1
|
Bocanegra-Becerra JE, Neves Ferreira JS, Simoni G, Hong A, Rios-Garcia W, Eraghi MM, Castilla-Encinas AM, Colan JA, Rojas-Apaza R, Pariasca Trevejo EEF, Bertani R, Lopez-Gonzalez MA. Machine Learning Algorithms for Neurosurgical Preoperative Planning: A Scoping Review. World Neurosurg 2025; 194:123465. [PMID: 39577649 DOI: 10.1016/j.wneu.2024.11.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/10/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND AND OBJECTIVE Preoperative neurosurgical planning is an important step in avoiding surgical complications, reducing morbidity, and improving patient safety. The incursion of machine learning (ML) in this domain has recently gained attention, given the notable advantages in processing large datasets and potentially generating efficient and accurate algorithms in patient care. We explored the evolving applications of ML algorithms in the preoperative planning of brain and spine surgery. METHODS In accordance with the Arksey and O'Malley framework, a scoping review was conducted using 3 databases (PubMed, Embase, and Web of Science). Articles that described the use of ML for preoperative planning in brain and spine surgery were included. Relevant data were collected regarding the neurosurgical field of application, patient baseline features, disease description, type of ML technology, study's aim, preoperative ML algorithm description, and advantages and limitations of ML algorithms. RESULTS Our search strategy yielded 7407 articles, of which 8 studies (5 retrospective, 2 prospective, and 1 experimental) satisfied the inclusion criteria. Clinical information from 518 patients (62.7% female; mean age: 44.8 years) was used for generating ML algorithms, including convolutional neural networks (14.3%), logistic regression (14.3%), and random forest (14.3%), among others. Neurosurgical fields of applications included functional neurosurgery (37.5%), tumor surgery (37.5%), and spine surgery (25%). The main advantages of ML included automated processing of clinical and imaging information, selection of an individualized patient surgical approach, and data-driven support for treatment decision-making. All studies reported technical limitations, such as long processing time, algorithmic bias, limited generalizability, and the need for database updating and maintenance. CONCLUSIONS ML algorithms for preoperative neurosurgical planning are being developed for efficient, automated, and safe treatment decision-making. However, future studies are necessary to validate their objective performance across diverse clinical scenarios. Enhancing the robustness, transparency, and understanding of ML applications will be crucial for their successful integration into neurosurgical practice.
Collapse
Affiliation(s)
- Jhon E Bocanegra-Becerra
- Academic Department of Surgery, School of Medicine, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | | | - Gabriel Simoni
- Faculty of Medicine, Centro Universitário de Várzea Grande, Várzea Grande, Mato Grosso, Brazil
| | - Anthony Hong
- School of Medicine, University of Costa Rica, Costa Rica
| | - Wagner Rios-Garcia
- Facultad de Medicina Humana, Universidad Nacional San Luis Gonzaga, Ica, Peru
| | - Mohammad Mirahmadi Eraghi
- Student Research Committee, School of Medicine, Islamic Azad University, Qeshm International Branch, Qeshm, Iran
| | | | | | - Rolando Rojas-Apaza
- Department of Neurosurgery, Hospital Edgardo Rebagliati Martins. Essalud, Lima, Peru
| | | | - Raphael Bertani
- Department of Neurosurgery, University of Sao Paulo, Sao Paulo, Brazil
| | | |
Collapse
|
2
|
Guo Y, Li T, Gong B, Hu Y, Wang S, Yang L, Zheng C. From Images to Genes: Radiogenomics Based on Artificial Intelligence to Achieve Non-Invasive Precision Medicine in Cancer Patients. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408069. [PMID: 39535476 PMCID: PMC11727298 DOI: 10.1002/advs.202408069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/19/2024] [Indexed: 11/16/2024]
Abstract
With the increasing demand for precision medicine in cancer patients, radiogenomics emerges as a promising frontier. Radiogenomics is originally defined as a methodology for associating gene expression information from high-throughput technologies with imaging phenotypes. However, with advancements in medical imaging, high-throughput omics technologies, and artificial intelligence, both the concept and application of radiogenomics have significantly broadened. In this review, the history of radiogenomics is enumerated, related omics technologies, the five basic workflows and their applications across tumors, the role of AI in radiogenomics, the opportunities and challenges from tumor heterogeneity, and the applications of radiogenomics in tumor immune microenvironment. The application of radiogenomics in positron emission tomography and the role of radiogenomics in multi-omics studies is also discussed. Finally, the challenges faced by clinical transformation, along with future trends in this field is discussed.
Collapse
Affiliation(s)
- Yusheng Guo
- Department of RadiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Molecular ImagingWuhan430022China
| | - Tianxiang Li
- Department of UltrasoundState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical. SciencesPeking Union Medical CollegeBeijing100730China
| | - Bingxin Gong
- Department of RadiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Molecular ImagingWuhan430022China
| | - Yan Hu
- Research Institute of Trustworthy Autonomous Systems and Department of Computer Science and EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - Sichen Wang
- School of Life Science and TechnologyComputational Biology Research CenterHarbin Institute of TechnologyHarbin150001China
| | - Lian Yang
- Department of RadiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Molecular ImagingWuhan430022China
| | - Chuansheng Zheng
- Department of RadiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Molecular ImagingWuhan430022China
| |
Collapse
|
3
|
Villanueva-Meyer JE, Bakas S, Tiwari P, Lupo JM, Calabrese E, Davatzikos C, Bi WL, Ismail M, Akbari H, Lohmann P, Booth TC, Wiestler B, Aerts HJWL, Rasool G, Tonn JC, Nowosielski M, Jain R, Colen RR, Pati S, Baid U, Vollmuth P, Macdonald D, Vogelbaum MA, Chang SM, Huang RY, Galldiks N. Artificial Intelligence for Response Assessment in Neuro Oncology (AI-RANO), part 1: review of current advancements. Lancet Oncol 2024; 25:e581-e588. [PMID: 39481414 PMCID: PMC12045294 DOI: 10.1016/s1470-2045(24)00316-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 11/02/2024]
Abstract
The development, application, and benchmarking of artificial intelligence (AI) tools to improve diagnosis, prognostication, and therapy in neuro-oncology are increasing at a rapid pace. This Policy Review provides an overview and critical assessment of the work to date in this field, focusing on diagnostic AI models of key genomic markers, predictive AI models of response before and after therapy, and differentiation of true disease progression from treatment-related changes, which is a considerable challenge based on current clinical care in neuro-oncology. Furthermore, promising future directions, including the use of AI for automated response assessment in neuro-oncology, are discussed.
Collapse
Affiliation(s)
- Javier E Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA; Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
| | - Spyridon Bakas
- Division of Computational Pathology, Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Radiology & Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Biostatistics & Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA; Department of Computer Science, Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, IN, USA
| | - Pallavi Tiwari
- Department of Radiology and Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Evan Calabrese
- Duke University Center for Artificial Intelligence in Radiology, Department of Radiology, Duke University, Durham, NC, USA
| | - Christos Davatzikos
- Center for Artificial Intelligence and Data Science for Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Marwa Ismail
- Department of Radiology and Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | - Hamed Akbari
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Bioengineering, Santa Clara University, Santa Clara, CA, USA
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-4), Research Center Juelich (FZJ), Juelich, Germany; Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Thomas C Booth
- Department of Neuroradiology, Ruskin Wing, King's College Hospital NHS Foundation Trust, London, UK; School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; London Regional Cancer Program, London, UK
| | - Benedikt Wiestler
- Department of Neuroradiology, University Hospital, Technical University of Munich, Munich, Germany
| | - Hugo J W L Aerts
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, MA, USA; Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University, Maastricht, Netherlands
| | - Ghulam Rasool
- Department of Machine Learning, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Joerg C Tonn
- Department of Neurosurgery, Ludwig Maximilians University, Munich, Germany and German Cancer Consortium (DKTK), Partner Site Munich, Germany
| | - Martha Nowosielski
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Rajan Jain
- Department of Radiology and Department of Neurosurgery, New York University Langone Health, New York, NY, USA
| | - Rivka R Colen
- Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University, Maastricht, Netherlands
| | - Sarthak Pati
- Division of Computational Pathology, Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ujjwal Baid
- Division of Computational Pathology, Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Philipp Vollmuth
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - David Macdonald
- Department of Neuro-Oncology, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Michael A Vogelbaum
- Department of Neurosurgery, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA; Department of Machine Learning, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-4), Research Center Juelich (FZJ), Juelich, Germany; Department of Neurology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| |
Collapse
|
4
|
Singh G, Singh A, Bae J, Manjila S, Spektor V, Prasanna P, Lignelli A. -New frontiers in domain-inspired radiomics and radiogenomics: increasing role of molecular diagnostics in CNS tumor classification and grading following WHO CNS-5 updates. Cancer Imaging 2024; 24:133. [PMID: 39375809 PMCID: PMC11460168 DOI: 10.1186/s40644-024-00769-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 08/31/2024] [Indexed: 10/09/2024] Open
Abstract
Gliomas and Glioblastomas represent a significant portion of central nervous system (CNS) tumors associated with high mortality rates and variable prognosis. In 2021, the World Health Organization (WHO) updated its Glioma classification criteria, most notably incorporating molecular markers including CDKN2A/B homozygous deletion, TERT promoter mutation, EGFR amplification, + 7/-10 chromosome copy number changes, and others into the grading and classification of adult and pediatric Gliomas. The inclusion of these markers and the corresponding introduction of new Glioma subtypes has allowed for more specific tailoring of clinical interventions and has inspired a new wave of Radiogenomic studies seeking to leverage medical imaging information to explore the diagnostic and prognostic implications of these new biomarkers. Radiomics, deep learning, and combined approaches have enabled the development of powerful computational tools for MRI analysis correlating imaging characteristics with various molecular biomarkers integrated into the updated WHO CNS-5 guidelines. Recent studies have leveraged these methods to accurately classify Gliomas in accordance with these updated molecular-based criteria based solely on non-invasive MRI, demonstrating the great promise of Radiogenomic tools. In this review, we explore the relative benefits and drawbacks of these computational frameworks and highlight the technical and clinical innovations presented by recent studies in the landscape of fast evolving molecular-based Glioma subtyping. Furthermore, the potential benefits and challenges of incorporating these tools into routine radiological workflows, aiming to enhance patient care and optimize clinical outcomes in the evolving field of CNS tumor management, have been highlighted.
Collapse
Affiliation(s)
- Gagandeep Singh
- Neuroradiology Division, Columbia University Irving Medical Center, New York, NY, USA.
| | - Annie Singh
- Atal Bihari Vajpayee Institute of Medical Sciences, New Delhi, India
| | - Joseph Bae
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, USA
| | - Sunil Manjila
- Department of Neurological Surgery, Garden City Hospital, Garden City, MI, USA
| | - Vadim Spektor
- Neuroradiology Division, Columbia University Irving Medical Center, New York, NY, USA
| | - Prateek Prasanna
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, USA
| | - Angela Lignelli
- Neuroradiology Division, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
5
|
Le Guillou Horn XM, Lecellier F, Giraud C, Naudin M, Fayolle P, Thomarat C, Fernandez-Maloigne C, Guillevin R. From Voxel to Gene: A Scoping Review on MRI Radiogenomics' Artificial Intelligence Predictions in Adult Gliomas and Glioblastomas-The Promise of Virtual Biopsy? Biomedicines 2024; 12:2156. [PMID: 39335670 PMCID: PMC11429468 DOI: 10.3390/biomedicines12092156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Gliomas, including the most severe form known as glioblastomas, are primary brain tumors arising from glial cells, with significant impact on adults, particularly men aged 45 to 70. Recent advancements in the WHO (World Health Organization) classification now correlate genetic markers with glioma phenotypes, enhancing diagnostic precision and therapeutic strategies. AIMS AND METHODS This scoping review aims to evaluate the current state of deep learning (DL) applications in the genetic characterization of adult gliomas, addressing the potential of these technologies for a reliable virtual biopsy. RESULTS We reviewed 17 studies, analyzing the evolution of DL algorithms from fully convolutional networks to more advanced architectures (ResNet and DenseNet). The methods involved various validation techniques, including k-fold cross-validation and external dataset validation. CONCLUSIONS Our findings highlight significant variability in reported performance, largely due to small, homogeneous datasets and inconsistent validation methods. Despite promising results, particularly in predicting individual genetic traits, the lack of robust external validation limits the generalizability of these models. Future efforts should focus on developing larger, more diverse datasets and integrating multidisciplinary collaboration to enhance model reliability. This review underscores the potential of DL in advancing glioma characterization, paving the way for more precise, non-invasive diagnostic tools. The development of a robust algorithm capable of predicting the somatic genetics of gliomas or glioblastomas could accelerate the diagnostic process and inform therapeutic decisions more quickly, while maintaining the same level of accuracy as the traditional diagnostic pathway, which involves invasive tumor biopsies.
