1
|
Grune E, Nattenmüller J, Kiefer LS, Machann J, Peters A, Bamberg F, Schlett CL, Rospleszcz S. Subphenotypes of body composition and their association with cardiometabolic risk - Magnetic resonance imaging in a population-based sample. Metabolism 2025; 164:156130. [PMID: 39743039 DOI: 10.1016/j.metabol.2024.156130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/05/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND For characterizing health states, fat distribution is more informative than overall body size. We used population-based whole-body magnetic resonance imaging (MRI) to identify distinct body composition subphenotypes and characterize associations with cardiovascular disease (CVD) risk. METHODS Bone marrow, visceral, subcutaneous, cardiac, renal, hepatic, skeletal muscle and pancreatic adipose tissue were measured by MRI in n = 299 individuals from the population-based KORA cohort. Body composition subphenotypes were identified by data-driven k-means clustering. CVD risk was calculated by established scores. RESULTS We identified five body composition subphenotypes, which differed substantially in CVD risk factor distribution and CVD risk. Compared to reference subphenotype I with favorable risk profile, two high-risk phenotypes, III&V, had a 3.8-fold increased CVD risk. High-risk subphenotype III had increased bone marrow and skeletal muscle fat (26.3 % vs 11.4 % in subphenotype I), indicating ageing effects, whereas subphenotype V showed overall high fat contents, and particularly elevated pancreatic fat (25.0 % vs 3.7 % in subphenotype I), indicating metabolic impairment. Subphenotype II had a 2.7-fold increased CVD risk, and an unfavorable fat distribution, probably smoking-related, while BMI was only slightly elevated. Subphenotype IV had a 2.8-fold increased CVD risk with comparably young individuals, who showed high blood pressure and hepatic fat (17.7 % vs 3.0 % in subphenotype I). CONCLUSIONS Whole-body MRI can identify distinct body composition subphenotypes associated with different degrees of cardiometabolic risk. Body composition profiling may enable a more comprehensive risk assessment than individual fat compartments, with potential benefits for individualized prevention.
Collapse
Affiliation(s)
- Elena Grune
- Department of Diagnostic and Interventional Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Institute of Epidemiology, Helmholtz Munich, Neuherberg, Germany; Pettenkofer School of Public Health, LMU Munich, Munich, Germany
| | - Johanna Nattenmüller
- Department of Diagnostic and Interventional Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Institute for Radiology and Nuclear Medicine Hirslanden Clinic St. Anna, Lucerne, Switzerland
| | - Lena S Kiefer
- Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, Eberhard Karls University of Tuebingen, Tuebingen, Germany; Department of Nuclear Medicine and Clinical Molecular Imaging, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Jürgen Machann
- Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Medical Faculty, Ludwig-Maximilians-Universität (LMU), Munich, Germany; German Center for Cardiovascular Disease Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christopher L Schlett
- Department of Diagnostic and Interventional Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Susanne Rospleszcz
- Department of Diagnostic and Interventional Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Institute of Epidemiology, Helmholtz Munich, Neuherberg, Germany.
| |
Collapse
|
2
|
Hewitt‐Dedman CL, Kershaw LE, Schwarz T, Del‐Pozo J, Duncan J, Daniel CR, Cillán‐García E, Pressanto MC, Taylor SE. Preliminary study of proton magnetic resonance spectroscopy to assess bone marrow adiposity in the third metacarpus or metatarsus in Thoroughbred racehorses. Equine Vet J 2025; 57:471-479. [PMID: 38699829 PMCID: PMC11807939 DOI: 10.1111/evj.14086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 03/07/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Magnetic resonance spectroscopy (MRS) has been used to investigate metabolic changes within human bone. It may be possible to use MRS to investigate bone metabolism and fracture risk in the distal third metacarpal/tarsal bone (MC/MTIII) in racehorses. OBJECTIVES To determine the feasibility of using MRS as a quantitative imaging technique in equine bone by using the 1H spectra for the MC/MTIII to calculate fat content (FC). STUDY DESIGN Observational cross-sectional study. METHODS Limbs from Thoroughbred racehorses were collected from horses that died or were subjected to euthanasia on racecourses. Each limb underwent magnetic resonance imaging (MRI) at 3 T followed by single-voxel MRS at three regions of interest (ROI) within MC/MTIII (lateral condyle, medial condyle, proximal bone marrow [PBM]). Percentage FC was calculated at each ROI. Each limb underwent computed tomography (CT) and bone mineral density (BMD) was calculated for the same ROIs. All MR and CT images were graded for sclerosis. Histology slides were graded for sclerosis and proximal marrow space was calculated. Pearson or Spearman correlations were used to assess the relationship between BMD, FC and marrow space. Kruskal-Wallis tests were used to check for differences between sclerosis groups for BMD or FC. RESULTS Eighteen limbs from 10 horses were included. A negative correlation was identified for mean BMD and FC for the lateral condyle (correlation coefficient = -0.60, p = 0.01) and PBM (correlation coefficient = -0.5, p = 0.04). There was a significant difference between median BMD for different sclerosis grades in the condyles on both MRI and CT. A significant difference in FC was identified between sclerosis groups in the lateral condyle on MRI and CT. MAIN LIMITATIONS Small sample size. CONCLUSIONS 1H Proton MRS is feasible in the equine MC/MTIII. Further work is required to evaluate the use of this technique to predict fracture risk in racehorses.
Collapse
Affiliation(s)
| | - Lucy E. Kershaw
- BHF Centre for Cardiovascular Science and Edinburgh ImagingUniversity of EdinburghEdinburghUK
| | - Tobias Schwarz
- Royal (Dick) School of Veterinary Studies and Roslin InstituteThe University of EdinburghRoslinUK
| | - Jorge Del‐Pozo
- Royal (Dick) School of Veterinary Studies and Roslin InstituteThe University of EdinburghRoslinUK
| | - Juliet Duncan
- Royal (Dick) School of Veterinary Studies and Roslin InstituteThe University of EdinburghRoslinUK
| | - Carola R. Daniel
- Royal (Dick) School of Veterinary Studies and Roslin InstituteThe University of EdinburghRoslinUK
| | - Eugenio Cillán‐García
- Royal (Dick) School of Veterinary Studies and Roslin InstituteThe University of EdinburghRoslinUK
| | - Maria Chiara Pressanto
- Royal (Dick) School of Veterinary Studies and Roslin InstituteThe University of EdinburghRoslinUK
| | - Sarah E. Taylor
- Royal (Dick) School of Veterinary Studies and Roslin InstituteThe University of EdinburghRoslinUK
| |
Collapse
|
3
|
Maurer E, Rospleszcz S, Rathmann W, Thorand B, Peters A, Schlett CL, Bamberg F, Kiefer LS. MRI-Based Phenotyping for Osteosarcopenic Adiposity in Subjects from a Population-Based Cohort. Geriatrics (Basel) 2024; 9:150. [PMID: 39584951 PMCID: PMC11587111 DOI: 10.3390/geriatrics9060150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024] Open
Abstract
Objective: Imaging biomarkers of bone, muscle, and fat by magnetic resonance imaging (MRI) may depict osteopenia, sarcopenia, and adiposity as the three different conditions of osteosarcopenic adiposity (OSA). Methods: Subjects from a prospective, population-based case-control study underwent a health assessment and 3 Tesla whole-body MRI scan. Imaging biomarkers of bone (bone marrow fat-fraction (BMFF)), skeletal muscle (skeletal muscle FF (SMFF)), and fat (total adipose tissue (TAT)) were determined. Participants were allocated to one phenotype according to the OSA complex. Results: Among 363 participants forming the study cohort, 81 (22.3%, 48.1% males, 62.4 ± 6.9 years) were allocated into the OSA subgroup. Participants with an OSA phenotype were significantly older compared to all remaining subjects and showed the highest grades of SMFF (all p < 0.005). Together with subjects from the osteopenic sarcopenia group, OSA subjects exhibited the highest amounts of BMFF and together with the three other adiposity-containing subgroups also exhibited the highest BMIs. The highest prevalence of an impaired glucose tolerance as well as significantly higher blood pressure, blood dyslipidemia, and hepatic steatosis was found in the OSA subgroup (all p < 0.005). Conclusions: MR biomarkers of bone, skeletal muscle and fat are feasible for body composition phenotyping and may allow for targeted risk stratification in suspected OSA syndrome.
Collapse
Affiliation(s)
- Elke Maurer
- Department for Trauma and Reconstructive Surgery, BG Unfallklinik Tübingen, 72076 Tübingen, Germany
| | - Susanne Rospleszcz
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (S.R.); (B.T.); (A.P.)
- Medical Faculty, Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD), Partner Site Neuherberg, 85764 Neuherberg, Germany;
- Department of Diagnostic and Interventional Radiology, Medical Center–University of Freiburg, 79106 Freiburg, Germany; (C.L.S.); (F.B.)
| | - Barbara Thorand
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (S.R.); (B.T.); (A.P.)
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (S.R.); (B.T.); (A.P.)
- Medical Faculty, Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
- German Center for Diabetes Research (DZD), Partner Site Neuherberg, 85764 Neuherberg, Germany;
| | - Christopher L. Schlett
- Department of Diagnostic and Interventional Radiology, Medical Center–University of Freiburg, 79106 Freiburg, Germany; (C.L.S.); (F.B.)
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, Medical Center–University of Freiburg, 79106 Freiburg, Germany; (C.L.S.); (F.B.)
| | - Lena Sophie Kiefer
- Department of Nuclear Medicine and Clinical Molecular Imaging Otfried-Müller-Straße 14, 72076 Tübingen, Germany
| |
Collapse
|
4
|
Jung M, Rieder H, Reisert M, Rospleszcz S, Nattenmueller J, Peters A, Schlett CL, Bamberg F, Weiss J. Association between myosteatosis and impaired glucose metabolism: A deep learning whole-body magnetic resonance imaging population phenotyping approach. J Cachexia Sarcopenia Muscle 2024; 15:1750-1760. [PMID: 39009381 PMCID: PMC11446675 DOI: 10.1002/jcsm.13527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/16/2024] [Accepted: 06/03/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND There is increasing evidence that myosteatosis, which is currently not assessed in clinical routine, plays an important role in risk estimation in individuals with impaired glucose metabolism, as it is associated with the progression of insulin resistance. With advances in artificial intelligence, automated and accurate algorithms have become feasible to fill this gap. METHODS In this retrospective study, we developed and tested a fully automated deep learning model using data from two prospective cohort studies (German National Cohort [NAKO] and Cooperative Health Research in the Region of Augsburg [KORA]) to quantify myosteatosis on whole-body T1-weighted Dixon magnetic resonance imaging as (1) intramuscular adipose tissue (IMAT; the current standard) and (2) quantitative skeletal muscle (SM) fat fraction (SMFF). Subsequently, we investigated the two measures for their discrimination of and association with impaired glucose metabolism beyond baseline demographics (age, sex and body mass index [BMI]) and cardiometabolic risk factors (lipid panel, systolic blood pressure, smoking status and alcohol consumption) in asymptomatic individuals from the KORA study. Impaired glucose metabolism was defined as impaired fasting glucose or impaired glucose tolerance (140-200 mg/dL) or prevalent diabetes mellitus. RESULTS Model performance was high, with Dice coefficients of ≥0.81 for IMAT and ≥0.91 for SM in the internal (NAKO) and external (KORA) testing sets. In the target population (380 KORA participants: mean age of 53.6 ± 9.2 years, BMI of 28.2 ± 4.9 kg/m2, 57.4% male), individuals with impaired glucose metabolism (n = 146; 38.4%) were older and more likely men and showed a higher cardiometabolic risk profile, higher IMAT (4.5 ± 2.2% vs. 3.9 ± 1.7%) and higher SMFF (22.0 ± 4.7% vs. 18.9 ± 3.9%) compared to normoglycaemic controls (all P ≤ 0.005). SMFF showed better discrimination for impaired glucose metabolism than IMAT (area under the receiver operating characteristic curve [AUC] 0.693 vs. 0.582, 95% confidence interval [CI] [0.06-0.16]; P < 0.001) but was not significantly different from BMI (AUC 0.733 vs. 0.693, 95% CI [-0.09 to 0.01]; P = 0.15). In univariable logistic regression, IMAT (odds ratio [OR] = 1.18, 95% CI [1.06-1.32]; P = 0.004) and SMFF (OR = 1.19, 95% CI [1.13-1.26]; P < 0.001) were associated with a higher risk of impaired glucose metabolism. This signal remained robust after multivariable adjustment for baseline demographics and cardiometabolic risk factors for SMFF (OR = 1.10, 95% CI [1.01-1.19]; P = 0.028) but not for IMAT (OR = 1.14, 95% CI [0.97-1.33]; P = 0.11). CONCLUSIONS Quantitative SMFF, but not IMAT, is an independent predictor of impaired glucose metabolism, and discrimination is not significantly different from BMI, making it a promising alternative for the currently established approach. Automated methods such as the proposed model may provide a feasible option for opportunistic screening of myosteatosis and, thus, a low-cost personalized risk assessment solution.
Collapse
Affiliation(s)
- Matthias Jung
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hanna Rieder
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Reisert
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Stereotactic and Functional Neurosurgery, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Susanne Rospleszcz
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Johanna Nattenmueller
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Epidemiology, Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig Maximilian University of Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Christopher L Schlett
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jakob Weiss
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Zhang X, Tian L, Majumdar A, Scheller EL. Function and Regulation of Bone Marrow Adipose Tissue in Health and Disease: State of the Field and Clinical Considerations. Compr Physiol 2024; 14:5521-5579. [PMID: 39109972 PMCID: PMC11725182 DOI: 10.1002/cphy.c230016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Bone marrow adipose tissue (BMAT) is a metabolically and clinically relevant fat depot that exists within bone. Two subtypes of BMAT, regulated and constitutive, reside in hematopoietic-rich red marrow and fatty yellow marrow, respectively, and exhibit distinct characteristics compared to peripheral fat such as white and brown adipose tissues. Bone marrow adipocytes (BMAds) are evolutionally preserved in most vertebrates, start development after birth and expand throughout life, and originate from unique progenitor populations that control bone formation and hematopoiesis. Mature BMAds also interact closely with other cellular components of the bone marrow niche, serving as a nearby energy reservoir to support the skeletal system, a signaling hub that contributes to both local and systemic homeostasis, and a final fuel reserve for survival during starvation. Though BMAT and bone are often inversely correlated, more BMAT does not always mean less bone, and the prevention of BMAT expansion as a strategy to prevent bone loss remains questionable. BMAT adipogenesis and lipid metabolism are regulated by the nervous systems and a variety of circulating hormones. This contributes to the plasticity of BMAT, including BMAT expansion in common physiological or pathological conditions, and BMAT catabolism under certain extreme circumstances, which are often associated with malnutrition and/or systemic inflammation. Altogether, this article provides a comprehensive overview of the local and systemic functions of BMAT and discusses the regulation and plasticity of this unique adipose tissue depot in health and disease. © 2024 American Physiological Society. Compr Physiol 14:5521-5579, 2024.
Collapse
Affiliation(s)
- Xiao Zhang
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Linda Tian
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Anurag Majumdar
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Erica L. Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
6
|
Guimarães GC, Coelho JBC, Silva JGO, de Sant'Ana ACC, de Sá CAC, Moreno JM, Reis LM, de Oliveira Guimarães CS. Obesity, diabetes and risk of bone fragility: How BMAT behavior is affected by metabolic disturbances and its influence on bone health. Osteoporos Int 2024; 35:575-588. [PMID: 38055051 DOI: 10.1007/s00198-023-06991-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/26/2023] [Indexed: 12/07/2023]
Abstract
PURPOSE Osteoporosis is a metabolic bone disease characterized by decreased bone strength and mass, which predisposes patients to fractures and is associated with high morbidity and mortality. Like osteoporosis, obesity and diabetes are systemic metabolic diseases associated with modifiable risk factors and lifestyle, and their prevalence is increasing. They are related to decreased quality of life, functional loss and increased mortality, generating high costs for health systems and representing a worldwide public health problem. Growing evidence reinforces the role of bone marrow adipose tissue (BMAT) as an influential factor in the bone microenvironment and systemic metabolism. Given the impact of obesity and diabetes on metabolism and their possible effect on the bone microenvironment, changes in BMAT behavior may explain the risk of developing osteoporosis in the presence of these comorbidities. METHODS This study reviewed the scientific literature on the behavior of BMAT in pathological metabolic conditions, such as obesity and diabetes, and its potential involvement in the pathogenesis of bone fragility. RESULTS Published data strongly suggest a relationship between increased BMAT adiposity and the risk of bone fragility in the context of obesity and diabetes. CONCLUSION By secreting a broad range of factors, BMAT modulates the bone microenvironment and metabolism, ultimately affecting skeletal health. A better understanding of the relationship between BMAT expansion and metabolic disturbances observed in diabetic and obese patients will help to identify regulatory pathways and new targets for the treatment of bone-related diseases, with BMAT as a potential therapeutic target.
Collapse
Affiliation(s)
| | - João Bosco Costa Coelho
- Department of Veterinary Medicine, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | | | | | | | - Júlia Marques Moreno
- Department of Medicine, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - Lívia Marçal Reis
- Department of Medicine, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - Camila Souza de Oliveira Guimarães
- Department of Medicine, Federal University of Lavras, Lavras, Minas Gerais, Brazil.
- Departamento de Medicina, Universidade Federal de Lavras, Câmpus Universitário, Caixa Postal 3037, CEP 37200-900, Lavras, Minas Gerais, Brasil.
| |
Collapse
|
7
|
Haueise T, Schick F, Stefan N, Machann J. Comparison of the accuracy of commercial two-point and multi-echo Dixon MRI for quantification of fat in liver, paravertebral muscles, and vertebral bone marrow. Eur J Radiol 2024; 172:111359. [PMID: 38325186 DOI: 10.1016/j.ejrad.2024.111359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
PURPOSE Excess fat accumulation contributes significantly to metabolic dysfunction and diseases. This study aims to systematically compare the accuracy of commercially available Dixon techniques for quantification of fat fraction in liver, skeletal musculature, and vertebral bone marrow (BM) of healthy individuals, investigating biases and sex-specific influences. METHOD 100 healthy White individuals (50 women) underwent abdominal MRI using two-point and multi-echo Dixon sequences. Fat fraction (FF), proton density fat fraction (PDFF) and T2* values were calculated for liver, paravertebral muscles (PVM) and vertebral BM (Th8-L5). Agreement and systematic deviations were assessed using linear correlation and Bland-Altman plots. RESULTS High correlations between FF and PDFF were observed in liver (r = 0.98 for women; r = 0.96 for men), PVM (r = 0.92 for women; r = 0.93 for men) and BM (r = 0.97 for women; r = 0.95 for men). Relative deviations between FF and PDFF in liver (18.92 % for women; 13.32 % for men) and PVM (1.96 % for women; 11.62 % for men) were not significant. Relative deviations in BM were significant (38.13 % for women; 27.62 % for men). Bias correction using linear models reduced discrepancies. T2* times were significantly shorter in BM (8.72 ms for women; 7.26 ms for men) compared to PVM (13.45 ms for women; 13.62 ms for men) and liver (29.47 ms for women; 26.35 ms for men). CONCLUSION While no significant differences were observed for liver and PVM, systematic errors in BM FF estimation using two-point Dixon imaging were observed. These discrepancies - mainly resulting from organ-specific T2* times - have to be considered when applying two-point Dixon approaches for assessment of fat content. As suitable correction tools, linear models could provide added value in large-scale epidemiological cohort studies. Sex-specific differences in T2* should be considered.
Collapse
Affiliation(s)
- Tobias Haueise
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Fritz Schick
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany; Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Norbert Stefan
- German Center for Diabetes Research (DZD), Tübingen, Germany; Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany; Department of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Jürgen Machann
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany; Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
8
|
Smith N, Shirazi S, Cakouros D, Gronthos S. Impact of Environmental and Epigenetic Changes on Mesenchymal Stem Cells during Aging. Int J Mol Sci 2023; 24:ijms24076499. [PMID: 37047469 PMCID: PMC10095074 DOI: 10.3390/ijms24076499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Many crucial epigenetic changes occur during early skeletal development and throughout life due to aging, disease and are heavily influenced by an individual’s lifestyle. Epigenetics is the study of heritable changes in gene expression as the result of changes in the environment without any mutation in the underlying DNA sequence. The epigenetic profiles of cells are dynamic and mediated by different mechanisms, including histone modifications, non-coding RNA-associated gene silencing and DNA methylation. Given the underlining role of dysfunctional mesenchymal tissues in common age-related skeletal diseases such as osteoporosis and osteoarthritis, investigations into skeletal stem cells or mesenchymal stem cells (MSC) and their functional deregulation during aging has been of great interest and how this is mediated by an evolving epigenetic landscape. The present review describes the recent findings in epigenetic changes of MSCs that effect growth and cell fate determination in the context of aging, diet, exercise and bone-related diseases.
Collapse
Affiliation(s)
- Nicholas Smith
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Suzanna Shirazi
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Dimitrios Cakouros
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
- Correspondence: (D.C.); (S.G.); Tel.: +61-8-8128-4395 (S.G.)
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
- Correspondence: (D.C.); (S.G.); Tel.: +61-8-8128-4395 (S.G.)
| |
Collapse
|
9
|
Jung M, Rospleszcz S, Löffler MT, Walter SS, Maurer E, Jungmann PM, Peters A, Nattenmüller J, Schlett CL, Bamberg F, Kiefer LS, Diallo TD. Association of lumbar vertebral bone marrow and paraspinal muscle fat composition with intervertebral disc degeneration: 3T quantitative MRI findings from the population-based KORA study. Eur Radiol 2023; 33:1501-1512. [PMID: 36241920 PMCID: PMC9935727 DOI: 10.1007/s00330-022-09140-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/11/2022] [Accepted: 09/05/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To assess the association of lumbar bone marrow adipose tissue fat fraction (BMAT-FF) and paraspinal muscle proton density fat fraction (PDFF) and their interplay with intervertebral disc degeneration (IVDD). METHODS In this retrospective cross-sectional study based on a prospective population-based cohort, BMAT-FF and PDFF of asymptomatic individuals were calculated based on 3T-MRI dual-echo and multi-echo Dixon VIBE sequences. IVDD was assessed at motion segments L1 to L5 and dichotomized based on Pfirrmann grade ≥ 4 and/or presence of other severe degenerative changes or spinal abnormalities at least at one segment. Pearson's correlation coefficients were calculated for BMAT-FF and PDFF. Univariable and multivariable logistic regression models for IVDD were calculated. RESULTS Among 335 participants (mean age: 56.2 ± 9.0 years, 43.3% female), the average BMI was 27.7 ± 4.5 kg/m2 and the prevalence of IVDD was high (69.9%). BMAT-FF and PDFF were significantly correlated (r = 0.31-0.34; p < 0.001). The risk for IVDD increased with higher PDFF (OR = 1.45; CI 1.03, 2.04) and BMAT-FF (OR = 1.56; CI 1.16, 2.11). Pairwise combinations of PDFF and BMAT-FF quartiles revealed a lower risk for IVDD in individuals in the lowest BMAT-FF and PDFF quartile (OR = 0.21; CI 0.1, 0.48). Individuals in the highest BMAT-FF and PDFF quartile showed an increased risk for IVDD (OR = 5.12; CI 1.17, 22.34) CONCLUSION: Lumbar BMAT-FF and paraspinal muscle PDFF are correlated and represent both independent and additive risk factors for IVDD. Quantitative MRI measurements of paraspinal myosteatosis and vertebral bone marrow fatty infiltration may serve as imaging biomarkers to assess the individual risk for IVDD. KEY POINTS • Fat composition of the lumbar vertebral bone marrow is positively correlated with paraspinal skeletal muscle fat. • Higher fat-fractions of lumbar vertebral bone marrow and paraspinal muscle are both independent as well as additive risk factors for intervertebral disc degeneration. • Quantitative magnetic resonance imaging measurements of bone marrow and paraspinal muscle may serve as imaging biomarkers for intervertebral disc degeneration.
Collapse
Affiliation(s)
- Matthias Jung
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany.
| | - Susanne Rospleszcz
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Oberschleißheim, Germany
- Department of Epidemiology, Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-University München, Munich, Germany
| | - Maximilian T Löffler
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany
| | - Sven S Walter
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University of Tuebingen, Tuebingen, Germany
- Division of Musculoskeletal Radiology, Department of Radiology, NYU Grossman School of Medicine, 660 1st Ave, New York, NY, 10016, USA
| | - Elke Maurer
- Department of Trauma and Reconstructive Surgery, BG Unfallklinik, Schnarrenbergstraße 95, 72070, Tuebingen, Germany
| | - Pia M Jungmann
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Oberschleißheim, Germany
- Department of Epidemiology, Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-University München, Munich, Germany
| | - Johanna Nattenmüller
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Christopher L Schlett
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Lena S Kiefer
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Thierno D Diallo
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| |
Collapse
|
10
|
Beekman KM, Duque G, Corsi A, Tencerova M, Bisschop PH, Paccou J. Osteoporosis and Bone Marrow Adipose Tissue. Curr Osteoporos Rep 2023; 21:45-55. [PMID: 36534306 DOI: 10.1007/s11914-022-00768-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/17/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW This review focuses on the recent findings regarding bone marrow adipose tissue (BMAT) concerning bone health. We summarize the variations in BMAT in relation to age, sex, and skeletal sites, and provide an update on noninvasive imaging techniques to quantify human BMAT. Next, we discuss the role of BMAT in patients with osteoporosis and interventions that affect BMAT. RECENT FINDINGS There are wide individual variations with region-specific fluctuation and age- and gender-specific differences in BMAT content and composition. The Bone Marrow Adiposity Society (BMAS) recommendations aim to standardize imaging protocols to increase comparability across studies and sites. Water-fat imaging (WFI) seems an accurate and efficient alternative for spectroscopy (1H-MRS). Most studies indicate that greater BMAT is associated with lower bone mineral density (BMD) and a higher prevalence of vertebral fractures. The proton density fat fraction (PDFF) and changes in lipid composition have been associated with an increased risk of fractures independently of BMD. Therefore, PDFF and lipid composition could potentially be future imaging biomarkers for assessing fracture risk. Evidence of the inhibitory effect of osteoporosis treatments on BMAT is still limited to a few randomized controlled trials. Moreover, results from the FRAME biopsy sub-study highlight contradictory findings on the effect of the sclerostin antibody romosozumab on BMAT. Further understanding of the role(s) of BMAT will provide insight into the pathogenesis of osteoporosis and may lead to targeted preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Kerensa M Beekman
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Gustavo Duque
- Department of Medicine and Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Michaela Tencerova
- Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Peter H Bisschop
- Department of Endocrinology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Julien Paccou
- Department of Rheumatology, MABLaB ULR 4490, CHU Lille, University Lille, Lille, France.
| |
Collapse
|
11
|
Shu JB, Kim TY. Bone marrow adiposity in diabetes and clinical interventions. Curr Opin Endocrinol Diabetes Obes 2022; 29:303-309. [PMID: 35776685 DOI: 10.1097/med.0000000000000741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW This study aims to review bone marrow adipose tissue (BMAT) changes in people with diabetes, contributing factors, and interventions. RECENT FINDINGS In type 1 diabetes (T1D), BMAT levels are similar to healthy controls, although few studies have been performed. In type 2 diabetes (T2D), both BMAT content and composition appear altered, and recent bone histomorphometry data suggests increased BMAT is both through adipocyte hyperplasia and hypertrophy. Position emission tomography scanning suggests BMAT is a major source of basal glucose uptake. BMAT is responsive to metabolic interventions. SUMMARY BMAT is a unique fat depot that is influenced by metabolic factors and proposed to negatively affect the skeleton. BMAT alterations are more consistently seen in T2D compared to T1D. Interventions such as thiazolidinedione treatment may increase BMAT, whereas metformin treatment, weight loss, and exercise may decrease BMAT. Further understanding of the role of BMAT will provide insight into the pathogenesis of diabetic bone disease and could lead to targeted preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Jessica B Shu
- University of California, San Francisco and the San Francisco VA Health Care System, San Francisco, California, USA
| | | |
Collapse
|
12
|
Belavy DL, Miller CT, Owen PJ, Rantalainen T, Connell D, Hahne AJ, Ford JJ, Trudel G. Exercise may impact on lumbar vertebrae marrow adipose tissue: Randomised controlled trial. Bone 2022; 157:116338. [PMID: 35085839 DOI: 10.1016/j.bone.2022.116338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/21/2021] [Accepted: 01/12/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Animal and human cross-sectional data suggest that bone marrow adipose tissue (MAT) may respond to mechanical loads and exercise. We conducted the first randomised controlled trial of exercise on MAT modulations in humans. METHODS Forty patients with chronic non-specific low back pain (NSCLBP) were enrolled in a six-month single-blinded randomised controlled trial (ACTRN12615001270505). Twenty patients loaded their spines via progressive upright aerobic and resistance exercises targeting major muscle groups (Exercise). Twenty patients performed non-weightbearing motor control training and manual therapy (Control). Testing occurred at baseline, 3-months (3mo) and 6-months (6mo). