSI index in hepatic CTA of overweight patients can reduce the radiation dose and iodine intake while ensuring image quality.
Collapse
|
16
|
Kazemi Z, Hajimiri K, Saghatchi F, Molazadeh M, Rezaeejam H. Assessment of the knowledge level of radiographers and CT technologists regarding computed tomography parameters in Iran. RADIATION MEDICINE AND PROTECTION 2023. [DOI: 10.1016/j.radmp.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
17
|
Zhou S, Chen S, Zhu X, You T, Li P, Shen H, Gao H, He Y, Zhang K. Associations between paraspinal muscles fatty infiltration and lumbar vertebral bone mineral density - An investigation by fast kVp switching dual-energy CT and QCT. Eur J Radiol Open 2022; 9:100447. [PMID: 36277658 PMCID: PMC9579482 DOI: 10.1016/j.ejro.2022.100447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 10/27/2022] Open
Abstract
Purpose To investigate the relationship between paraspinal muscles fat content and lumbar bone mineral density (BMD). Methods A total of 119 participants were enrolled in our study (60 males, age: 50.88 ± 17.79 years, BMI: 22.80 ± 3.80 kg·m-2; 59 females, age: 49.41 ± 17.69 years, BMI: 22.22 ± 3.12 kg·m-2). Fat content of paraspinal muscles (erector spinae (ES), multifidus (MS), and psoas (PS)) were measured at (ES L1/2-L4/5; MS L2/3-L5/S1; PS L2/3-L5/S1) levels using dual-energy computed tomography (DECT). Quantitative computed tomography (QCT) was used to assess BMD of L1 and L2. Linear regression analysis was used to assess the relationship between BMD of the lumbar spine and paraspinal muscles fat content with age, sex, and BMI. The variance inflation factor (VIF) was used to detect the degree of multicollinearity among the variables. P < .05 was considered to indicate a statistically significant difference. Results The paraspinal muscles fat content had a fairly significant inverse association with lumbar BMD after controlling for age, sex, and BMI (adjusted R 2 = 0.584-0.630, all P < .05). Conclusion Paraspinal muscles fat content was negatively associated with BMD.Paraspinal muscles fatty infiltration may be considered as a potential marker to identify BMD loss.
Collapse
Key Words
- ASiR-V, Adaptive statistical iterative reconstruction-Veo
- BIA, Bioimpedance analysis
- BMD, Bone mineral density
- Bone density
- CNR, Contrast-to-noise ratio
- DECT, Dual-energy computed tomography
- DXA, Dual-energy x-ray absorptiometry
- EMCL, extramyocellular lipids
- ES, Erector spinae
- FF, fat fraction
- FI %, Fatty infiltration ratio
- FM, Fat mass
- GSI, Gemstone spectral imaging
- IMCL, intramyocellular lipids
- LM, Lean mass
- MD, Material decomposition
- MRI, Magnetic resonance imaging
- MS, Multifidus
- MSK, Musculoskeletal
- Osteoporosis
- PDFF, Proton density fat fractions
- PS, Psoas
- Paraspinal muscles
- QCT, Quantitative computed tomography
- Tomography
- VIF, Variance inflation factor
- X-Ray computed
Collapse
Affiliation(s)
- Shuwei Zhou
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha 410007, PR China,The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha 410208, PR China
| | - Suping Chen
- GE Healthcare (Shanghai) Co., Ltd., Shanghai 201203, PR China
| | - Xu Zhu
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha 410208, PR China
| | - Tian You
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha 410007, PR China
| | - Ping Li
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha 410007, PR China
| | - Hongrong Shen
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha 410007, PR China
| | - Hui Gao
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha 410007, PR China
| | - Yewen He
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha 410007, PR China
| | - Kun Zhang
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha 410007, PR China,The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha 410208, PR China,Corresponding author at: Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha 410007 PR China.