Collapse
Affiliation(s)
- Xavier Maximin Le Guillou Horn
- Laboratoire de Mathématique Appliquées LMA, Labcom i3M, Université de Poitiers, CNRS UMR 7348, F-86000 Poitiers, France (P.F.)
- Service de Génétique Médicale, CHU de Poitiers, F-86000 Poitiers, France
| | - François Lecellier
- Laboratoire XLIM, Université de Poitiers, CNRS UMR 7252, F-86000 Poitiers, France
| | - Clement Giraud
- Laboratoire de Mathématique Appliquées LMA, Labcom i3M, Université de Poitiers, CNRS UMR 7348, F-86000 Poitiers, France (P.F.)
- Plateforme Ultra-Haut Champ 3T-7T, Laboratoire de Mathématique Appliquées LMA, Labcom i3M, CHU de Poitiers, Université de Poitiers, CNRS UMR 7348, F-86000 Poitiers, France (R.G.)
| | - Mathieu Naudin
- Plateforme Ultra-Haut Champ 3T-7T, Laboratoire de Mathématique Appliquées LMA, Labcom i3M, CHU de Poitiers, Université de Poitiers, CNRS UMR 7348, F-86000 Poitiers, France (R.G.)
| | - Pierre Fayolle
- Laboratoire de Mathématique Appliquées LMA, Labcom i3M, Université de Poitiers, CNRS UMR 7348, F-86000 Poitiers, France (P.F.)
- Plateforme Ultra-Haut Champ 3T-7T, Laboratoire de Mathématique Appliquées LMA, Labcom i3M, CHU de Poitiers, Université de Poitiers, CNRS UMR 7348, F-86000 Poitiers, France (R.G.)
| | - Céline Thomarat
- Plateforme Ultra-Haut Champ 3T-7T, Laboratoire de Mathématique Appliquées LMA, Labcom i3M, CHU de Poitiers, Université de Poitiers, CNRS UMR 7348, F-86000 Poitiers, France (R.G.)
| | | | - Rémy Guillevin
- Plateforme Ultra-Haut Champ 3T-7T, Laboratoire de Mathématique Appliquées LMA, Labcom i3M, CHU de Poitiers, Université de Poitiers, CNRS UMR 7348, F-86000 Poitiers, France (R.G.)
- Service de Radiologie, CHU de Poitiers, F-86000 Poitiers, France
| |
Collapse
|
6
|
Huang YR, Fan HQ, Kuang YY, Wang P, Lu S. The Relationship Between the Molecular Phenotypes of Brain Gliomas and the Imaging Features and Sensitivity of Radiotherapy and Chemotherapy. Clin Oncol (R Coll Radiol) 2024; 36:541-551. [PMID: 38821723 DOI: 10.1016/j.clon.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/28/2024] [Accepted: 05/10/2024] [Indexed: 06/02/2024]
Abstract
Gliomas are the most common primary malignant tumors of the brain, accounting for about 80% of all central nervous system malignancies. With the development of molecular biology, the molecular phenotypes of gliomas have been shown to be closely related to the process of diagnosis and treatment. The molecular phenotype of glioma also plays an important role in guiding treatment plans and evaluating treatment effects and prognosis. However, due to the heterogeneity of the tumors and the trauma associated with the surgical removal of tumor tissue, the application of molecular phenotyping in glioma is limited. With the development of imaging technology, functional magnetic resonance imaging (MRI) can provide structural and function information about tumors in a noninvasive and radiation-free manner. MRI is very important for the diagnosis of intracranial lesions. In recent years, with the development of the technology for tumor molecular diagnosis and imaging, the use of molecular phenotype information and imaging procedures to evaluate the treatment outcome of tumors has become a hot topic. By reviewing the related literature on glioma treatment and molecular typing that has been published in the past 20 years, and referring to the latest 2020 NCCN treatment guidelines, summarizing the imaging characteristic and sensitivity of radiotherapy and chemotherapy of different molecular phenotypes of glioma. In this article, we briefly review the imaging characteristics of different molecular phenotypes in gliomas and their relationship with radiosensitivity and chemosensitivity of gliomas.
Collapse
Affiliation(s)
- Y-R Huang
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - H-Q Fan
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Y-Y Kuang
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - P Wang
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - S Lu
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China.
| |
Collapse
|
7
|
Lu W, Wu G, Miao X, Ma J, Wang Y, Xu H, Shentu D, Xue S, Xia Q, Wang Y, Wang L. The radiomics nomogram predicts the prognosis of pancreatic cancer patients with hepatic metastasis after chemoimmunotherapy. Cancer Immunol Immunother 2024; 73:87. [PMID: 38554161 PMCID: PMC10981596 DOI: 10.1007/s00262-024-03644-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/29/2024] [Indexed: 04/01/2024]
Abstract
OBJECTIVE To construct a prognostic model based on MR features and clinical data to evaluate the progression free survival (PFS), overall survival (OS) and objective response rate (ORR) of pancreatic cancer patients with hepatic metastases who received chemoimmunotherapy. METHODS 105 pancreatic cancer patients with hepatic metastases who received chemoimmunotherapy were assigned to the training set (n = 52), validation set (n = 22), and testing set (n = 31). Multi-lesion volume of interest were delineated, multi-sequence radiomics features were extracted, and the radiomics models for predicting PFS, OS and ORR were constructed, respectively. Clinical variables were extracted, and the clinical models for predicting PFS, OS and ORR were constructed, respectively. The nomogram was jointly constructed by radiomics model and clinical model. RESULT The ORR exhibits no significant correlation with either PFS or OS. The area under the curve (AUC) of nomogram for predicting 6-month PFS reached 0.847 (0.737-0.957), 0.786 (0.566-1.000) and 0.864 (0.735-0.994) in the training set, validation set and testing set, respectively. The AUC of nomogram for predicting 1-year OS reached 0.770 (0.635-0.906), 0.743 (0.479-1.000) and 0.818 (0.630-1.000), respectively. The AUC of nomogram for predicting ORR reached 0.914 (0.828-1.00), 0.938 (0.840-1.00) and 0.846 (0.689-1.00), respectively. CONCLUSION The prognostic models based on MR imaging features and clinical data are effective in predicting the PFS, OS and ORR of chemoimmunotherapy in pancreatic cancer patients with hepatic metastasis, and can be used to evaluate the prognosis of patients.
Collapse
Affiliation(s)
- Wenxin Lu
- Department of Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Guangyu Wu
- Department of Radiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xianyuan Miao
- Department of Oncology, Ning Bo Hangzhou Bay Hospital, Ningbo, 315336, China
| | - Jingyu Ma
- Department of Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yanling Wang
- Department of Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Haiyan Xu
- Department of Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Daiyuan Shentu
- Department of Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Shengbai Xue
- Department of Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Qing Xia
- Department of Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yu Wang
- Department of Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Liwei Wang
- Department of Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
8
|
Yao J, Zhou W, Xu S, Jia X, Zhou J, Chen X, Zhan W. Machine Learning-Based Breast Tumor Ultrasound Radiomics for Pre-operative Prediction of Axillary Sentinel Lymph Node Metastasis Burden in Early-Stage Invasive Breast Cancer. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:229-236. [PMID: 37951821 DOI: 10.1016/j.ultrasmedbio.2023.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/18/2023] [Accepted: 10/08/2023] [Indexed: 11/14/2023]
Abstract
OBJECTIVE The aim of the work described here was to assess the application of ultrasound (US) radiomics with machine learning (ML) classifiers to the prediction of axillary sentinel lymph node metastasis (SLNM) burden in early-stage invasive breast cancer (IBC). METHODS In this study, 278 early-stage IBC patients with at least one SLNM (195 in the training set and 83 in the test set) were studied at our institution. Pathologic SLNM burden was used as the reference standard. The US radiomics features of breast tumors were extracted by using 3D-Slicer and PyRadiomics software. Four ML classifiers-linear discriminant analysis (LDA), support vector machine (SVM), random forest (RF) and decision tree (DT)-were used to construct radiomics models for the prediction of SLNM burden. The combined clinicopathologic-radiomics models were also assessed with respect to sensitivity, specificity, accuracy and areas under the curve (AUCs). RESULTS Among the US radiomics models, the SVM classifier achieved better predictive performance with an AUC of 0.920 compared with RF (AUC = 0.874), LDA (AUC = 0.835) and DT (AUC = 0.800) in the test set. The clinicopathologic model had low efficacy, with AUCs of 0.678 and 0.710 in the training and test sets, respectively. The combined clinicopathologic (C) factors and SVM classifier (C + SVM) model improved the predictive ability with an AUC of 0.934, sensitivity of 86.7%, specificity of 89.9% and accuracy of 91.0% in the test set. CONCLUSION ML-based US radiomics analysis, as a novel and promising predictive tool, is conducive to a precise clinical treatment strategy.
Collapse
Affiliation(s)
- Jiejie Yao
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhou
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shangyan Xu
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohong Jia
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianqiao Zhou
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaosong Chen
- Department of Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Zhan
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Maimaiti A, Abulaiti A, Tang B, Dilixiati Y, Li X, Yakufu S, Wang Y, Jiang L, Shao H. Radiogenomic landscape: Assessment of specific phagocytosis regulators in lower-grade gliomas. Exp Biol Med (Maywood) 2023; 248:2289-2303. [PMID: 38062999 PMCID: PMC10903236 DOI: 10.1177/15353702231211939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/28/2023] [Indexed: 01/23/2024] Open
Abstract
Genome-wide CRISPR-Cas9 knockout screens have emerged as a powerful method for identifying key genes driving tumor growth. The aim of this study was to explore the phagocytosis regulators (PRs) specifically associated with lower-grade glioma (LGG) using the CRISPR-Cas9 screening database. Identifying these core PRs could lead to novel therapeutic targets and pave the way for a non-invasive radiogenomics approach to assess LGG patients' prognosis and treatment response. We selected 24 PRs that were overexpressed and lethal in LGG for analysis. The identified PR subtypes (PRsClusters, geneClusters, and PRs-score models) effectively predicted clinical outcomes in LGG patients. Immune response markers, such as CTLA4, were found to be significantly associated with PR-score. Nine radiogenomics models using various machine learning classifiers were constructed to uncover survival risk. The area under the curve (AUC) values for these models in the test and training datasets were 0.686 and 0.868, respectively. The CRISPR-Cas9 screen identified novel prognostic radiogenomics biomarkers that correlated well with the expression status of specific PR-related genes in LGG patients. These biomarkers successfully stratified patient survival outcomes and treatment response using The Cancer Genome Atlas (TCGA) database. This study has important implications for the development of precise clinical treatment strategies and holds promise for more accurate therapeutic approaches for LGG patients in the future.
