1
|
Jouni A, Baragona M, Pedersoli F, Ritter A. Temperature Distribution on Classical Two Needles IRE Setup Versus a Single Needle Prototype. Technol Cancer Res Treat 2024; 23:15330338241288342. [PMID: 39440388 PMCID: PMC11500228 DOI: 10.1177/15330338241288342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/20/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024] Open
Abstract
OBJECTIVES Irreversible Electroporation (IRE) is a non-thermal minimally invasive cancer therapy used in the treatment of liver tumors. However, the therapy entails an electrical current flux which can be high enough to cause a noticeable temperature increase. Therefore, the analysis of the heat distribution is important: during any IRE treatment, the target area is intended to be treated with non-thermal effects, where existing thermal effects should not damage nearby sensitive structures. This article aims to compare the established two parallel needles electrode setup, used by FDA-approved electroporation delivering devices, to a single needle, multiple electrode prototype design. METHODS Levels and distributions of the temperature at different distances from the applicators during an IRE liver treatment were investigated. The prototype results were collated with already published in-vivo data. All electrode configurations were analyzed numerically in COMSOL Multiphysics for different pulse protocols. RESULTS The extension of coagulation necrosis predicted by the model matched available in-vivo data. While the maximum average temperature during pulsation was higher for the prototype (74 °C) than for the two-needle IRE setup (57 °C), the thickness of the coagulation necrosis around the conductive electrodes was in the same range for both configurations. However, the location differed completely: the necrosis engendered by the prototype was located inside the tumor, while the two-needle IRE setup created necrosis outside the tumor, potentially closer to sensitive structures. CONCLUSION The results highlighted the importance of heat distribution analysis for the design of new IRE needles as well as for IRE treatment planning. Proper analysis ensures that the non-thermal effects are maximized while minimizing any potential thermal damage to surrounding sensitive structures.
Collapse
Affiliation(s)
- Ali Jouni
- University Hospital RWTH Aachen, Clinic for Diagnostic and Interventional Radiology, Aachen, Germany
| | | | - Federico Pedersoli
- Imaging Institute of Italian Switzerland, Bellinzona Regional Hospital, San Giovanni, Switzerland
| | - Andreas Ritter
- University Hospital RWTH Aachen, Clinic for Diagnostic and Interventional Radiology, Aachen, Germany
| |
Collapse
|
2
|
Wang Y, Ma R, Huang Z, Zhou Y, Wang K, Xiao Z, Guo Q, Yang D, Han M, Shen S, Qian J, Gao X, Liu Z, Zhou L, Yin S, Zheng S. Investigation of lethal thresholds of nanosecond pulsed electric field in rabbit VX2 hepatic tumors through finite element analysis and verification with a single-needle bipolar electrode: A prospective strategy employing three-dimensional comparisons. Comput Biol Med 2024; 168:107824. [PMID: 38086143 DOI: 10.1016/j.compbiomed.2023.107824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/16/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
Pulsed electric field has emerged as a promising modality for the solid tumor ablation with the advantage in treatment planning, however, the accurate prediction of the lesion margin requires the determination of the lethal electric field (E) thresholds. Herein we employ the highly repetitive nanosecond pulsed electric field (RnsPEF) to ablate the normal and VX2 tumor-bearing livers of rabbits. The ultrasound-guided surgery is operated using the conventional double- and newly devised single-needle bipolar electrodes. Finite element analysis is also introduced to simulate the E distribution in the practical treatments. Two- and three-dimensional investigations are performed on the image measurements and reconstructed calcification models on micro-CT, respectively. Specially, an algorithm considering the model surface, volume and shape is employed to compare the similarities between the simulative and experimental models. Blood vessel injury, temperature and synergistic efficacy with doxorubicin (DOX) are also investigated. According to the three-dimensional calculation, the overall E threshold is 4536.4 ± 618.2 V/cm and the single-needle bipolar electrode is verified to be effective in tissue ablation. Vessels are well preserved and the increment of temperature is limited. Synergy of RnsPEF and DOX shows increased apoptosis and improved long-term tumor survival. Our study presents a prospective strategy for the evaluation of the lethal E threshold, which can be considered to guide the future clinical treatment planning for RnsPEF.