| |
Collapse
|
18
|
Lee T, Lee JM, Yoon JH, Joo I, Bae JS, Yoo J, Kim JH, Ahn C, Kim JH. Deep learning-based image reconstruction of 40-keV virtual monoenergetic images of dual-energy CT for the assessment of hypoenhancing hepatic metastasis. Eur Radiol 2022; 32:6407-6417. [PMID: 35380228 DOI: 10.1007/s00330-022-08728-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/19/2022] [Accepted: 03/10/2022] [Indexed: 12/18/2022]
Abstract
OBJECTIVES To evaluate the diagnostic value of deep learning model (DLM) reconstructed dual-energy CT (DECT) low-keV virtual monoenergetic imaging (VMI) for assessing hypoenhancing hepatic metastases. METHODS This retrospective study included 131 patients who underwent contrast-enhanced DECT (80-kVp and 150-kVp with a tin filter) in the portal venous phase for hepatic metastasis surveillance. Linearly blended images simulating 100-kVp images (100-kVp), standard 40-keV VMI images (40-keV VMI), and post-processed 40-keV VMI using a vendor-agnostic DLM (i.e., DLM 40-keV VMI) were reconstructed. Lesion conspicuity and diagnostic acceptability were assessed by three independent reviewers and compared using the Wilcoxon signed-rank test. The contrast-to-noise ratios (CNRs) were also measured placing ROIs in metastatic lesions and liver parenchyma. The detection performance of hepatic metastases was assessed by using a jackknife alternative free-response ROC method. The consensus by two independent radiologists was used as the reference standard. RESULTS DLM 40-keV VMI, compared to 40-keV VMI and 100-kVp, showed a higher lesion-to-liver CNR (8.25 ± 3.23 vs. 6.05 ± 2.38 vs. 5.99 ± 2.00), better lesion conspicuity (4.3 (4.0-4.7) vs. 3.7 (3.7-4.0) vs. 3.7 (3.3-4.0)), and better diagnostic acceptability (4.3 (4.0-4.3) vs. 3.0 (2.7-3.3) vs. 4.0 (4.0-4.3)) (p < 0.001 for all). For lesion detection (246 hepatic metastases in 68 patients), the figure of merit was significantly higher with DLM 40-keV VMI than with 40-keV VMI (0.852 vs. 0.822, p = 0.012), whereas no significant difference existed between DLM 40-keV VMI and 100-kVp (0.852 vs. 0.842, p = 0.31). CONCLUSIONS DLM 40-keV VMI provided better image quality and comparable diagnostic performance for detecting hypoenhancing hepatic metastases compared to linearly blended images. KEY POINTS • DLM 40-keV VMI provides a superior image quality compared with 40-keV or 100-kVp for assessing hypoenhancing hepatic metastasis. • DLM 40-keV VMI has the highest CNR and lesion conspicuity score for hypoenhancing hepatic metastasis due to noise reduction and structural preservation. • DLM 40-keV VMI provides higher lesion detectability than standard 40-keV VMI (p = 0.012).
Collapse
Affiliation(s)
- Taehee Lee
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea. .,Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea. .,Institute of Radiation Medicine, Seoul National University Medical Research Center, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
| | - Jeong Hee Yoon
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.,Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Ijin Joo
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.,Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Jae Seok Bae
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Jeongin Yoo
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Jae Hyun Kim
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Chulkyun Ahn
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Korea
| | - Jong Hyo Kim
- Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.,Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Korea.,Center for Medical-IT Convergence Technology Research, Advanced Institutes of Convergence Technology, Suwon, 16229, Korea
| |
Collapse
|
19
|
Chen S, Zhong X, Dorn S, Ravikumar N, Tao Q, Huang X, Lell M, Kachelriess M, Maier A. Improving Generalization Capability of Multiorgan Segmentation Models Using Dual-Energy CT. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022. [DOI: 10.1109/trpms.2021.3055199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Huang R, Yan J, Geng H, Yu Q, Sun Z, Liu W, Zhang L, Li C, Li Y. Reduced-Dose Full-Body CT in Lymphoma Follow-up: A Pilot Study. Curr Med Imaging 2022; 19:77-90. [PMID: 35578866 DOI: 10.2174/1573405618666220516123155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/11/2022] [Accepted: 03/19/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND How to reduce the radiation dose received from full-body CT scans during the follow-up of lymphoma patients is a concern. OBJECTIVE The aim of the study was to investigate the image quality and radiation dose of reduced-dose full-body computerized tomography (CT) in lymphoma patients during the follow-up. METHODS 121 patients were included and divided into conventional CT group (group 1, 120-kVp, n = 61) or reduced-dose CT group (group 2, 100-kVp combined dual-energy CT (DECT), n = 60). 