1
|
Yun SM, Hong SB, Lee NK, Kim S, Ji YH, Seo HI, Park YM, Noh BG, Nickel MD. Deep learning-based image reconstruction for the multi-arterial phase images: improvement of the image quality to assess the small hypervascular hepatic tumor on gadoxetic acid-enhanced liver MRI. Abdom Radiol (NY) 2024; 49:1861-1869. [PMID: 38512517 DOI: 10.1007/s00261-024-04236-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 03/23/2024]
Abstract
PURPOSE To evaluated the impact of a deep learning (DL)-based image reconstruction on multi-arterial-phase magnetic resonance imaging (MA-MRI) for small hypervascular hepatic masses in patients who underwent gadoxetic acid-enhanced liver MRI. METHODS We retrospectively enrolled 55 adult patients (aged ≥ 18 years) with small hepatic hypervascular mass (≤ 3 cm) between December 2022 and February 2023. All patients underwent MA-MRI, subsequently reconstructed with a DL-based application. Qualitative assessment with Linkert scale including motion artifact (MA), liver edge (LE), hepatic vessel clarity (HVC) and image quality (IQ) was performed. Quantitative image analysis including signal to noise ratio (SNR), contrast to noise ratio (CNR) and noise was performed. RESULTS On both arterial phases (APs), all qualitative parameters were significantly improved after DL-based image reconstruction. (LE on 1st AP, 1.22 vs 1.61; LE on 2nd AP, 1.21 vs 1.65; HVC on 1st AP, 1.24 vs 1.39; HVC on 2nd AP, 1.24 vs 1.44; IQ on 1st AP, 1.17 vs 1.45; IQ on 2nd AP, 1.17 vs 1.47, all p values < 0.05). The SNR, CNR and noise were significantly improved after DL-based image reconstruction. (SNR on AP1, 279.08 vs 176.14; SNR on AP2, 334.34 vs 199.24; CNR on AP1, 106.09 vs 64.14; CNR on AP2, 129.66 vs 73.73; noise on AP1, 1.51 vs 2.33; noise on AP2, 1.45 vs 2.28, all p values < 0.05). CONCLUSIONS Gadoxetic acid-enhanced MA-MRI with DL-based image reconstruction improved the qualitative and quantitative parameters. Despite the short acquisition time, high-quality MA-MRI is now achievable.
Collapse
Affiliation(s)
- Su Min Yun
- Department of Radiology, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| | - Seung Baek Hong
- Department of Radiology, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea.
- Department of Radiology and Research Institute of Radiology, Pusan National University Hospital, Pusan National University School of Medicine, 179 Gudeok-ro, Seo-gu, Busan, 49241, Korea.
| | - Nam Kyung Lee
- Department of Radiology, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| | - Suk Kim
- Department of Radiology, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| | - Yea Hee Ji
- Department of Radiology, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| | - Hyung Il Seo
- Department of Surgery, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| | - Young Mok Park
- Department of Surgery, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| | - Byeong Gwan Noh
- Department of Surgery, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| | | |
Collapse
|
2
|
Multiarterial Phase Acquisition in Gadoxetic Acid-Enhanced Liver MRI for the Detection of Hypervascular Hepatocellular Carcinoma in High-Risk Patients: Comparison of Compressed Sensing Versus View Sharing Techniques. Invest Radiol 2023; 58:139-147. [PMID: 35976759 DOI: 10.1097/rli.0000000000000910] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVES The aim of this study was to compare compressed sensing (CS) and view sharing (VS) techniques for single breath-hold multiarterial phase imaging with respect to image quality and focal liver observation detectability during gadoxetic acid-enhanced magnetic resonance imaging in patients at high risk for hepatocellular carcinoma (HCC). MATERIALS AND METHODS A total of 385 patients who underwent gadoxetic acid-enhanced magnetic resonance imaging, including triple arterial phases using either CS (n = 224) or VS (n = 161) techniques, were retrospectively included. Among them, 117 patients had 171 focal liver observations (median diameter, 1.3 cm), which were classified according to Liver Imaging Reporting and Data System version 2018. The acquisition rate of optimally timed late arterial phase (LAP) was assessed, and image quality, including respiratory motion artifact and observation conspicuity, was rated on a 4-point scale by 3 radiologists. The Mann-Whitney U test and nonparametric test for repeated measures data were used for image quality and observation conspicuity analysis. The jackknife alternative free-response receiver operating characteristics method was used to compare the observation detectability between the 2 techniques. RESULTS The CS technique showed significantly higher acquisition rate of optimally timed LAP without transient severe motion (82.1% [184/224] vs 71.4% [115/161]; P = 0.013) than the VS technique. The CS technique also demonstrated significantly improved overall image quality (3.42 ± 0.70 vs 2.97 ± 0.61; P < 0.001) compared with the VS technique. Regarding the detection of hyperenhancing observations, there was no significant difference between the figure of merits of CS and VS techniques (0.660 vs 0.665; P = 0.890). However, the CS technique showed a higher detection rate in Liver Imaging Reporting and Data System M (LR-M, probably or definitely malignant but not HCC specific) observations than the VS technique (100.0% [9/9] vs 44.4% [8/18]; P = 0.009). CONCLUSION The CS technique tended to provide optimally timed LAP without transient severe motion and demonstrated greater detection rate of LR-M observations than the VS technique in patients at high risk of HCC.