Collapse
Affiliation(s)
- Aierpati Maimaiti
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Aimitaji Abulaiti
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Bin Tang
- Imaging Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | | | - Xueqi Li
- Imaging Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Suobinuer Yakufu
- Imaging Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Yongxin Wang
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Lei Jiang
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Hua Shao
- Imaging Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| |
Collapse
|
10
|
Zhang S, Yin L, Ma L, Sun H. Artificial Intelligence Applications in Glioma With 1p/19q Co-Deletion: A Systematic Review. J Magn Reson Imaging 2023; 58:1338-1352. [PMID: 37083159 DOI: 10.1002/jmri.28737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 04/22/2023] Open
Abstract
As an important genomic marker for oligodendrogliomas, early determination of 1p/19q co-deletion status is critical for guiding therapy and predicting prognosis in patients with glioma. The purpose of this study is to systematically review the literature concerning the magnetic resonance imaging (MRI) with artificial intelligence (AI) methods for predicting 1p/19q co-deletion status in glioma. PubMed, Scopus, Embase, and IEEE Xplore were searched in accordance with the Preferred Reporting Items for systematic reviews and meta-analyses guidelines. Methodological quality of studies was assessed according to the Quality Assessment of Diagnostic Accuracy Studies-2. Finally, 28 studies were included in the quantitative analysis. Diagnostic test accuracy reached an area under the ROC curve of 0.71-0.98 were reported in 24 studies. The remaining four studies with no available AUC provided an accuracy of 0.75-0. 89. The included studies varied widely in terms of imaging sequences, input features, and modeling methods. The current review highlighted that integrating MRI with AI technology is a potential tool for determination 1p/19q status pre-operatively and noninvasively, which can possibly help clinical decision-making. However, the reliability and feasibility of this approach still need to be further validated and improved in a real clinical setting. EVIDENCE LEVEL: 2. TECHNICAL EFFICACY: 2.
Collapse
Affiliation(s)
- Simin Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Lijuan Yin
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Lu Ma
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
| | - Huaiqiang Sun
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Luo J, Pan M, Mo K, Mao Y, Zou D. Emerging role of artificial intelligence in diagnosis, classification and clinical management of glioma. Semin Cancer Biol 2023; 91:110-123. [PMID: 36907387 DOI: 10.1016/j.semcancer.2023.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023]
Abstract
Glioma represents a dominant primary intracranial malignancy in the central nervous system. Artificial intelligence that mainly includes machine learning, and deep learning computational approaches, presents a unique opportunity to enhance clinical management of glioma through improving tumor segmentation, diagnosis, differentiation, grading, treatment, prediction of clinical outcomes (prognosis, and recurrence), molecular features, clinical classification, characterization of the tumor microenvironment, and drug discovery. A growing body of recent studies apply artificial intelligence-based models to disparate data sources of glioma, covering imaging modalities, digital pathology, high-throughput multi-omics data (especially emerging single-cell RNA sequencing and spatial transcriptome), etc. While these early findings are promising, future studies are required to normalize artificial intelligence-based models to improve the generalizability and interpretability of the results. Despite prominent issues, targeted clinical application of artificial intelligence approaches in glioma will facilitate the development of precision medicine of this field. If these challenges can be overcome, artificial intelligence has the potential to profoundly change the way patients with or at risk of glioma are provided with more rational care.
Collapse
Affiliation(s)
- Jiefeng Luo
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China
| | - Mika Pan
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China
| | - Ke Mo
- Clinical Research Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China
| | - Yingwei Mao
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Donghua Zou
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China; Clinical Research Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China.
| |
Collapse
|
12
|
Kihira S, Derakhshani A, Leung M, Mahmoudi K, Bauer A, Zhang H, Polson J, Arnold C, Tsankova NM, Hormigo A, Salehi B, Pham N, Ellingson BM, Cloughesy TF, Nael K. Multi-Parametric Radiomic Model to Predict 1p/19q Co-Deletion in Patients with IDH-1 Mutant Glioma: Added Value to the T2-FLAIR Mismatch Sign. Cancers (Basel) 2023; 15:cancers15041037. [PMID: 36831380 PMCID: PMC9954034 DOI: 10.3390/cancers15041037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/28/2023] [Accepted: 01/28/2023] [Indexed: 02/10/2023] Open
Abstract
PURPOSE The T2-FLAIR mismatch sign has shown promise in determining IDH mutant 1p/19q non-co-deleted gliomas with a high specificity and modest sensitivity. To develop a multi-parametric radiomic model using MRI to predict 1p/19q co-deletion status in patients with newly diagnosed IDH1 mutant glioma and to perform a comparative analysis to T2-FLAIR mismatch sign+. METHODS In this retrospective study, patients with diagnosis of IDH1 mutant gliomas with known 1p/19q status who had preoperative MRI were included. T2-FLAIR mismatch was evaluated independently by two board-certified neuroradiologists. Texture features were extracted from glioma segmentation of FLAIR images. eXtremeGradient Boosting (XGboost) classifiers were used for model development. Leave-one-out-cross-validation (LOOCV) and external validation performances were reported for both the training and external validation sets. RESULTS A total of 103 patients were included for model development and 18 patients for external testing validation. The diagnostic performance (sensitivity/specificity/accuracy) in the determination of the 1p/19q co-deletion status was 59%/83%/67% (training) and 62.5%/70.0%/66.3% (testing) for the T2-FLAIR mismatch sign. This was significantly improved (p = 0.04) using the radiomics model to 77.9%/82.8%/80.3% (training) and 87.5%/89.9%/88.8% (testing), respectively. The addition of radiomics as a computer-assisted tool resulted in significant (p = 0.02) improvement in the performance of the neuroradiologist with 13 additional corrected cases in comparison to just using the T2-FLAIR mismatch sign. CONCLUSION The proposed radiomic model provides much needed sensitivity to the highly specific T2-FLAIR mismatch sign in the determination of the 1p/19q non-co-deletion status and improves the overall diagnostic performance of neuroradiologists when used as an assistive tool.
Collapse
Affiliation(s)
- Shingo Kihira
- Department of Radiological Sciences, David Geffen School of Medicine at University of California Los Angeles, 757 Westwood Plaza, Suite 1621, Los Angeles, CA 90095, USA
| | - Ahrya Derakhshani
- Department of Radiological Sciences, David Geffen School of Medicine at University of California Los Angeles, 757 Westwood Plaza, Suite 1621, Los Angeles, CA 90095, USA
| | - Michael Leung
- Department of Radiological Sciences, David Geffen School of Medicine at University of California Los Angeles, 757 Westwood Plaza, Suite 1621, Los Angeles, CA 90095, USA
| | - Keon Mahmoudi
- Department of Radiological Sciences, David Geffen School of Medicine at University of California Los Angeles, 757 Westwood Plaza, Suite 1621, Los Angeles, CA 90095, USA
| | - Adam Bauer
- Department of Radiology, Kaiser Permanente Fontana Medical Center, Fontana, CA 92335, USA
| | - Haoyue Zhang
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jennifer Polson
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Corey Arnold
- Department of Radiological Sciences, David Geffen School of Medicine at University of California Los Angeles, 757 Westwood Plaza, Suite 1621, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Nadejda M. Tsankova
- Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adilia Hormigo
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Banafsheh Salehi
- Department of Radiological Sciences, David Geffen School of Medicine at University of California Los Angeles, 757 Westwood Plaza, Suite 1621, Los Angeles, CA 90095, USA
| | - Nancy Pham
- Department of Radiological Sciences, David Geffen School of Medicine at University of California Los Angeles, 757 Westwood Plaza, Suite 1621, Los Angeles, CA 90095, USA
| | - Benjamin M. Ellingson
- Department of Radiological Sciences, David Geffen School of Medicine at University of California Los Angeles, 757 Westwood Plaza, Suite 1621, Los Angeles, CA 90095, USA
- UCLA Brain Tumor Imaging Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Timothy F. Cloughesy
- UCLA Brain Tumor Imaging Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kambiz Nael
- Department of Radiological Sciences, David Geffen School of Medicine at University of California Los Angeles, 757 Westwood Plaza, Suite 1621, Los Angeles, CA 90095, USA
- Correspondence: ; Tel.: +1-310-267-5932
| |
Collapse
|
13
|
Zhang L, Pan H, Liu Z, Gao J, Xu X, Wang L, Wang J, Tang Y, Cao X, Kan Y, Wen Z, Chen J, Huang D, Chen S, Li Y. Multicenter clinical radiomics-integrated model based on [ 18F]FDG PET and multi-modal MRI predict ATRX mutation status in IDH-mutant lower-grade gliomas. Eur Radiol 2023; 33:872-883. [PMID: 35984514 DOI: 10.1007/s00330-022-09043-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 07/01/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVES To develop a clinical radiomics-integrated model based on 18 F-fluorodeoxyglucose positron emission tomography ([18F]FDG PET) and multi-modal MRI for predicting alpha thalassemia/mental retardation X-linked (ATRX) mutation status of IDH-mutant lower-grade gliomas (LGGs). METHODS One hundred and two patients (47 ATRX mutant-type, 55 ATRX wild-type) diagnosed with IDH-mutant LGGs (CNS WHO grades 1 and 2) were retrospectively enrolled. A total of 5540 radiomics features were extracted from structural MR (sMR) images (contrast-enhanced T1-weighted imaging, CE-T1WI; T2-weighted imaging, and T2WI), functional MR (fMR) images (apparent diffusion coefficient, ADC; cerebral blood volume, CBV), and metabolic PET images ([18F]FDG PET). The random forest algorithm was used to establish a clinical radiomics-integrated model, integrating the optimal multi-modal radiomics model with three clinical parameters. The predictive effectiveness of the models was evaluated by receiver operating characteristic (ROC) and decision curve analysis (DCA). RESULTS The optimal multi-modal model incorporated sMR (CE-T1WI), fMR (ADC), and metabolic ([18F]FDG) images ([18F]FDG PET+ADC+ CE-T1WI) with the area under curves (AUCs) in the training and test groups of 0.971 and 0.962, respectively. The clinical radiomics-integrated model, incorporating [18F]FDG PET+ADC+CE-T1WI, three clinical parameters (KPS, SFSD, and ATGR), showed the best predictive effectiveness in the training and test groups (0.987 and 0.975, respectively). CONCLUSIONS The clinical radiomics-integrated model with metabolic, structural, and functional information based on [18F]FDG PET and multi-modal MRI achieved promising performance for predicting the ATRX mutation status of IDH-mutant LGGs. KEY POINTS • The clinical radiomics-integrated model based on [18F]FDG PET and multi-modal MRI achieved promising performance for predicting ATRX mutation status in LGGs. • The study investigated the value of multicenter clinical radiomics-integrated model based on [18F]FDG PET and multi-modal MRI in LGGs regarding ATRX mutation status prediction. • The integrated model provided structural, functional, and metabolic information simultaneously and demonstrated with satisfactory calibration and discrimination in the training and test groups (0.987 and 0.975, respectively).
Collapse
Affiliation(s)
- Liqiang Zhang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hongyu Pan
- College of Computer & Information Science, Southwest University, Chongqing, 400715, China
| | - Zhi Liu
- Department of Radiology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Jueni Gao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xinyi Xu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Linlin Wang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jie Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yi Tang
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China
| | - Xu Cao
- School of Medical and Life Sciences Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China
| | - Yubo Kan
- Department of Nuclear Medicine, United Medical Imaging Center, Chongqing, 400038, China
| | - Zhipeng Wen
- Department of Radiology, Sichuan Cancer Hospital, Chengdu, 610042, China
| | - Jianjun Chen
- Department of Nuclear Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Dingde Huang
- Department of Nuclear Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Shanxiong Chen
- College of Computer & Information Science, Southwest University, Chongqing, 400715, China.