140-kVp polychromatic images and 70-keV monochromatic images were reconstructed from DECT. The abdominal virtual non-enhanced (VNE) images were reconstructed from monochromatic images. Two radiologists rated the overall image quality with a five-point scale and graded the depiction of lesions using a four-point scale. The objective image quality was evaluated using image noise, signal-to-noise ratio, and contrast-to-noise ratio. The radiation dose and image quality were compared between the groups. RESULTS The comparable subjective image quality was observed between 70-keV and 120-kVp images in the neck, while 120-kVp images showed better objective image quality. 70-keV images showed better objective image quality in the chest. While the subjective image quality of abdominal VNE images was inferior to that of true non-enhanced images, the improved objective image quality was observed in VNE images. In the abdominal arterial phase, similar subjective image quality was observed between the groups. Abdominal 70-keV images in the arterial phase showed improved objective image quality. Similar image quality was obtained in the abdominal venous phase between the groups. The effective radiation dose in group 2 showed a significant reduction. CONCLUSION The application of reduced-dose full-body CT can significantly reduce the radiation dose for lymphoma patients during the follow-up while maintaining or improving the image quality.
Collapse
Affiliation(s)
- Renjun Huang
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215000, P.R. China
| | - Jiulong Yan
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215000, P.R. China
| | - Hongzhi Geng
- Department of Hematology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215000, P.R. China
| | - Qiuyu Yu
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215000, P.R. China
| | - Zongqiong Sun
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215000, P.R. China
| | - Wenyan Liu
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215000, P.R. China
| | - Ling Zhang
- Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou City, Guangdong Province 510060, P.R. China
- State Key Laboratory of Oncology in South Chinal, Guangzhou City, Guangdong Province 510060, P.R. China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province 510060, P.R. China
| | - Caixia Li
- Department of Hematology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215000, P.R. China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215000, P.R. China
| | - Yonggang Li
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215000, P.R. China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215000, P.R. China
- Institute of Medical Imaging, Soochow University, Suzhou City, Jiangsu Province 215000, P.R. China
| |
Collapse
|
21
|
Voss BA, Khandelwal A, Wells ML, Inoue A, Venkatesh SK, Lee YS, Johnson MP, Fletcher JG. Impact of dual-energy 50-keV virtual monoenergetic images on radiologist confidence in detection of key imaging findings of small hepatocellular carcinomas using multiphase liver CT. Acta Radiol 2021; 63:1443-1452. [PMID: 34723681 DOI: 10.1177/02841851211052993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Dual-energy virtual monoenergetic images can increase iodine signal, potentially increasing the conspicuity of hepatic masses. PURPOSE To determine if dual-energy 50-keV virtual monoenergetic images improve visualization of key imaging findings or diagnostic confidence for small (≤2 cm) hepatocellular carcinomas (HCC) at multiphase, contrast-enhanced liver computed tomography (CT). MATERIAL AND METHODS Patients with chronic liver disease underwent multiphase dual-energy CT imaging for HCC, with late arterial and delayed phase dual-energy 50-keV images reconstructed. Two non-reader subspecialized gastrointestinal (GI) radiologists established the reference standard, determining the location and diagnosis of all hepatic lesions using predetermined criteria. Three GI radiologists interpreted mixed kV CT images without or with dual-energy 50-keV images. Radiologists identified potential HCCs and rated their confidence (0-100 scales) in imaging findings of arterial enhancement, enhancing capsule, tumor washout, and LI-RADS 5 (2018) category. RESULTS In total, 45 patients (14 women; mean age = 59.5 ± 10.9 years) with chronic liver disease were included. Of them, 19 patients had 25 HCCs ≤2 cm (mean size = 1.5 ± 0.4 cm). There were 17 LI-RADS 3 and 4 lesions and 19 benign lesions. Reader confidence in imaging findings of arterial enhancement, enhancing capsule, and non-peripheral washout significantly increased with dual-energy images (P ≤ 0.022). Overall confidence in HCC diagnosis increased significantly with dual-energy 50-keV images (52.4 vs. 68.8; P = 0.001). Dual-energy images demonstrated a slight but significant decrease in overall image quality. CONCLUSION Radiologist confidence in key imaging features of small HCCs and confidence in imaging diagnosis increases with use of dual-energy 50-keV images at multiphase, contrast-enhanced liver CT.