Collapse
Affiliation(s)
- Yubo Wang
- Key Laboratory of Multi-Organ Transplantation Research (Ministry of Health), First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China
| | - Rongwei Ma
- Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China
| | - Zhiliang Huang
- Department of Ultrasound, Shulan Hospital, Hangzhou, Zhejiang Province, 310003, China
| | - Yuan Zhou
- Key Laboratory of Multi-Organ Transplantation Research (Ministry of Health), First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China
| | - Ke Wang
- College of Computer Science and Technology, China University of Minning and Technology, Xuzhou, Jiangsu Province, 221008, China
| | - Zhoufang Xiao
- College of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang Province, 310003, China
| | - Qiang Guo
- Department of Ultrasound, Shulan Hospital, Hangzhou, Zhejiang Province, 310003, China
| | - Dezhi Yang
- Department of Ultrasound, Shulan Hospital, Hangzhou, Zhejiang Province, 310003, China
| | - Mingchen Han
- College of Computer Science and Technology, China University of Minning and Technology, Xuzhou, Jiangsu Province, 221008, China
| | - Shuwei Shen
- College of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang Province, 310003, China
| | - Junjie Qian
- Key Laboratory of Multi-Organ Transplantation Research (Ministry of Health), First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China
| | - Xingxing Gao
- Key Laboratory of Multi-Organ Transplantation Research (Ministry of Health), First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China
| | - Zhen Liu
- Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China
| | - Lin Zhou
- Key Laboratory of Multi-Organ Transplantation Research (Ministry of Health), First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China
| | - Shengyong Yin
- Key Laboratory of Multi-Organ Transplantation Research (Ministry of Health), First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China.
| | - Shunsen Zheng
- Key Laboratory of Multi-Organ Transplantation Research (Ministry of Health), First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China; Department of Ultrasound, Shulan Hospital, Hangzhou, Zhejiang Province, 310003, China.
| |
Collapse
|
3
|
Lindelauf KHK, Baragona M, Baumann M, Maessen RTH, Ritter A. Pulse Parameters and Thresholds for (ir)Reversible Electroporation on Hepatocellular Carcinoma Cells in Vitro. Technol Cancer Res Treat 2023; 22:15330338221136694. [PMID: 36600679 PMCID: PMC9829997 DOI: 10.1177/15330338221136694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hepatocellular carcinoma is a leading cause of cancer-related death in many parts of the world. Traditional treatment options are not always effective. During the promising minimally invasive electroporation-based therapies, biological cell membranes are exposed to an external, sufficiently high, pulsed electric field which creates so-called nanopores into the lipid bilayer of the cell membrane. These pores can either be permanent (irreversible electroporation (IRE)), leading to apoptosis, or repairable (reversible electroporation (RE)), with continued cell function. In tumor therapy, RE is used to increase the diffusion of a chemotherapeutic drug during electrochemotherapy. For both IRE and RE, the success of the treatment is dependent on application of the appropriate electric field. Therefore, this study aims to define the pulse parameters and thresholds for IRE and RE on hepatocellular carcinoma (HepG2) cells in-vitro.In a custom-made in-vitro setup, HepG2 cell viability (0, 5, 10, and 15 min), and the peak temperature were measured after electroporation with the different IRE and RE pulsing protocols, to determine the most successful settings for IRE and RE. A CAM/PI flow cytometric assay was performed to confirm cell permeabilization for the RE pulsing protocols with the highest cell viability.The results indicated that an IRE pulsing protocol (70 pulses, 100 µs pulse length, and 100 ms interval) with an electric field strength of 4000 V/cm was needed as threshold for almost complete cell death of HepG2 cells. A RE pulsing protocol (8 pulses, 100 µs pulse length, and 1000 ms interval) with an electric field strength of 1000 V/cm was needed as threshold for viable and permeabilized HepG2 cells. The low peak temperatures (max 30.1°C for IRE, max 23.1°C for RE) within this study indicated that the reduction in HepG2 cell viability was caused by the applied electric field and was not a result of Joule heating.