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
14
|
Li C, Li W, Liu C, Zheng H, Cai J, Wang S. Artificial intelligence in multi-parametric magnetic resonance imaging: A review. Med Phys 2022; 49:e1024-e1054. [PMID: 35980348 DOI: 10.1002/mp.15936] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/06/2022] Open
Abstract
Multi-parametric magnetic resonance imaging (mpMRI) is an indispensable tool in the clinical workflow for the diagnosis and treatment planning of various diseases. Machine learning-based artificial intelligence (AI) methods, especially those adopting the deep learning technique, have been extensively employed to perform mpMRI image classification, segmentation, registration, detection, reconstruction, and super-resolution. The current availability of increasing computational power and fast-improving AI algorithms have empowered numerous computer-based systems for applying mpMRI to disease diagnosis, imaging-guided radiotherapy, patient risk and overall survival time prediction, and the development of advanced quantitative imaging technology for magnetic resonance fingerprinting. However, the wide application of these developed systems in the clinic is still limited by a number of factors, including robustness, reliability, and interpretability. This survey aims to provide an overview for new researchers in the field as well as radiologists with the hope that they can understand the general concepts, main application scenarios, and remaining challenges of AI in mpMRI. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Cheng Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wen Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Chenyang Liu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Shanshan Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,Peng Cheng Laboratory, Shenzhen, 518066, China.,Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, 510080, China
| |
Collapse
|
15
|
Zhou Y, Wu D, Yan S, Xie Y, Zhang S, Lv W, Qin Y, Liu Y, Liu C, Lu J, Li J, Zhu H, Liu WV, Liu H, Zhang G, Zhu W. Feasibility of a Clinical-Radiomics Model to Predict the Outcomes of Acute Ischemic Stroke. Korean J Radiol 2022; 23:811-820. [PMID: 35695316 PMCID: PMC9340229 DOI: 10.3348/kjr.2022.0160] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
Objective To develop a model incorporating radiomic features and clinical factors to accurately predict acute ischemic stroke (AIS) outcomes. Materials and Methods Data from 522 AIS patients (382 male [73.2%]; mean age ± standard deviation, 58.9 ± 11.5 years) were randomly divided into the training (n = 311) and validation cohorts (n = 211). According to the modified Rankin Scale (mRS) at 6 months after hospital discharge, prognosis was dichotomized into good (mRS ≤ 2) and poor (mRS > 2); 1310 radiomics features were extracted from diffusion-weighted imaging and apparent diffusion coefficient maps. The minimum redundancy maximum relevance algorithm and the least absolute shrinkage and selection operator logistic regression method were implemented to select the features and establish a radiomics model. Univariable and multivariable logistic regression analyses were performed to identify the clinical factors and construct a clinical model. Ultimately, a multivariable logistic regression analysis incorporating independent clinical factors and radiomics score was implemented to establish the final combined prediction model using a backward step-down selection procedure, and a clinical-radiomics nomogram was developed. The models were evaluated using calibration, receiver operating characteristic (ROC), and decision curve analyses. Results Age, sex, stroke history, diabetes, baseline mRS, baseline National Institutes of Health Stroke Scale score, and radiomics score were independent predictors of AIS outcomes. The area under the ROC curve of the clinical-radiomics model was 0.868 (95% confidence interval, 0.825–0.910) in the training cohort and 0.890 (0.844–0.936) in the validation cohort, which was significantly larger than that of the clinical or radiomics models. The clinical radiomics nomogram was well calibrated (p > 0.05). The decision curve analysis indicated its clinical usefulness. Conclusion The clinical-radiomics model outperformed individual clinical or radiomics models and achieved satisfactory performance in predicting AIS outcomes.
Collapse
Affiliation(s)
- Yiran Zhou
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Wu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Su Yan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Xie
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shun Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhi Lv
- Department of Artificial Intelligence, Julei Technology, Wuhan, China
| | - Yuanyuan Qin
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufei Liu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengxia Liu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Lu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongquan Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Huan Liu
- Advanced Application Team, GE Healthcare, Shanghai, China
| | - Guiling Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
16
|
Deng DB, Liao YT, Zhou JF, Cheng LN, He P, Wu SN, Wang WS, Zhou Q. Non-Invasive Prediction of Survival Time of Midline Glioma Patients Using Machine Learning on Multiparametric MRI Radiomics Features. Front Neurol 2022; 13:866274. [PMID: 35585843 PMCID: PMC9108285 DOI: 10.3389/fneur.2022.866274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/31/2022] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES To explore the feasibility of predicting overall survival (OS) of patients with midline glioma using multi-parameter magnetic resonance imaging (MRI) features. METHODS Data of 84 patients with midline gliomas were retrospectively collected, including 40 patients with OS > 12 months (28 cases were adults, 14 cases were H3 K27M-mutation) and 44 patients with OS < 12 months (29 cases were adults, 31 cases were H3 K27M-mutation). Features were extracted from the largest slice of tumors, which were manually segmented on T2-weighted (T2w), T2 fluid-attenuated inversion recovery (T2 FLAIR), and contrast-enhanced T1-weighted (T1c) images. Data were randomly divided into training (70%) and test cohorts (30%) and normalized and standardized using Z-scores. Feature dimensionality reduction was performed using the variance method and maximum relevance and minimum redundancy (mRMR) algorithm. We used the logistic regression algorithm to construct three models for T2w, T2 FLAIR, and T1c images as well as one combined model. The test cohort was used to evaluate the models, and receiver operating characteristic (ROC) curves, areas under the curve (AUCs), sensitivity, specificity, and accuracy were calculated. The nomogram of the combined model was built and evaluated using a calibration curve. Decision curve analysis (DCA) was used to evaluate the clinical application value of the four models. RESULTS A total of 1,316 features were extracted from T2w, T2 FLAIR, and T1c images, respectively. And then the best non-redundant features were selected from the extracted features using the variance method and mRMR. Finally, five features were extracted each from T2w, T2 FLAIR, and T1c images, and 12 features were extracted for the combined model. Four models were established using the optimal features. In the test cohort, the combined model performed the best out of all models. The AUCs of the T2w, T2 FLAIR, T1c, and combined models were 0.73, 0.78, 0.74, and 0.87, respectively, and accuracies were 0.72, 0.76, 0.72, and 0.84, respectively. The ROC curves and DCA showed that the combined model had the highest efficiency and most favorable clinical benefits. CONCLUSION The combined radiomics model based on multi-parameter MRI features provided a reliable non-invasive method for the prognostic prediction of midline gliomas.
Collapse
Affiliation(s)
- Da-Biao Deng
- Department of Radiology, Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong), Guangzhou, China
- Imaging Department of Guangdong 999 Brain Hospital, Guangzhou, China
| | | | - Jiang-Fen Zhou
- Department of Neuro-Oncology of Guangdong 999 Brain Hospital, Guangzhou, China
| | - Li-Na Cheng
- Imaging Department of Guangdong 999 Brain Hospital, Guangzhou, China
| | - Peng He
- Imaging Department of Guangdong 999 Brain Hospital, Guangzhou, China
| | - Sheng-Nan Wu
- Imaging Department of Guangdong 999 Brain Hospital, Guangzhou, China
| | - Wen-Sheng Wang
- Imaging Department of Guangdong 999 Brain Hospital, Guangzhou, China
| | - Quan Zhou
- Department of Radiology, Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong), Guangzhou, China
| |
Collapse
|
17
|
Radiomics-Based Method for Predicting the Glioma Subtype as Defined by Tumor Grade, IDH Mutation, and 1p/19q Codeletion. Cancers (Basel) 2022; 14:cancers14071778. [PMID: 35406550 PMCID: PMC8997070 DOI: 10.3390/cancers14071778] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
Gliomas are among the most common types of central nervous system (CNS) tumors. A prompt diagnosis of the glioma subtype is crucial to estimate the prognosis and personalize the treatment strategy. The objective of this study was to develop a radiomics pipeline based on the clinical Magnetic Resonance Imaging (MRI) scans to noninvasively predict the glioma subtype, as defined based on the tumor grade, isocitrate dehydrogenase (IDH) mutation status, and 1p/19q codeletion status. A total of 212 patients from the public retrospective The Cancer Genome Atlas Low Grade Glioma (TCGA-LGG) and The Cancer Genome Atlas Glioblastoma Multiforme (TCGA-GBM) datasets were used for the experiments and analyses. Different settings in the radiomics pipeline were investigated to improve the classification, including the Z-score normalization, the feature extraction strategy, the image filter applied to the MRI images, the introduction of clinical information, ComBat harmonization, the classifier chain strategy, etc. Based on numerous experiments, we finally reached an optimal pipeline for classifying the glioma tumors. We then tested this final radiomics pipeline on the hold-out test data with 51 randomly sampled random seeds for reliable and robust conclusions. The results showed that, after tuning the radiomics pipeline, the mean AUC improved from 0.8935 (±0.0351) to 0.9319 (±0.0386), from 0.8676 (±0.0421) to 0.9283 (±0.0333), and from 0.6473 (±0.1074) to 0.8196 (±0.0702) in the test data for predicting the tumor grade, IDH mutation, and 1p/19q codeletion status, respectively. The mean accuracy for predicting the five glioma subtypes also improved from 0.5772 (±0.0816) to 0.6716 (±0.0655). Finally, we analyzed the characteristics of the radiomic features that best distinguished the glioma grade, the IDH mutation, and the 1p/19q codeletion status, respectively. Apart from the promising prediction of the glioma subtype, this study also provides a better understanding of the radiomics model development and interpretability. The results in this paper are replicable with our python codes publicly available in github.
Collapse
|
18
|
FDG PET/CT to Predict Recurrence of Early Breast Invasive Ductal Carcinoma. Diagnostics (Basel) 2022; 12:diagnostics12030694. [PMID: 35328247 PMCID: PMC8947709 DOI: 10.3390/diagnostics12030694] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
This study investigated the prognostic value of FDG PET/CT radiomic features for predicting recurrence in patients with early breast invasive ductal carcinoma (IDC). The medical records of consecutive patients who were newly diagnosed with primary breast IDC after curative surgery were reviewed. Patients who received any neoadjuvant treatment before surgery were not included. FDG PET/CT radiomic features, such as a maximum standardized uptake value (SUVmax), metabolic tumor volume (MTV), total lesion glycolysis (TLG), skewness, kurtosis, entropy, and uniformity, were measured for the primary breast tumor using LIFEx software to evaluate recurrence-free survival (RFS). A total of 124 patients with early breast IDC were evaluated. Eleven patients had a recurrence (8.9%). Univariate survival analysis identified large tumor size (>2 cm, p = 0.045), high Ki-67 expression (≥30%, p = 0.017), high AJCC prognostic stage (≥II, p = 0.044), high SUVmax (≥5.0, p = 0.002), high MTV (≥3.25 mL, p = 0.044), high TLG (≥10.5, p = 0.004), and high entropy (≥3.15, p = 0.003) as significant predictors of poor RFS. After multivariate survival analysis, only high MTV (p = 0.045) was an independent prognostic predictor. Evaluation of the MTV of the primary tumor by FDG PET/CT in patients with early breast IDC provides useful prognostic information regarding recurrence.
Collapse
|
19
|
Rapalino O. Neuro-Oncology: Imaging Diagnosis. HYBRID PET/MR NEUROIMAGING 2022:527-537. [DOI: 10.1007/978-3-030-82367-2_46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
20
|
Ye F, Hu Y, Gao J, Liang Y, Liu Y, Ou Y, Cheng Z, Jiang H. Radiogenomics Map Reveals the Landscape of m6A Methylation Modification Pattern in Bladder Cancer. Front Immunol 2021; 12:722642. [PMID: 34733275 PMCID: PMC8559436 DOI: 10.3389/fimmu.2021.722642] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022] Open
Abstract
We aimed to develop a noninvasive radiomics approach to reveal the m6A methylation status and predict survival outcomes and therapeutic responses in patients. A total of 25 m6A regulators were selected for further analysis, we confirmed that expression level and genomic mutations rate of m6A regulators were significantly different between cancer and normal tissues. Besides, we constructed methylation modification models and explored the immune infiltration and biological pathway alteration among different models. The m6A subtypes identified in this study can effectively predict the clinical outcome of bladder cancer (including m6AClusters, geneClusters, and m6Ascore models). In addition, we observed that immune response markers such as PD1 and CTLA4 were significantly corelated with the m6Ascore. Subsequently, a total of 98 obtained digital images were processed to capture the image signature and construct image prediction models based on the m6Ascore classification using a radiomics algorithm. We constructed seven signature radiogenomics models to reveal the m6A methylation status, and the model achieved an area under curve (AUC) degree of 0.887 and 0.762 for the training and test datasets, respectively. The presented radiogenomics models, a noninvasive prediction approach that combined the radiomics signatures and genomics characteristics, displayed satisfactory effective performance for predicting survival outcomes and therapeutic responses of patients. In the future, more interdisciplinary fields concerning the combination of medicine and electronics remains to be explored.