Collapse
Affiliation(s)
| | | | | | - Akitoshi Inoue
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Yong S Lee
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Matthew P Johnson
- Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
22
|
Computed Tomography Techniques, Protocols, Advancements, and Future Directions in Liver Diseases. Magn Reson Imaging Clin N Am 2021; 29:305-320. [PMID: 34243919 DOI: 10.1016/j.mric.2021.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Computed tomography (CT) is often performed as the initial imaging study for the workup of patients with known or suspected liver disease. Our article reviews liver CT techniques and protocols in clinical practice along with updates on relevant CT advances, including wide-detector CT, radiation dose optimization, and multienergy scanning, that have already shown clinical impact. Particular emphasis is placed on optimizing the late arterial phase of enhancement, which is critical to evaluation of hepatocellular carcinoma. We also discuss emerging techniques that may soon influence clinical care.
Collapse
|
23
|
Yoo J, Lee JM, Yoon JH, Joo I, Lee ES, Jeon SK, Jang S. Comparison of low kVp CT and dual-energy CT for the evaluation of hypervascular hepatocellular carcinoma. Abdom Radiol (NY) 2021; 46:3217-3226. [PMID: 33713160 DOI: 10.1007/s00261-020-02888-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 01/19/2023]
Abstract
PURPOSE To compare lesion conspicuity and image quality of arterial phase images obtained from low kVp (90-kVp) and dual-energy (DE) scans for the evaluation of hypervascular hepatocellular carcinoma (HCC). METHODS This retrospective study included 229 patients with HCC who underwent either 90 kVp (n = 106) or DE scan (80- and 150-kVp with a tin filter) (n = 123) during the arterial phase. DE scans were reconstructed into a linearly blended image with a mixed ratio of 0.6 (60% 80kVp and 40% 150 kVp) and post-processed for 40 keV and 50 keV images. The contrast-to-noise ratio (CNR) of HCC to the liver and image noise was measured. Lesion conspicuity, liver parenchymal image quality, and overall image preference were assessed qualitatively by three independent radiologists. RESULTS DE 40 keV images had the highest CNR of HCC, and DE blended images had the lowest image noise among four image sets (p = 0.01 and p < 0.001, respectively). There was no significant difference in mean volume CT dose index and dose-length product between DE and low kVp scan (ps > 0.05). For qualitative analyses, DE blended images had the highest scores for image quality and overall image preference (ps < 0.001). CONCLUSION At an equal radiation dose, DE 40 keV showed higher CNR of HCC and DE blended image showed higher image quality and image preference compared with low kVp CT.
Collapse
Affiliation(s)
- Jeongin Yoo
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea.
- Department of Radiology and Institute of Radiation Medicine, Seoul National University College of Medicine, Daehak-ro 101, Jongno-gu, Seoul, 03080, Korea.