Collapse
|
3
|
Hong SB, Hong S, Choi SH, Park SY, Shim JH, Kim SY, Lee SS, Kim S. Multiple arterial-phase MRI with gadoxetic acid improves diagnosis of hepatocellular carcinoma ≤3.0 cm. Liver Int 2023; 43:462-470. [PMID: 36317670 DOI: 10.1111/liv.15470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 10/18/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND AIMS Multiple arterial-phase magnetic resonance imaging (MA-MRI) was introduced to overcome the limitations of gadoxetic acid-enhanced MRI, but its clinical impacts on hepatocellular carcinoma (HCC) diagnosis have not been well assessed. We investigated whether MA-MRI with gadoxetic acid could improve the diagnosis of HCC ≤3.0 cm in comparison with single arterial-phase MRI (SA-MRI). METHODS This retrospective study included 397 patients from two tertiary institutions who underwent gadoxetic acid-enhanced MRI (243 patients with 271 lesions in cohort-1 underwent SA-MRI, and 154 patients with 166 lesions in cohort-2 underwent MA-MRI). The patients had 437 hepatic lesions ≤3.0 cm with pathologic confirmation. The arterial-phase image quality and diagnostic performance of SA-MRI and MA-MRI were analysed and compared. To minimize the effects of selection bias because of potential confounding between the two groups, propensity score-matching was additionally performed. RESULTS MA-MRI showed a significantly higher percentage of optimal arterial-phase timing (94.2% vs. 74.5%, p < .001) and lower incidence of inadequate examinations (1.3% vs. 5.8%, p = .034) than SA-MRI. MA-MRI had a significantly higher non-rim arterial-phase hyperenhancement (APHE) detection rate (94.9% vs. 85.5%, p = .005) and sensitivity for diagnosing HCC (87.4% vs. 70.0%, p < .001) than SA-MRI, but no significant difference in specificity (92.9% vs. 93.1%, p = .966). In 123 pairs of propensity score-matched patients, MA-MRI had significantly higher sensitivity (89.1% vs. 74.5%, p = .006) than SA-MRI with equal specificity (92.3% vs. 92.3%, p > .999). CONCLUSIONS Compared with SA-MRI, MA-MRI with gadoxetic acid can detect more non-rim APHE and significantly improve sensitivity for diagnosing HCC ≤3.0 cm, without a significant decrease in specificity.