Collapse
Affiliation(s)
- Fangdie Ye
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yun Hu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiahao Gao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yingchun Liang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yufei Liu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxi Ou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhang Cheng
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Zhao Y, Chen R, Zhang T, Chen C, Muhelisa M, Huang J, Xu Y, Ma X. MRI-Based Machine Learning in Differentiation Between Benign and Malignant Breast Lesions. Front Oncol 2021; 11:552634. [PMID: 34733774 PMCID: PMC8558475 DOI: 10.3389/fonc.2021.552634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/24/2021] [Indexed: 02/05/2023] Open
Abstract
Background Differential diagnosis between benign and malignant breast lesions is of crucial importance relating to follow-up treatment. Recent development in texture analysis and machine learning may lead to a new solution to this problem. Method This current study enrolled a total number of 265 patients (benign breast lesions:malignant breast lesions = 71:194) diagnosed in our hospital and received magnetic resonance imaging between January 2014 and August 2017. Patients were randomly divided into the training group and validation group (4:1), and two radiologists extracted their texture features from the contrast-enhanced T1-weighted images. We performed five different feature selection methods including Distance correlation, Gradient Boosting Decision Tree (GBDT), least absolute shrinkage and selection operator (LASSO), random forest (RF), eXtreme gradient boosting (Xgboost) and five independent classification models were built based on Linear discriminant analysis (LDA) algorithm. Results All five models showed promising results to discriminate malignant breast lesions from benign breast lesions, and the areas under the curve (AUCs) of receiver operating characteristic (ROC) were all above 0.830 in both training and validation groups. The model with a better discriminating ability was the combination of LDA + gradient boosting decision tree (GBDT). The sensitivity, specificity, AUC, and accuracy in the training group were 0.814, 0.883, 0.922, and 0.868, respectively; LDA + random forest (RF) also suggests promising results with the AUC of 0.906 in the training group. Conclusion The evidence of this study, while preliminary, suggested that a combination of MRI texture analysis and LDA algorithm could discriminate benign breast lesions from malignant breast lesions. Further multicenter researches in this field would be of great help in the validation of the result.
Collapse
Affiliation(s)
- Yanjie Zhao
- Department of Biotherapy, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Rong Chen
- Department of Radiology, Guiqian International General Hospital, Guiyang, China
| | - Ting Zhang
- Department of Biotherapy, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Chaoyue Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Muhetaer Muhelisa
- Department of Biotherapy, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Jingting Huang
- Department of Biotherapy, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Yan Xu
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Military Medical University, Chongqing, China
| | - Xuelei Ma
- Department of Biotherapy, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Kha QH, Le VH, Hung TNK, Le NQK. Development and Validation of an Efficient MRI Radiomics Signature for Improving the Predictive Performance of 1p/19q Co-Deletion in Lower-Grade Gliomas. Cancers (Basel) 2021; 13:cancers13215398. [PMID: 34771562 PMCID: PMC8582370 DOI: 10.3390/cancers13215398] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Low-grade gliomas (LGG) with the 1p/19q co-deletion mutation have been proven to have a better survival prognosis and response to treatment than individuals without the mutation. Identifying this mutation has a vital role in managing LGG patients; however, the current diagnostic gold standard, including the brain-tissue biopsy or the surgical resection of the tumor, remains highly invasive and time-consuming. We proposed a model based on the eXtreme Gradient Boosting (XGBoost) classifier to detect 1p/19q co-deletion mutation using non-invasive medical images. The performance of our model achieved 87% and 82.8% accuracy on the training and external test set, respectively. Significantly, the prediction was based on only seven optimal wavelet radiomics features extracted from brain Magnetic Resonance (MR) images. We believe that this model can address clinicians in the rapid diagnosis of clinical 1p/19q co-deletion mutation, thereby improving the treatment prognosis of LGG patients. Abstract The prognosis and treatment plans for patients diagnosed with low-grade gliomas (LGGs) may significantly be improved if there is evidence of chromosome 1p/19q co-deletion mutation. Many studies proved that the codeletion status of 1p/19q enhances the sensitivity of the tumor to different types of therapeutics. However, the current clinical gold standard of detecting this chromosomal mutation remains invasive and poses implicit risks to patients. Radiomics features derived from medical images have been used as a new approach for non-invasive diagnosis and clinical decisions. This study proposed an eXtreme Gradient Boosting (XGBoost)-based model to predict the 1p/19q codeletion status in a binary classification task. We trained our model on the public database extracted from The Cancer Imaging Archive (TCIA), including 159 LGG patients with 1p/19q co-deletion mutation status. The XGBoost was the baseline algorithm, and we combined the SHapley Additive exPlanations (SHAP) analysis to select the seven most optimal radiomics features to build the final predictive model. Our final model achieved an accuracy of 87% and 82.8% on the training set and external test set, respectively. With seven wavelet radiomics features, our XGBoost-based model can identify the 1p/19q codeletion status in LGG-diagnosed patients for better management and address the drawbacks of invasive gold-standard tests in clinical practice.
Collapse
Affiliation(s)
- Quang-Hien Kha
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (Q.-H.K.); (V.-H.L.); (T.N.K.H.)
| | - Viet-Huan Le
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (Q.-H.K.); (V.-H.L.); (T.N.K.H.)
- Department of Thoracic Surgery, Khanh Hoa General Hospital, Nha Trang City 65000, Vietnam
| | - Truong Nguyen Khanh Hung
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (Q.-H.K.); (V.-H.L.); (T.N.K.H.)
- Department of Orthopedic and Trauma, Cho Ray Hospital, Ho Chi Minh City 70000, Vietnam
| | - Nguyen Quoc Khanh Le
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (Q.-H.K.); (V.-H.L.); (T.N.K.H.)
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei 106, Taiwan
- Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei 106, Taiwan
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Correspondence: ; Tel.: +886-02-663-82736-1992
| |
Collapse
|
23
|
Su CW, Lee JC, Chang YF, Su NW, Lee PH, Dai KY, Tai HC, Leu YS, Chen YJ. Delta-volume radiomics of induction chemotherapy to predict outcome of subsequent chemoradiotherapy for locally advanced hypopharyngeal cancer. TUMORI JOURNAL 2021; 108:450-460. [PMID: 34423708 DOI: 10.1177/03008916211039018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Induction chemotherapy (IC) followed by concurrent chemoradiotherapy (CCRT) is recommended for larynx-preserving treatment of locally advanced hypopharyngeal cancer (LAHC). However, the conventional evaluation of response is not robust enough to predict the outcome of subsequent treatments. This study aimed to develop an imaging biomarker using changes in radiomic features in invasive tumor front (ITF) by IC to predict treatment outcome of subsequent CCRT in LAHC. METHODS From 2006 to 2018, 59 computed tomography (CT) scan images before and after IC in patients with LAHC were used to contour the gross tumor volumes (GTVs). A total of 48 delta-volume radiomics features were acquired from the absolute spatial difference of GTVs (delta-GTV) before and after IC, conceptually representing a consistent portion of ITF. Least absolute shrinkage and selection operator regression (LASSO) was used to select features for establishing the model generating radiomic score (R score). RESULTS A model including 5 radiomic features from delta-GTV to predict better progression-free survival (PFS) of patients receiving subsequent CCRT was established. The R score was validated with all datasets (area under the curve 0.77). Low R score (<-0.16) was associated with improved PFS (p < 0.05). CONCLUSIONS The established radiomic model for ITF from radiomic features of delta-GTV after IC might be a potential imaging biomarker for predicting clinical outcome of subsequent CCRT in LAHC.
Collapse
Affiliation(s)
- Che-Wei Su
- Department of Radiation Oncology, MacKay Memorial Hospital, Taipei
| | - Jehn-Chuan Lee
- Department of Otorhinolaryngology, MacKay Memorial Hospital, Taipei
| | - Yi-Fang Chang
- Department of Hematology and Oncology, MacKay Memorial Hospital, Taipei
| | - Nai-Wen Su
- Department of Hematology and Oncology, MacKay Memorial Hospital, Taipei
| | - Pei-Hsuan Lee
- Department of International Business, National Chengchi University, Taipei
| | - Kun-Yao Dai
- Department of Radiation Oncology, MacKay Memorial Hospital, Taipei
| | - Hung-Chi Tai
- Department of Radiation Oncology, MacKay Memorial Hospital, Taipei
| | - Yi-Shing Leu
- Department of Otorhinolaryngology, MacKay Memorial Hospital, Taipei
| | - Yu-Jen Chen
- Department of Radiation Oncology, MacKay Memorial Hospital, Taipei.,Department of Nursing, MacKay Junior College of Medicine, Nursing, and Management, Taipei.,Department of Medical Research, China Medical University Hospital, Taichung
| |
Collapse
|
24
|
Radiomics-based MRI for predicting Erythropoietin-producing hepatocellular receptor A2 expression and tumor grade in brain diffuse gliomas. Neuroradiology 2021; 64:323-331. [PMID: 34368897 DOI: 10.1007/s00234-021-02780-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/30/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE EphA2 is a key factor underlying invasive propensity of gliomas, and is associated with poor prognosis of tumors. We aimed to develop a radiomics-based imaging index for predicting EphA2 expression in diffuse gliomas, and further estimating its value for grading of tumors. METHODS A total of 182 patients with diffuse gliomas were included. All subjects underwent pre-operative MRI and post-operative pathological diagnosis. EphA2 expression of tumors was scored on pathological sections with immunohistochemical staining using monoclonal EphA2 antibody. MRI radiomics features were extracted from three-dimensional contrast-enhanced T1-weighted imaging and diffusion kurtosis imaging. Predictive models were constructed using machine learning-based radiomics features selection and three classifiers for predicting EphA2 expression and tumor grade. Features of best EphA2 expression model were subsequently used to construct another model of tumor grading. For each model, 146 cases (80%) were randomly picked as training and the rest 36 (20%) were testing cohorts. EphA2 expression was further correlated to the radiomics features in both grade models using Spearman's correlation. RESULTS Logistic regression model presented highest performance for predicting EphA2 expression (AUC: 0.836/0.724 in training/validation set). Tumor gradings model guided by features from EphA2 expression model demonstrated comparable performance (AUC: 0.930/0.983) to that constructed directly using imaging radiomics features (AUC: 0.960/0.977). Two radiomics features which included in both LR-grade models showed strong correlation (P < 0.05) with EphA2 expression. CONCLUSION The expression of EphA2 in gliomas could be predicted by radiomics features extracted from diffusion kurtosis MRI, which could also be used to assist tumor grading.
Collapse
|
25
|
Kinoshita M, Kanemura Y, Narita Y, Kishima H. Reverse Engineering Glioma Radiomics to Conventional Neuroimaging. Neurol Med Chir (Tokyo) 2021; 61:505-514. [PMID: 34373429 PMCID: PMC8443974 DOI: 10.2176/nmc.ra.2021-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel radiological research field pursuing comprehensive quantitative image, namely “Radiomics,” gained traction along with the advancement of computational technology and artificial intelligence. This novel concept for analyzing medical images brought extensive interest to the neuro-oncology and neuroradiology research community to build a diagnostic workflow to detect clinically relevant genetic alteration of gliomas noninvasively. Although quite a few promising results were published regarding MRI-based diagnosis of isocitrate dehydrogenase (IDH) mutation in gliomas, it has become clear that an ample amount of effort is still needed to render this technology clinically applicable. At the same time, many significant insights were discovered through this research project, some of which could be “reverse engineered” to improve conventional non-radiomic MR image acquisition. In this review article, the authors aim to discuss the recent advancements and encountering issues of radiomics, how we can apply the knowledge provided by radiomics to standard clinical images, and further expected technological advances in the realm of radiomics and glioma.