| | - Jeong Hee Yoon
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Ijin Joo
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Eun Sun Lee
- Department of Radiology, Chung-Ang University Hospital, Seoul, Korea
| | - Sun Kyung Jeon
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Siwon Jang
- Department of Radiology, Seoul National University Boramae Hospital, Seoul, Korea
| |
Collapse
|
24
|
Jiang J, Zhang M, Ji Y, Li C, Fang X, Zhang S, Wang W, Wang L, Liu A. An Individualized Contrast-Enhanced Liver Computed Tomography Imaging Protocol Based on Body Mass Index in 126 Patients Seen for Liver Cirrhosis. Med Sci Monit 2021; 27:e932109. [PMID: 34162827 PMCID: PMC8240488 DOI: 10.12659/msm.932109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Computed tomography (CT) imaging using iodinated contrast medium is associated with the radiation dose to the patient, which may require reduction in individual circumstances. This study aimed to evaluate an individualized liver CT protocol based on body mass index (BMI) in 126 patients investigated for liver cirrhosis. Material/Methods From November 2017 to December 2020, in this prospective study, 126 patients with known or suspected liver cirrhosis were recruited. Patients underwent liver CT using individualized protocols based on BMI, as follows. BMI ≤24.0 kg/m2: 80 kV, 352 mg I/kg; BMI 24.1–28.0 kg/m2: 100 kV, 440 mg I/kg; BMI ≥28.1 kg/m2: 120 kV, 550 mg I/kg. Figure of merit (FOM) and size-specific dose estimates (SSDEs) were calculated and compared using the Mann-Whitney U test. Subjective image quality and timing adequacy of the late arterial phase were evaluated with Likert scales. Results The SSDE was significantly lower in the 80 kV protocol, corresponding to a dose reduction of 36% and 50% compared with the others (all P<0.001). In the comparison of 80-, 100-, and 120-kV protocols, no statistically significant differences were found in FOMs (P=0.108~0.620). Of all the examinations, 95.2% (120 of 126) were considered as appropriate timing for the late arterial phase. In addition, overall image quality, hepatocellular carcinoma conspicuity, and detection rate did not differ significantly among the 3 protocols (P=0.383~0.737). Conclusions This study demonstrated the feasibility of using an individualized liver CT protocol based on BMI, and showed that patients with lower BMI should receive lower doses of iodinated contrast medium and significantly reduced radiation dose.
Collapse
Affiliation(s)
- Jian Jiang
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - Maowei Zhang
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - Yuan Ji
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - Chunfeng Li
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - Xin Fang
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - Shuyuan Zhang
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - Wei Wang
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China (mainland)
| | - Lijun Wang
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - Ailian Liu
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| |
Collapse
|
25
|
Lyu P, Neely B, Solomon J, Rigiroli F, Ding Y, Schwartz FR, Thomsen B, Lowry C, Samei E, Marin D. Effect of deep learning image reconstruction in the prediction of resectability of pancreatic cancer: Diagnostic performance and reader confidence. Eur J Radiol 2021; 141:109825. [PMID: 34144309 DOI: 10.1016/j.ejrad.2021.109825] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/11/2021] [Accepted: 06/09/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To assess the diagnostic performance and reader confidence in determining the resectability of pancreatic cancer at computed tomography (CT) using a new deep learning image reconstruction (DLIR) algorithm. METHODS A retrospective review was conduct of on forty-seven patients with pathologically confirmed pancreatic cancers who underwent baseline multiphasic contrast-enhanced CT scan. Image data sets were reconstructed using filtered back projection (FBP), hybrid model-based adaptive statistical iterative reconstruction (ASiR-V) 60 %, and DLIR "TrueFidelity" at low(L), medium(M), and high strength levels(H). Four board-certified abdominal radiologists reviewed the CT images and classified cancers as resectable, borderline resectable, or unresectable. Diagnostic performance and reader confidence for categorizing the resectability of pancreatic cancer were evaluated based on the reference standards, and the interreader agreement was assessed using Fleiss k statistics. RESULTS For prediction of margin-negative resections(ie, R0), the average area under the receiver operating characteristic curve was significantly higher with DLIR-H (0.91; 95 % confidence interval [CI]: 0.79, 0.98) than FBP (0.75; 95 % CI:0.60, 0.86) and ASiR-V (0.81; 95 % CI:0.67, 0.91) (p = 0.030 and 0.023 respectively). Reader confidence scores were significantly better using DLIR compared to FBP and ASiR-V 60 % and increased linearly with the increase of DLIR strength level (all p < 0.001). Among the image reconstructions, DLIR-H showed the highest interreader agreement in the resectability classification and lowest subject variability in the reader confidence. CONCLUSIONS The DLIR-H algorithm may improve the diagnostic performance and reader confidence in the CT assignment of the local resectability of pancreatic cancer while reducing the interreader variability.