Collapse
Affiliation(s)
- Seung Baek Hong
- Department of Radiology, Biomedical Research Institute, Pusan National University Hospital, and Pusan National University School of Medicine, Busan, Republic of Korea
| | - Sun Hong
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Sang Hyun Choi
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Seo Young Park
- Department of Statistics and Data Science, Korea National Open University, Seoul, Republic of Korea
| | - Ju Hyun Shim
- Department of Gastroenterology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - So Yeon Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Seung Soo Lee
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Suk Kim
- Department of Radiology, Biomedical Research Institute, Pusan National University Hospital, and Pusan National University School of Medicine, Busan, Republic of Korea
| |
Collapse
|
4
|
Poetter-Lang S, Dovjak GO, Messner A, Ambros R, Polanec SH, Baltzer PAT, Kristic A, Herold A, Hodge JC, Weber M, Bastati N, Ba-Ssalamah A. Influence of dilution on arterial-phase artifacts and signal intensity on gadoxetic acid-enhanced liver MRI. Eur Radiol 2022; 33:523-534. [PMID: 35895119 DOI: 10.1007/s00330-022-08984-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To investigate the effect of saline-diluted gadoxetic acid, done for arterial-phase (AP) artifact reduction, on signal intensity (SI), and hence focal lesion conspicuity on MR imaging. METHODS We retrospectively examined 112 patients who each had at least two serial gadoxetic acid-enhanced liver MRIs performed at 1 ml/s, first with non-diluted (ND), then with 1:1 saline-diluted (D) contrast. Two blinded readers independently analyzed the artifacts and graded dynamic images using a 5-point scale. The absolute SI of liver parenchyma, focal liver lesions (if present), aorta, and portal vein at the level of the celiac trunk and the SI of the paraspinal muscle were measured in all phases. The signal-to-norm (SINorm) of the vascular structures, hepatic parenchyma and focal lesions, and the contrast-to-norm (CNorm) of focal liver lesions were calculated. RESULTS AP artifacts were significantly reduced with dilution. Mean absolute contrast-enhanced liver SI was significantly higher on the D exams compared to the ND exams. Likewise, SINorm of liver parenchyma was significantly higher in all contrast-enhanced phases except transitional phase on the D exams. SINorm values in the AP for the aorta and in the PVP for portal vein were significantly higher on the diluted exams. The CNorm was not significantly different between ND and D exams for lesions in any imaging phase. The interclass correlation coefficient was excellent (0.89). CONCLUSION Gadoxetic acid dilution injected at 1ml/s produces images with significantly fewer AP artifacts but no significant loss in SINorm or CNorm compared to standard non-diluted images. KEY POINTS • Diluted gadoxetic acid at slow injection (1 ml/s) yielded images with higher SINorm of the liver parenchyma and preserved CNorm for focal liver lesions. • Gadoxetic acid-enhanced MRI injected at 1 ml/s is associated with arterial-phase (AP) artifacts in 31% of exams, which may degrade image quality and limits focal liver lesion detection. • Saline dilution of gadoxetic acid 1:1 combined with a slow injection rate of 1 ml/s significantly reduced AP artifacts from 31 to 9% and non-diagnostic AP artifacts from 16 to 1%.
Collapse
Affiliation(s)
- Sarah Poetter-Lang
- Department of Biomedical Imaging and Image-Guided Therapy, General Hospital of Vienna (AKH), Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Gregor O Dovjak
- Department of Biomedical Imaging and Image-Guided Therapy, General Hospital of Vienna (AKH), Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Alina Messner
- Department of Biomedical Imaging and Image-Guided Therapy, General Hospital of Vienna (AKH), Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Raphael Ambros
- Department of Biomedical Imaging and Image-Guided Therapy, General Hospital of Vienna (AKH), Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Stephan H Polanec
- Department of Biomedical Imaging and Image-Guided Therapy, General Hospital of Vienna (AKH), Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Pascal A T Baltzer
- Department of Biomedical Imaging and Image-Guided Therapy, General Hospital of Vienna (AKH), Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Antonia Kristic
- Department of Biomedical Imaging and Image-Guided Therapy, General Hospital of Vienna (AKH), Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Alexander Herold
- Department of Biomedical Imaging and Image-Guided Therapy, General Hospital of Vienna (AKH), Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Jacqueline C Hodge
- Department of Biomedical Imaging and Image-Guided Therapy, General Hospital of Vienna (AKH), Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Michael Weber