Collapse
Affiliation(s)
- Manabu Kinoshita
- Department of Neurosurgery, Asahikawa Medical University.,Department of Neurosurgery, Osaka University Graduate School of Medicine.,Department of Neurosurgery, Osaka International Cancer Institute
| | - Yonehiro Kanemura
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine
| |
Collapse
|
26
|
Yan J, Zhang B, Zhang S, Cheng J, Liu X, Wang W, Dong Y, Zhang L, Mo X, Chen Q, Fang J, Wang F, Tian J, Zhang S, Zhang Z. Quantitative MRI-based radiomics for noninvasively predicting molecular subtypes and survival in glioma patients. NPJ Precis Oncol 2021; 5:72. [PMID: 34312469 PMCID: PMC8313682 DOI: 10.1038/s41698-021-00205-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 05/13/2021] [Indexed: 12/24/2022] Open
Abstract
Gliomas can be classified into five molecular groups based on the status of IDH mutation, 1p/19q codeletion, and TERT promoter mutation, whereas they need to be obtained by biopsy or surgery. Thus, we aimed to use MRI-based radiomics to noninvasively predict the molecular groups and assess their prognostic value. We retrospectively identified 357 patients with gliomas and extracted radiomic features from their preoperative MRI images. Single-layered radiomic signatures were generated using a single MR sequence using Bayesian-regularization neural networks. Image fusion models were built by combing the significant radiomic signatures. By separately predicting the molecular markers, the predictive molecular groups were obtained. Prognostic nomograms were developed based on the predictive molecular groups and clinicopathologic data to predict progression-free survival (PFS) and overall survival (OS). The results showed that the image fusion model incorporating radiomic signatures from contrast-enhanced T1-weighted imaging (cT1WI) and apparent diffusion coefficient (ADC) achieved an AUC of 0.884 and 0.669 for predicting IDH and TERT status, respectively. cT1WI-based radiomic signature alone yielded favorable performance in predicting 1p/19q status (AUC = 0.815). The predictive molecular groups were comparable to actual ones in predicting PFS (C-index: 0.709 vs. 0.722, P = 0.241) and OS (C-index: 0.703 vs. 0.751, P = 0.359). Subgroup analyses by grades showed similar findings. The prognostic nomograms based on grades and the predictive molecular groups yielded a C-index of 0.736 and 0.735 in predicting PFS and OS, respectively. Accordingly, MRI-based radiomics may be useful for noninvasively detecting molecular groups and predicting survival in gliomas regardless of grades.
Collapse
Affiliation(s)
- Jing Yan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Shuaitong Zhang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China.,CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Engineering Medicine, Beihang University, Beijing, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuhao Dong
- Department of Catheterization Lab, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Lu Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Xiaokai Mo
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Qiuying Chen
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jin Fang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Fei Wang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jie Tian
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China. .,CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China. .,School of Engineering Medicine, Beihang University, Beijing, China. .,Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi, China.
| | - Shuixing Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
27
|
Ning Z, Tu C, Di X, Feng Q, Zhang Y. Deep cross-view co-regularized representation learning for glioma subtype identification. Med Image Anal 2021; 73:102160. [PMID: 34303890 DOI: 10.1016/j.media.2021.102160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/04/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
The new subtypes of diffuse gliomas are recognized by the World Health Organization (WHO) on the basis of genotypes, e.g., isocitrate dehydrogenase and chromosome arms 1p/19q, in addition to the histologic phenotype. Glioma subtype identification can provide valid guidances for both risk-benefit assessment and clinical decision. The feature representations of gliomas in magnetic resonance imaging (MRI) have been prevalent for revealing underlying subtype status. However, since gliomas are highly heterogeneous tumors with quite variable imaging phenotypes, learning discriminative feature representations in MRI for gliomas remains challenging. In this paper, we propose a deep cross-view co-regularized representation learning framework for glioma subtype identification, in which view representation learning and multiple constraints are integrated into a unified paradigm. Specifically, we first learn latent view-specific representations based on cross-view images generated from MRI via a bi-directional mapping connecting original imaging space and latent space, and view-correlated regularizer and output-consistent regularizer in the latent space are employed to explore view correlation and derive view consistency, respectively. We further learn view-sharable representations which can explore complementary information of multiple views by projecting the view-specific representations into a holistically shared space and enhancing via adversary learning strategy. Finally, the view-specific and view-sharable representations are incorporated for identifying glioma subtype. Experimental results on multi-site datasets demonstrate the proposed method outperforms several state-of-the-art methods in detection of glioma subtype status.
Collapse
Affiliation(s)
- Zhenyuan Ning
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China
| | - Chao Tu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China
| | - Xiaohui Di
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China
| | - Qianjin Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China
| | - Yu Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
28
|
Priya S, Liu Y, Ward C, Le NH, Soni N, Pillenahalli Maheshwarappa R, Monga V, Zhang H, Sonka M, Bathla G. Radiomic Based Machine Learning Performance for a Three Class Problem in Neuro-Oncology: Time to Test the Waters? Cancers (Basel) 2021; 13:2568. [PMID: 34073840 PMCID: PMC8197204 DOI: 10.3390/cancers13112568] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 01/06/2023] Open
Abstract
Prior radiomics studies have focused on two-class brain tumor classification, which limits generalizability. The performance of radiomics in differentiating the three most common malignant brain tumors (glioblastoma (GBM), primary central nervous system lymphoma (PCNSL), and metastatic disease) is assessed; factors affecting the model performance and usefulness of a single sequence versus multiparametric MRI (MP-MRI) remain largely unaddressed. This retrospective study included 253 patients (120 metastatic (lung and brain), 40 PCNSL, and 93 GBM). Radiomic features were extracted for whole a tumor mask (enhancing plus necrotic) and an edema mask (first pipeline), as well as for separate enhancing and necrotic and edema masks (second pipeline). Model performance was evaluated using MP-MRI, individual sequences, and the T1 contrast enhanced (T1-CE) sequence without the edema mask across 45 model/feature selection combinations. The second pipeline showed significantly high performance across all combinations (Brier score: 0.311-0.325). GBRM fit using the full feature set from the T1-CE sequence was the best model. The majority of the top models were built using a full feature set and inbuilt feature selection. No significant difference was seen between the top-performing models for MP-MRI (AUC 0.910) and T1-CE sequence with (AUC 0.908) and without edema masks (AUC 0.894). T1-CE is the single best sequence with comparable performance to that of multiparametric MRI (MP-MRI). Model performance varies based on tumor subregion and the combination of model/feature selection methods.
Collapse
Affiliation(s)
- Sarv Priya
- Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA; (N.S.); (R.P.M.); (G.B.)
| | - Yanan Liu
- College of Engineering, University of Iowa, Iowa City, IA 52242, USA; (Y.L.); (N.H.L.); (H.Z.); (M.S.)
| | - Caitlin Ward
- Department of Biostatistics, University of Iowa, Iowa City, IA 52242, USA;
| | - Nam H. Le
- College of Engineering, University of Iowa, Iowa City, IA 52242, USA; (Y.L.); (N.H.L.); (H.Z.); (M.S.)
| | - Neetu Soni
- Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA; (N.S.); (R.P.M.); (G.B.)
| | | | - Varun Monga
- Department of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| | - Honghai Zhang
- College of Engineering, University of Iowa, Iowa City, IA 52242, USA; (Y.L.); (N.H.L.); (H.Z.); (M.S.)
| | - Milan Sonka
- College of Engineering, University of Iowa, Iowa City, IA 52242, USA; (Y.L.); (N.H.L.); (H.Z.); (M.S.)
| | - Girish Bathla
- Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA; (N.S.); (R.P.M.); (G.B.)
| |
Collapse
|
29
|
Buchlak QD, Esmaili N, Leveque JC, Bennett C, Farrokhi F, Piccardi M. Machine learning applications to neuroimaging for glioma detection and classification: An artificial intelligence augmented systematic review. J Clin Neurosci 2021; 89:177-198. [PMID: 34119265 DOI: 10.1016/j.jocn.2021.04.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
Glioma is the most common primary intraparenchymal tumor of the brain and the 5-year survival rate of high-grade glioma is poor. Magnetic resonance imaging (MRI) is essential for detecting, characterizing and monitoring brain tumors but definitive diagnosis still relies on surgical pathology. Machine learning has been applied to the analysis of MRI data in glioma research and has the potential to change clinical practice and improve patient outcomes. This systematic review synthesizes and analyzes the current state of machine learning applications to glioma MRI data and explores the use of machine learning for systematic review automation. Various datapoints were extracted from the 153 studies that met inclusion criteria and analyzed. Natural language processing (NLP) analysis involved keyword extraction, topic modeling and document classification. Machine learning has been applied to tumor grading and diagnosis, tumor segmentation, non-invasive genomic biomarker identification, detection of progression and patient survival prediction. Model performance was generally strong (AUC = 0.87 ± 0.09; sensitivity = 0.87 ± 0.10; specificity = 0.0.86 ± 0.10; precision = 0.88 ± 0.11). Convolutional neural network, support vector machine and random forest algorithms were top performers. Deep learning document classifiers yielded acceptable performance (mean 5-fold cross-validation AUC = 0.71). Machine learning tools and data resources were synthesized and summarized to facilitate future research. Machine learning has been widely applied to the processing of MRI data in glioma research and has demonstrated substantial utility. NLP and transfer learning resources enabled the successful development of a replicable method for automating the systematic review article screening process, which has potential for shortening the time from discovery to clinical application in medicine.
Collapse
Affiliation(s)
- Quinlan D Buchlak
- School of Medicine, The University of Notre Dame Australia, Sydney, NSW, Australia.
| | - Nazanin Esmaili
- School of Medicine, The University of Notre Dame Australia, Sydney, NSW, Australia; Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW, Australia
| | | | - Christine Bennett
- School of Medicine, The University of Notre Dame Australia, Sydney, NSW, Australia
| | - Farrokh Farrokhi
- Neuroscience Institute, Virginia Mason Medical Center, Seattle, WA, USA
| | - Massimo Piccardi
- Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
30
|
Radiomics-Based Differentiation between Glioblastoma, CNS Lymphoma, and Brain Metastases: Comparing Performance across MRI Sequences and Machine Learning Models. Cancers (Basel) 2021. [DOI: 10.3390/cancers13092261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Prior radiomics studies have focused on two-class brain tumor classification, which limits generalizability. The performance of radiomics in differentiating the three most common malignant brain tumors (glioblastoma (GBM), primary central nervous system lymphoma (PCNSL), and metastatic disease) is assessed; factors affecting the model performance and usefulness of a single sequence versus multiparametric MRI (MP-MRI) remain largely unaddressed. This retrospective study included 253 patients (120 metastatic (lung and brain), 40 PCNSL, and 93 GBM). Radiomic features were extracted for whole a tumor mask (enhancing plus necrotic) and an edema mask (first pipeline), as well as for separate enhancing and necrotic and edema masks (second pipeline). Model performance was evaluated using MP-MRI, individual sequences, and the T1 contrast enhanced (T1-CE) sequence without the edema mask across 45 model/feature selection combinations. The second pipeline showed significantly high performance across all combinations (Brier score: 0.311–0.325). GBRM fit using the full feature set from the T1-CE sequence was the best model. The majority of the top models were built using a full feature set and inbuilt feature selection. No significant difference was seen between the top-performing models for MP-MRI (AUC 0.910) and T1-CE sequence with (AUC 0.908) and without edema masks (AUC 0.894). T1-CE is the single best sequence with comparable performance to that of multiparametric MRI (MP-MRI). Model performance varies based on tumor subregion and the combination of model/feature selection methods.
Collapse
|
31
|
Cheung HMC, Rubin D. Challenges and opportunities for artificial intelligence in oncological imaging. Clin Radiol 2021; 76:728-736. [PMID: 33902889 DOI: 10.1016/j.crad.2021.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/15/2021] [Indexed: 02/08/2023]
Abstract
Imaging plays a key role in oncology, including the diagnosis and detection of cancer, determining clinical management, assessing treatment response, and complications of treatment or disease. The current use of clinical oncology is predominantly qualitative in nature with some relatively crude size-based measurements of tumours for assessment of disease progression or treatment response; however, it is increasingly understood that there may be significantly more information about oncological disease that can be obtained from imaging that is not currently utilized. Artificial intelligence (AI) has the potential to harness quantitative techniques to improve oncological imaging. These may include improving the efficiency or accuracy of traditional roles of imaging such as diagnosis or detection. These may also include new roles for imaging such as risk-stratifying patients for different types of therapy or determining biological tumour subtypes. This review article outlines several major areas in oncological imaging where there may be opportunities for AI technology. These include (1) screening and detection of cancer, (2) diagnosis and risk stratification, (3) tumour segmentation, (4) precision oncology, and (5) predicting prognosis and assessing treatment response. This review will also address some of the potential barriers to AI research in oncological imaging.