Collapse
Affiliation(s)
- Peijie Lyu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Department of Radiology, Duke University Medical Center, Durham, NC, USA.
| | - Ben Neely
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Justin Solomon
- Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, 2424 Erwin Road, Suite 302, Durham, NC, USA
| | - Francesca Rigiroli
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Yuqin Ding
- Department of Radiology, Duke University Medical Center, Durham, NC, USA; Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, China
| | | | - Brian Thomsen
- Senior Research Manager, CT, GE Healthcare, 3000 N Grandview Blvd, Waukesha, WI, USA
| | - Carolyn Lowry
- Duke Imaging Services Cary Parkway, Duke University Health System, INC, 3700 NW Cary Parkway Suite120, Cary, NC, USA
| | - Ehsan Samei
- Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, 2424 Erwin Road, Suite 302, Durham, NC, USA
| | - Daniele Marin
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
26
|
Funama Y, Oda S, Kidoh M, Nagayama Y, Goto M, Sakabe D, Nakaura T. Conditional generative adversarial networks to generate pseudo low monoenergetic CT image from a single-tube voltage CT scanner. Phys Med 2021; 83:46-51. [DOI: 10.1016/j.ejmp.2021.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/11/2021] [Accepted: 02/21/2021] [Indexed: 01/29/2023] Open
|
27
|
Zhou S, Zhu L, You T, Li P, Shen H, He Y, Gao H, Yan L, He Z, Guo Y, Zhang Y, Zhang K. In vivo quantification of bone mineral density of lumbar vertebrae using fast kVp switching dual-energy CT: correlation with quantitative computed tomography. Quant Imaging Med Surg 2021; 11:341-350. [PMID: 33392033 DOI: 10.21037/qims-20-367] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Osteoporosis is a common, progressive disease related to low bone mineral density (BMD). If it can be diagnosed at an early stage, osteoporosis is treatable. Quantitative computed tomography (QCT) is one of the current reference standards of BMD measurement, but dual-energy computed tomography (DECT) is considered to be a potential alternative. This study aimed to evaluate the feasibility and accuracy of phantomless in vivo DECT-based BMD quantification in comparison with QCT. Methods A total of 128 consecutive participants who underwent DECT lumbar examinations between July 2018 and February 2019 were retrospectively analyzed. The density of calcium (water), hydroxyapatite (water), calcium (fat), and hydroxyapatite (fat) [DCa(Wa), DHAP(Wa), DCa(Fat) and DHAP(Fat), respectively] were measured along with BMD in the trabecular bone of lumbar level 1-2 by DECT and QCT. Linear regression analysis was performed to assess the relationship between DECT- and QCT-derived BMD at both the participant level and the vertebral level. Linear regression models were quantitatively evaluated with adjusted R-square, normalized mean squared error (NMSE) and relative error (RE). Bland-Altman analysis was conducted to assess agreement between measurements. P<0.05 was considered statistically significant. Results Strong correlations were observed between DECT- and QCT-derived BMD at both the participant level and the vertebral level (adjusted R2 =0.983-0.987; NMSE = 1.6-2.1%; RElinear =0.6-0.9%). Bland-Altman plots indicated high agreement between both measurements. DCa(Fat) and DHAP(Fat) showed relatively similar and optimal predictive capability for QCT-derived BMD (both: adjusted R2 =0.987, NMSE =1.6%, RElinear =0.6%). Conclusions Fast kVp switching DECT enabled accurate phantomless in vivo BMD quantification of the lumbar spine. DCa(Fat) and DHAP(Fat) had relatively similar and optimal predictive capability.