- Department of Biomedical Imaging and Image-Guided Therapy, General Hospital of Vienna (AKH), Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Nina Bastati
- Department of Biomedical Imaging and Image-Guided Therapy, General Hospital of Vienna (AKH), Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Ahmed Ba-Ssalamah
- Department of Biomedical Imaging and Image-Guided Therapy, General Hospital of Vienna (AKH), Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
5
|
Clinical usefulness of multiple arterial-phase images in gadoxetate disodium-enhanced magnetic resonance imaging: a systematic review and meta-analysis. Eur Radiol 2022; 32:5413-5423. [PMID: 35192009 DOI: 10.1007/s00330-022-08620-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/20/2021] [Accepted: 01/28/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES The multiple arterial-phase (AP) technique was introduced for liver MRI, but it is not really known if multiple AP MRI (MA-MRI) improves image quality and lesion detection rate on gadoxetate disodium-enhanced MRI in comparison with single AP MRI (SA-MRI). We aimed to determine the clinical usefulness of MA-MRI in comparison with SA-MRI. METHODS Original articles reporting the percentage of adequate AP imaging and the lesion detection rate on gadoxetate disodium-enhanced MA-MRI were identified in PubMed, EMBASE, and Cochrane Library databases. The pooled percentage of adequate AP imaging and lesion detection rate were calculated using random-effects meta-analysis of single proportions. Subgroup analysis was performed to explain causes of study heterogeneity, and publication bias was evaluated using Egger's test. RESULTS Of 772 articles screened, 22 studies in 12 articles were included: 18 studies (ten MA-MRI and eight SA-MRI) suitably defined the percentage of adequate AP imaging and four (three MA-MRI and one SA-MRI) defined the lesion detection rate. MA-MRI had 16.1% higher pooled percentage of adequate AP imaging than SA-MRI (94.8% vs. 78.7%, p < 0.01). MA-MRI additionally detected 33.2% of lesions than SA-MRI (83.2% vs. 50.0%, p = 0.06). Substantial study heterogeneity was found in MA-MRI, and the definition of adequate AP imaging, lesion characteristics, and reference standards were significant factors affecting study heterogeneity (p ≤ 0.02). Significant publication bias was found in MA-MRI (p < 0.01) but not in SA-MRI studies (p = 0.87). CONCLUSIONS Gadoxetate disodium-enhanced MA-MRI may be more clinically useful than SA-MRI, but further study is necessary to validate this finding because of study heterogeneity and publication bias. KEY POINTS • Multiple arterial-phase MRI (MA-MRI) had a 16.1% higher pooled percentage of adequate AP imaging than single arterial-phase MRI (SA-MRI) (94.8% vs. 78.7%, p < 0.01). • MA-MRI additionally detected an extra 33.2% of lesions compared with SA-MRI (83.2% vs. 50.0%, p = 0.06). • Substantial study heterogeneity and significant publication bias were found across MA-MRI studies.
Collapse
|
6
|
Moura Cunha G, Chernyak V, Fowler KJ, Sirlin CB. Up-to-Date Role of CT/MRI LI-RADS in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2021; 8:513-527. [PMID: 34104640 PMCID: PMC8180267 DOI: 10.2147/jhc.s268288] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/01/2021] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of mortality worldwide and a major healthcare burden in most societies. Computed tomography (CT) and magnetic resonance imaging (MRI) play a pivotal role in the medical care of patients with or at risk for hepatocellular carcinoma (HCC). When stringent imaging criteria are fulfilled, CT and MRI allow for diagnosis, staging, and assessment of response to treatment, without the need for invasive workup, and can inform clinical decision making. Owing to the central role of these imaging modalities in HCC management, standardization is essential to facilitate proper imaging technique, accurate interpretation, and clear communication among all stakeholders in both the clinical practice and research settings. The Liver Imaging Reporting and Data System (LI-RADS) is a comprehensive system that provides standardization across the continuum of HCC imaging, including ordinal probabilistic approach for reporting that directs individualized management. This review discusses the up-to-date role of CT and MRI in HCC imaging from the LI-RADS perspective. It also provides a glimpse into the future by discussing how advances in knowledge and technology are likely to enrich the LI-RADS approach.
Collapse
Affiliation(s)
- Guilherme Moura Cunha
- Liver Imaging Group, Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Victoria Chernyak
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Kathryn J Fowler
- Liver Imaging Group, Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Claude B Sirlin
- Liver Imaging Group, Department of Radiology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|