Collapse
Affiliation(s)
- H M C Cheung
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Canada
| | - D Rubin
- Department of Radiology, Stanford University, CA, USA.
| |
Collapse
|
32
|
Jian A, Jang K, Manuguerra M, Liu S, Magnussen J, Di Ieva A. Machine Learning for the Prediction of Molecular Markers in Glioma on Magnetic Resonance Imaging: A Systematic Review and Meta-Analysis. Neurosurgery 2021; 89:31-44. [PMID: 33826716 DOI: 10.1093/neuros/nyab103] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/24/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Molecular characterization of glioma has implications for prognosis, treatment planning, and prediction of treatment response. Current histopathology is limited by intratumoral heterogeneity and variability in detection methods. Advances in computational techniques have led to interest in mining quantitative imaging features to noninvasively detect genetic mutations. OBJECTIVE To evaluate the diagnostic accuracy of machine learning (ML) models in molecular subtyping gliomas on preoperative magnetic resonance imaging (MRI). METHODS A systematic search was performed following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines to identify studies up to April 1, 2020. Methodological quality of studies was assessed using the Quality Assessment for Diagnostic Accuracy Studies (QUADAS)-2. Diagnostic performance estimates were obtained using a bivariate model and heterogeneity was explored using metaregression. RESULTS Forty-four original articles were included. The pooled sensitivity and specificity for predicting isocitrate dehydrogenase (IDH) mutation in training datasets were 0.88 (95% CI 0.83-0.91) and 0.86 (95% CI 0.79-0.91), respectively, and 0.83 to 0.85 in validation sets. Use of data augmentation and MRI sequence type were weakly associated with heterogeneity. Both O6-methylguanine-DNA methyltransferase (MGMT) gene promoter methylation and 1p/19q codeletion could be predicted with a pooled sensitivity and specificity between 0.76 and 0.83 in training datasets. CONCLUSION ML application to preoperative MRI demonstrated promising results for predicting IDH mutation, MGMT methylation, and 1p/19q codeletion in glioma. Optimized ML models could lead to a noninvasive, objective tool that captures molecular information important for clinical decision making. Future studies should use multicenter data, external validation and investigate clinical feasibility of ML models.
Collapse
Affiliation(s)
- Anne Jian
- Computational NeuroSurgery (CNS) Lab, Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.,Melbourne Medical School, University of Melbourne, Melbourne, Australia
| | - Kevin Jang
- Computational NeuroSurgery (CNS) Lab, Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.,Discipline of Surgery, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Maurizio Manuguerra
- Department of Mathematics and Statistics, Faculty of Science and Engineering, Macquarie University, Sydney, Australia
| | - Sidong Liu
- Computational NeuroSurgery (CNS) Lab, Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.,Centre for Health Informatics, Macquarie University, Sydney, Australia
| | - John Magnussen
- Computational NeuroSurgery (CNS) Lab, Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.,Macquarie Medical Imaging, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Antonio Di Ieva
- Computational NeuroSurgery (CNS) Lab, Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.,Macquarie Neurosurgery, Macquarie University, Sydney, Australia
| |
Collapse
|
33
|
Magnetic Resonance Features of Lower-grade Gliomas in Prediction of the Reverse Phase Protein A. J Comput Assist Tomogr 2021; 45:300-307. [PMID: 33512852 DOI: 10.1097/rct.0000000000001132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The Cancer Genome Atlas Research Network identified 4 novel protein expression-defined subgroups in patients with lower-grade gliomas (LGGs). The RPPA3 subtype had high levels of Epidermal Growth Factor Receptor and Human epidermal growth factor receptor-2, further increasing the chances for targeted therapy. In this study, we aimed to explore the relationships between magnetic resonance features and reverse phase protein array (RPPA) subtypes (R1-R4). METHODS Survival estimates for the Cancer Genome Atlas cohort were generated using the Kaplan-Meier method and time-dependent receiver operating characteristic curves. A total of 153 patients with LGG with brain magnetic resonance imaging from The Cancer Imaging Archive were retrospectively analyzed. Least absolute shrinkage and selection operator algorithm was used to reduce the feature dimensions of the RPPA3 subtype. RESULTS A total of 51 (33.3%) RPPA1 subtype, 42 (27.4) RPPA2 subtype, 19 (12.4%) RPPA3 subtype, and 38 (24.8%) RPPA4 subtype were identified. On multivariate logistic regression analysis, subventricular zone involvement [odds ratio (OR), 0.370; P = 0.006; 95% confidence interval (CI), 0.181-0.757) was associated with RPPA1 subtype [area under the curve (AUC), 0.598]. Volume of 60 cm3 or greater (OR, 5.174; P < 0.001; 95% CI, 2.182-12.267) was associated with RPPA2 subtype (AUC, 0.684). Proportion contrast-enhanced tumor greater than 5% (OR, 4.722; P = 0.010; 95% CI, 1.456-15.317), extranodular growth (OR, 5.524; P = 0.010; 95% CI, 1.509-20.215), and L/CS ratio equal to or greater than median (OR, 0.132; P = 0.003; 95% CI, 0.035-0.500) were associated with RPPA3 subtype (AUC, 0.825). Proportion contrast-enhanced tumor greater than 5% (OR, 0.206; P = 0.005; 95% CI, 0.068-0.625) was associated with RPPA4 subtype (AUC, 0.638). For the prediction of RPPA3 subtype, the nomogram showed good discrimination, with an AUC of 0.825 (95% CI, 0.711-0.939) and was well calibrated. The RPPA3 subtype was associated with shortest mean overall survival (RPPA3 subtype vs other: 613 vs 873 days; P < 0.05). The time-dependent receiver operating characteristic curves for the RPPA3 subtype was 0.72 (95% CI, 0.60-0.84) for survival at 1 year. Decision curve analysis indicated that prediction for the RPPA3 model was clinically useful. CONCLUSIONS The RPPA3 subtype is an unfavorable prognostic biomarker for overall survival in patients with LGG. Radiogenomics analysis of magnetic resonance features can predict the RPPA subtype preoperatively and may be of clinical value in tailoring the management strategies in patients with LGG.
Collapse
|
34
|
Casale R, Lavrova E, Sanduleanu S, Woodruff HC, Lambin P. Development and external validation of a non-invasive molecular status predictor of chromosome 1p/19q co-deletion based on MRI radiomics analysis of Low Grade Glioma patients. Eur J Radiol 2021; 139:109678. [PMID: 33848780 DOI: 10.1016/j.ejrad.2021.109678] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/04/2021] [Accepted: 03/21/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE The 1p/19q co-deletion status has been demonstrated to be a prognostic biomarker in lower grade glioma (LGG). The objective of this study was to build a magnetic resonance (MRI)-derived radiomics model to predict the 1p/19q co-deletion status. METHOD 209 pathology-confirmed LGG patients from 2 different datasets from The Cancer Imaging Archive were retrospectively reviewed; one dataset with 159 patients as the training and discovery dataset and the other one with 50 patients as validation dataset. Radiomics features were extracted from T2- and T1-weighted post-contrast MRI resampled data using linear and cubic interpolation methods. For each of the voxel resampling methods a three-step approach was used for feature selection and a random forest (RF) classifier was trained on the training dataset. Model performance was evaluated on training and validation datasets and clinical utility indexes (CUIs) were computed. The distributions and intercorrelation for selected features were analyzed. RESULTS Seven radiomics features were selected from the cubic interpolated features and five from the linear interpolated features on the training dataset. The RF classifier showed similar performance for cubic and linear interpolation methods in the training dataset with accuracies of 0.81 (0.75-0.86) and 0.76 (0.71-0.82) respectively; in the validation dataset the accuracy dropped to 0.72 (0.6-0.82) using cubic interpolation and 0.72 (0.6-0.84) using linear resampling. CUIs showed the model achieved satisfactory negative values (0.605 using cubic interpolation and 0.569 for linear interpolation). CONCLUSIONS MRI has the potential for predicting the 1p/19q status in LGGs. Both cubic and linear interpolation methods showed similar performance in external validation.
Collapse
Affiliation(s)
- Roberto Casale
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology, Maastricht University Maastricht, the Netherlands.
| | - Elizaveta Lavrova
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology, Maastricht University Maastricht, the Netherlands
| | - Sebastian Sanduleanu
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology, Maastricht University Maastricht, the Netherlands
| | - Henry C Woodruff
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology, Maastricht University Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, GROW - School for Oncology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Philippe Lambin
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology, Maastricht University Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, GROW - School for Oncology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| |
Collapse
|
35
|
Fang S, Fan Z, Sun Z, Li Y, Liu X, Liang Y, Liu Y, Zhou C, Zhu Q, Zhang H, Li T, Li S, Jiang T, Wang Y, Wang L. Radiomics Features Predict Telomerase Reverse Transcriptase Promoter Mutations in World Health Organization Grade II Gliomas via a Machine-Learning Approach. Front Oncol 2021; 10:606741. [PMID: 33643908 PMCID: PMC7905226 DOI: 10.3389/fonc.2020.606741] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/24/2020] [Indexed: 12/16/2022] Open
Abstract
The detection of mutations in telomerase reverse transcriptase promoter (pTERT) is important since preoperative diagnosis of pTERT status helps with evaluating prognosis and determining the surgical strategy. Here, we aimed to establish a radiomics-based machine-learning algorithm and evaluated its performance with regard to the prediction of mutations in pTERT in patients with World Health Organization (WHO) grade II gliomas. In total, 164 patients with WHO grade II gliomas were enrolled in this retrospective study. We extracted a total of 1,293 radiomics features from multi-parametric magnetic resonance imaging scans. Elastic net (used for feature selection) and support vector machine with linear kernel were applied in nested 10-fold cross-validation loops. The predictive model was evaluated by receiver operating characteristic and precision-recall analyses. We performed an unpaired t-test to compare the posterior predictive probabilities among patients with differing pTERT statuses. We selected 12 valuable radiomics features using nested 10-fold cross-validation loops. The area under the curve (AUC) was 0.8446 (95% confidence interval [CI], 0.7735–0.9065) with an optimal summed value of sensitivity of 0.9355 (95% CI, 0.8802–0.9788) and specificity of 0.6197 (95% CI, 0.5071–0.7371). The overall accuracy was 0.7988 (95% CI, 0.7378–0.8598). The F1-score was 0.8406 (95% CI, 0.7684–0.902) with an optimal precision of 0.7632 (95% CI, 0.6818–0.8364) and recall of 0.9355 (95% CI, 0.8802–0.9788). Posterior probabilities of pTERT mutations were significantly different between patients with wild-type and mutant TERT promoters. Our findings suggest that a radiomics analysis with a machine-learning algorithm can be useful for predicting pTERT status in patients with WHO grade II glioma and may aid in glioma management.
Collapse
Affiliation(s)
- Shengyu Fang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Ziwen Fan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhiyan Sun
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yiming Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xing Liu
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuchao Liang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yukun Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunyao Zhou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qiang Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hong Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tianshi Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shaowu Li
- Department of Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yinyan Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lei Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
36
|
Liu Z, Wu K, Wu B, Tang X, Yuan H, Pang H, Huang Y, Zhu X, Luo H, Qi Y. Imaging genomics for accurate diagnosis and treatment of tumors: A cutting edge overview. Biomed Pharmacother 2020; 135:111173. [PMID: 33383370 DOI: 10.1016/j.biopha.2020.111173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/30/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Imaging genomics refers to the establishment of the connection between invasive gene expression features and non-invasive imaging features. Tumor imaging genomics can not only understand the macroscopic phenotype of tumor, but also can deeply analyze the cellular and molecular characteristics of tumor tissue. In recent years, tumor imaging genomics has been a key in the field of medicine. The incidence of cancer in China has increased significantly, which is the main reason of disease death of urban residents. With the rapid development of imaging medicine, depending on imaging genomics, many experts have made remarkable achievements in tumor screening and diagnosis, prognosis evaluation, new treatment targets and understanding of tumor biological mechanism. This review analyzes the relationship between tumor radiology and gene expression, which provides a favorable direction for clinical staging, prognosis evaluation and accurate treatment of tumors.
Collapse
Affiliation(s)
- Zhen Liu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Kefeng Wu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Binhua Wu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Xiaoning Tang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Huiqing Yuan
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Hao Pang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Yongmei Huang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Xiao Zhu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.
| | - Hui Luo
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.
| | - Yi Qi
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.
| |
Collapse
|
37
|
Bhandari AP, Liong R, Koppen J, Murthy SV, Lasocki A. Noninvasive Determination of IDH and 1p19q Status of Lower-grade Gliomas Using MRI Radiomics: A Systematic Review. AJNR Am J Neuroradiol 2020; 42:94-101. [PMID: 33243896 DOI: 10.3174/ajnr.a6875] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Determination of isocitrate dehydrogenase (IDH) status and, if IDH-mutant, assessing 1p19q codeletion are an important component of diagnosis of World Health Organization grades II/III or lower-grade gliomas. This has led to research into noninvasively correlating imaging features ("radiomics") with genetic status. PURPOSE Our aim was to perform a diagnostic test accuracy systematic review for classifying IDH and 1p19q status using MR imaging radiomics, to provide future directions for integration into clinical radiology. DATA SOURCES Ovid (MEDLINE), Scopus, and the Web of Science were searched in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Diagnostic Test Accuracy guidelines. STUDY SELECTION Fourteen journal articles were selected that included 1655 lower-grade gliomas classified by their IDH and/or 1p19q status from MR imaging radiomic features. DATA ANALYSIS For each article, the classification of IDH and/or 1p19q status using MR imaging radiomics was evaluated using the area under curve or descriptive statistics. Quality assessment was performed with the Quality Assessment of Diagnostic Accuracy Studies 2 tool and the radiomics quality score. DATA SYNTHESIS The best classifier of IDH status was with conventional radiomics in combination with convolutional neural network-derived features (area under the curve = 0.95, 94.4% sensitivity, 86.7% specificity). Optimal classification of 1p19q status occurred with texture-based radiomics (area under the curve = 0.96, 90% sensitivity, 89% specificity). LIMITATIONS A meta-analysis showed high heterogeneity due to the uniqueness of radiomic pipelines. CONCLUSIONS Radiogenomics is a potential alternative to standard invasive biopsy techniques for determination of IDH and 1p19q status in lower-grade gliomas but requires translational research for clinical uptake.
Collapse
Affiliation(s)
- A P Bhandari
- From the Department of Anatomy (A.P.B.) .,Townsville University Hospital (A.P.B., J.K.), Douglas, Queensland, Australia
| | - R Liong
- Department of Medical Imaging Research Office (R.L.), Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - J Koppen
- Townsville University Hospital (A.P.B., J.K.), Douglas, Queensland, Australia
| | - S V Murthy
- College of Medicine and Dentistry (S.V.M.), James Cook University, Townsville, Queensland, Australia
| | - A Lasocki
- Department of Cancer Imaging (A.L.), Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology (A.L.), The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
38
|
Kong Z, Jiang C, Zhang Y, Liu S, Liu D, Liu Z, Chen W, Liu P, Yang T, Lyu Y, Zhao D, You H, Wang Y, Ma W, Feng F. Thin-Slice Magnetic Resonance Imaging-Based Radiomics Signature Predicts Chromosomal 1p/19q Co-deletion Status in Grade II and III Gliomas. Front Neurol 2020; 11:551771. [PMID: 33192984 PMCID: PMC7642873 DOI: 10.3389/fneur.2020.551771] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
Objective: Chromosomal 1p/19q co-deletion is recognized as a diagnostic, prognostic, and predictive biomarker in lower grade glioma (LGG). This study aims to construct a radiomics signature to non-invasively predict the 1p/19q co-deletion status in LGG. Methods: Ninety-six patients with pathology-confirmed LGG were retrospectively included and randomly assigned into training (n = 78) and validation (n = 18) dataset. Three-dimensional contrast-enhanced T1 (3D-CE-T1)-weighted magnetic resonance (MR) images and T2-weighted MR images were acquired, and simulated-conventional contrast-enhanced T1 (SC-CE-T1)-weighted images were generated. One hundred and seven shape, first-order, and texture radiomics features were extracted from each imaging modality and selected using the least absolute shrinkage and selection operator on the training dataset. A 3D-radiomics signature based on 3D-CE-T1 and T2-weighted features and a simulated-conventional (SC) radiomics signature based on SC-CE-T1 and T2-weighted features were established using random forest. The radiomics signatures were validated independently and evaluated using receiver operating characteristic (ROC) curves. Tumors with IDH mutations were also separately assessed. Results: Four radiomics features were selected to construct the 3D-radiomics signature and displayed accuracies of 0.897 and 0.833, areas under the ROC curves (AUCs) of 0.940 and 0.889 in the training and validation datasets, respectively. The SC-radiomics signature was constructed with 4 features, but the AUC values were lower than that of the 3D signature. In the IDH-mutated subgroup, the 3D-radiomics signature presented AUCs of 0.950–1.000. Conclusions: The MRI-based radiomics signature can differentiate 1p/19q co-deletion status in LGG with or without predetermined IDH status. 3D-CE-T1-weighted radiomics features are more favorable than SC-CE-T1-weighted features in the establishment of radiomics signatures.
Collapse
Affiliation(s)
- Ziren Kong
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chendan Jiang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiwei Zhang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sirui Liu
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Delin Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zeyu Liu
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenlin Chen
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Penghao Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianrui Yang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuelei Lyu
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Dachun Zhao
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui You
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Feng Feng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
39
|
Kocak B, Kus EA, Kilickesmez O. How to read and review papers on machine learning and artificial intelligence in radiology: a survival guide to key methodological concepts. Eur Radiol 2020; 31:1819-1830. [PMID: 33006018 DOI: 10.1007/s00330-020-07324-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/25/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022]
Abstract
In recent years, there has been a dramatic increase in research papers about machine learning (ML) and artificial intelligence in radiology. With so many papers around, it is of paramount importance to make a proper scientific quality assessment as to their validity, reliability, effectiveness, and clinical applicability. Due to methodological complexity, the papers on ML in radiology are often hard to evaluate, requiring a good understanding of key methodological issues. In this review, we aimed to guide the radiology community about key methodological aspects of ML to improve their academic reading and peer-review experience. Key aspects of ML pipeline were presented within four broad categories: study design, data handling, modelling, and reporting. Sixteen key methodological items and related common pitfalls were reviewed with a fresh perspective: database size, robustness of reference standard, information leakage, feature scaling, reliability of features, high dimensionality, perturbations in feature selection, class balance, bias-variance trade-off, hyperparameter tuning, performance metrics, generalisability, clinical utility, comparison with traditional tools, data sharing, and transparent reporting.Key Points• Machine learning is new and rather complex for the radiology community.• Validity, reliability, effectiveness, and clinical applicability of studies on machine learning can be evaluated with a proper understanding of key methodological concepts about study design, data handling, modelling, and reporting.• Understanding key methodological concepts will provide a better academic reading and peer-review experience for the radiology community.
Collapse
Affiliation(s)
- Burak Kocak
- Department of Radiology, Basaksehir Cam and Sakura City Hospital, Basaksehir, 34480, Istanbul, Turkey.
| | - Ece Ates Kus
- Department of Radiology, Istanbul Training and Research Hospital, Samatya, 34098, Istanbul, Turkey
| | - Ozgur Kilickesmez
- Department of Radiology, Basaksehir Cam and Sakura City Hospital, Basaksehir, 34480, Istanbul, Turkey
| |
Collapse
|
40
|
Chu JP, Song YK, Tian YS, Qiu HS, Huang XH, Wang YL, Huang YQ, Zhao J. Diffusion kurtosis imaging in evaluating gliomas: different region of interest selection methods on time efficiency, measurement repeatability, and diagnostic ability. Eur Radiol 2020; 31:729-739. [PMID: 32857204 DOI: 10.1007/s00330-020-07204-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 07/05/2020] [Accepted: 08/18/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Comparing the diagnostic efficacy of diffusion kurtosis imaging (DKI) derived from different region of interest (ROI) methods in tumor parenchyma for grading and predicting IDH-1 mutation and 1p19q co-deletion status of glioma patients and correlating with their survival data. METHODS Sixty-six patients (29 females; median age, 45 years) with pathologically proved gliomas (low-grade gliomas, 36; high-grade gliomas, 30) were prospectively included, and their clinical data were collected. All patients underwent DKI examination. DKI maps of each metric were derived. Three groups of ROIs (ten spots, ROI-10s; three biggest tumor slices, ROI-3s; and whole-tumor parenchyma, ROI-whole) were manually drawn by two independent radiologists. The interobserver consistency, time spent, diagnostic efficacy, and survival analysis of DKI metrics based on these three ROI methods were analyzed. RESULTS The intraexaminer reliability for all parameters among these three ROI methods was good, and the time spent on ROI-10s was significantly less than that of the other two methods (p < 0.001). DKI based on ROI-10s demonstrated a slightly better diagnostic value than the other two ROI methods for grading and predicting the IDH-1 mutation status of glioma, whereas DKI metrics derived from ROI-10s performed much better than those of the ROI-3s and ROI-whole in identifying 1p19q co-deletion. In survival analysis, the model based on ROI-10s that included patient age and mean diffusivity showed the highest prediction value (C-index, 0.81). CONCLUSIONS Among the three ROI methods, the ROI-10s method had the least time spent and the best diagnostic value for a comprehensive evaluation of glioma. It is an effective way to process DKI data and has important application value in the clinical evaluation of glioma. KEY POINTS • The intraexaminer reliability for all DKI parameters among different ROI methods was good, and the time spent on ROI-10 spots was significantly less than the other two ROI methods. • DKI metrics derived from ROI-10 spots performed the best in ROI selection methods (ROI-10s, ten-spot ROIs; ROI-3s, three biggest tumor slices ROI; and ROI-whole, whole-tumor parenchyma ROI) for a comprehensive evaluation of glioma. • The ROI-10 spots method is an effective way to process DKI data and has important application value in the clinical evaluation of glioma.
Collapse
Affiliation(s)
- Jian-Ping Chu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58, The Second Zhongshan Road, Guangzhou, 510080, Guangdong, China
| | - Yu-Kun Song
- Department of Radiology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Yi-Su Tian
- Department of Radiology, SICHUAN Cancer Hospital and Research Institute, Chengdu, 610041, China
| | - Hai-Shan Qiu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58, The Second Zhongshan Road, Guangzhou, 510080, Guangdong, China
| | - Xia-Hua Huang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58, The Second Zhongshan Road, Guangzhou, 510080, Guangdong, China
| | - Yu-Liang Wang
- Department of Radiology, Shenzhen City Nanshan District People's Hospital, Shenzhen, 518000, China
| | - Ying-Qian Huang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58, The Second Zhongshan Road, Guangzhou, 510080, Guangdong, China
| | - Jing Zhao
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58, The Second Zhongshan Road, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
41
|
Li L, Wang Y, Li Y, Fang S, Jiang T. Role of molecular biomarkers in glioma resection: a systematic review. Chin Neurosurg J 2020; 6:18. [PMID: 32922947 PMCID: PMC7398179 DOI: 10.1186/s41016-020-00198-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
New discoveries based on genetic and epigenetic evidence have significantly expanded the understanding of diffuse gliomas. Molecular biomarkers detected in diffuse gliomas are not only potential targets for radiotherapy, chemotherapy, and immunotherapy, but are also able to guide surgical treatment. Previous studies have suggested that the optimal extent of resection of diffuse gliomas varies according to the expression of specific molecular biomarkers. However, the specific guiding role of these biomarkers in the resection of diffuse gliomas has not been systemically analyzed. This review summarizes several critical molecular biomarkers of tumorigenesis and progression in diffuse gliomas and discusses different strategies of tumor resection in the context of varying genetic expression. With ongoing study and advances in technology, molecular biomarkers will play a more important role in glioma resection and maximize the survival benefit from surgery for diffuse gliomas.
Collapse
Affiliation(s)
- Lianwang Li
- Beijing Neurosurgical Institute, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 10070 China
| | - Yinyan Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 10070 China
| | - Yiming Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 10070 China
| | - Shengyu Fang
- Beijing Neurosurgical Institute, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 10070 China
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 10070 China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 10070 China
| |
Collapse
|