Collapse
Affiliation(s)
- K. H. K. Lindelauf
- Department of Diagnostic and Interventional Radiology,
University
Hospital RWTH Aachen, Aachen, Germany,Philips
Research, Eindhoven, the Netherlands,K. H. K. Lindelauf, Department of
Diagnostic and Interventional Radiology, University Hospital RWTH Aachen,
Aachen, Germany.
| | - M. Baragona
- Philips
Research, Eindhoven, the Netherlands
| | - M. Baumann
- Institute of Applied Medical Engineering,
RWTH Aachen
University, Aachen, Germany
| | | | - A. Ritter
- Department of Diagnostic and Interventional Radiology,
University
Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
4
|
Dežman R, Čemažar M, Serša G, Seliškar A, Erjavec V, Trotovšek B, Gašljevič G, Bošnjak M, Lampreht Tratar U, Kos B, Djokić M, Milevoj N, Štukelj M, Boc N, Izlakar J, Popovič P. Safety and Feasibility of Electrochemotherapy of the Pancreas in a Porcine Model. Pancreas 2020; 49:1168-1173. [PMID: 32898000 DOI: 10.1097/mpa.0000000000001642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The use of thermal ablative therapies in the pancreatic tumors is limited because of the risk of the vessel injury and potential pancreatitis or fistula formation. Electrochemotherapy (ECT) is an ablative therapy with an established role in the treatment of cutaneous and liver tumors. This study was designed to evaluate the safety and feasibility of ECT of the pancreas in a porcine survival model. METHODS In the first group, 4 animals underwent computed tomography (CT)-guided percutaneous ECT with bleomycin of the pancreatic tail. In the second group (4 animals), the intraoperative ECT with bleomycin of pancreatic tail and head was performed. Animals were followed for 7 days and then killed. Clinical parameters, CT imaging, laboratory, and histologic analysis were performed. RESULTS All pigs survived the ECT procedure and none of them developed clinical signs of acute pancreatitis or related complications. There were no signs of acute pancreatitis or damage to the large vessels present in the follow-up CT scans. No significant change in laboratory parameters was obtained after procedure. CONCLUSIONS This study shows that ECT with bleomycin is feasible and safe in the pancreatic parenchyma. Clinical studies are needed to evaluate the efficacy of ECT in pancreatic cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Maša Bošnjak
- Department of Experimental Oncology, Institute of Oncology Ljubljana
| | | | - Bor Kos
- Faculty of Electrical Engineering, University of Ljubljana
| | | | | | | | - Nina Boc
- Department of Radiology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Jani Izlakar
- Department of Radiology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | | |
Collapse
|
5
|
Abstract
Electrochemotherapy is gaining recognition as an effective local therapy that uses systemically or intratumorally injected bleomycin or cisplatin with electroporation as a delivery system that brings drugs into the cells to exert their cytotoxic effects. Preclinical work is still ongoing, testing new drugs, seeking the best treatment combination with other treatment modalities, and exploring new sets of pulses for effective tissue electroporation. The applications of electrochemotherapy are being fully exploited in veterinary oncology, where electrochemotherapy, because of its simple execution, has a relatively good cost-benefit ratio and is used in the treatment of cutaneous tumors. In human oncology, electrochemotherapy is fully recognized as a local therapy for cutaneous tumors and metastases. Its effectiveness is being explored in combination with immunomodulatory drugs. However, the development of electrochemotherapy is directed into the treatment of deep-seated tumors with a percutaneous approach. Because of the vast number of reports, this review discusses the articles published in the past 5 years.
Collapse
Affiliation(s)
- Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| |
Collapse
|