Collapse
Affiliation(s)
- Shuwei Zhou
- Department of Radiology, First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China.,The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Lu Zhu
- Department of Ultrasonography, Hunan Provincial People's Hospital, First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Tian You
- Department of Radiology, First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Ping Li
- Department of Radiology, First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Hongrong Shen
- Department of Radiology, First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yewen He
- Department of Radiology, First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Hui Gao
- Department of Radiology, First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Luyou Yan
- Department of Radiology, First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Zhuo He
- Department of Radiology, First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Ying Guo
- Department of Radiology, First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yaxi Zhang
- Department of Radiology, First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Kun Zhang
- Department of Radiology, First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China.,The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
28
|
Sauter AP, Shapira N, Kopp FK, Aichele J, Bodden J, Knipfer A, Rummeny EJ, Noël PB. CTPA with a conventional CT at 100 kVp vs. a spectral-detector CT at 120 kVp: Comparison of radiation exposure, diagnostic performance and image quality. Eur J Radiol Open 2020; 7:100234. [PMID: 32420413 PMCID: PMC7215101 DOI: 10.1016/j.ejro.2020.100234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/10/2020] [Accepted: 04/18/2020] [Indexed: 12/15/2022] Open
Abstract
With SD-CT, increased radiation exposure is not present. In the current study, CTDIvol was lower with SD-CT than with C-CT, even when 100 kVp was used for the latter. With SD-CT, higher levels of diagnostic performance and image quality can be achieved. SD-CT may be the system of choice due to the availability of spectral data and thus additional image information.
Purpose To compare CT pulmonary angiographies (CTPAs) as well as phantom scans obtained at 100 kVp with a conventional CT (C-CT) to virtual monochromatic images (VMI) obtained with a spectral detector CT (SD-CT) at equivalent dose levels as well as to compare the radiation exposure of both systems. Material and Methods In total, 2110 patients with suspected pulmonary embolism (PE) were examined with both systems. For each system (C-CT and SD-CT), imaging data of 30 patients with the same mean CT dose index (4.85 mGy) was used for the reader study. C-CT was performed with 100 kVp and SD-CT was performed with 120 kVp; for SD-CT, virtual monochromatic images (VMI) with 40, 60 and 70 keV were calculated. All datasets were evaluated by three blinded radiologists regarding image quality, diagnostic confidence and diagnostic performance (sensitivity, specificity). Contrast-to-noise ratio (CNR) for different iodine concentrations was evaluated in a phantom study. Results CNR was significantly higher with VMI at 40 keV compared to all other datasets. Subjective image quality as well as sensitivity and specificity showed the highest values with VMI at 60 keV and 70 keV. Hereby, a significant difference to 100 kVp (C-CT) was found for image quality. The highest sensitivity was found using VMI at 60 keV with a sensitivity of more than 97 % for all localizations of PE. For diagnostic confidence and subjective contrast, highest values were found with VMI at 40 keV. Conclusion Higher levels of diagnostic performance and image quality were achieved for CPTAs with SD-CT compared to C-CT given similar dose levels. In the clinical setting SD-CT may be the modality of choice as additional spectral information can be obtained.
Collapse
Key Words
- BMI, body mass index
- C-CT, conventional spiral CT
- CNR, contrast-to-noise ratio
- CT, computed tomography
- CTDIVOL, volume-weighted CT dose index
- CTPA, CT pulmonary angiography
- Computed tomography angiography
- DE-CT, dual-Energy CT
- DLP, dose length product
- DS-CT, dual-Source CT
- ED, effective dose
- HU, Hounsfield Units
- IQ, image quality
- PE, pulmonary embolism
- Patient safety
- Pulmonary embolism
- ROI, region of interest
- Radiation exposure
- Radiologic
- SD-CT, spectral-detector CT
- Technology
- VMI, virtual monochromatic images
- kVp, peak kilovoltage
- keV, kilo-electronvolt
Collapse
Affiliation(s)
- Andreas P Sauter
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Radiology, Munich, Germany
| | - Nadav Shapira
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.,Philips Healthcare, Haifa, Israel
| | - Felix K Kopp
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Radiology, Munich, Germany
| | - Juliane Aichele
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Radiology, Munich, Germany
| | - Jannis Bodden
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Radiology, Munich, Germany
| | - Andreas Knipfer
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Radiology, Munich, Germany
| | - Ernst J Rummeny
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Radiology, Munich, Germany
| | - Peter B Noël
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Radiology, Munich, Germany.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
29
|
|
30
|
Iodine dose optimization in portal venous phase virtual monochromatic images of the abdomen: Prospective study on rapid kVp switching dual energy CT. Eur J Radiol 2020; 122:108746. [DOI: 10.1016/j.ejrad.2019.108746] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/06/2019] [Accepted: 11/09/2019] [Indexed: 02/04/2023]
|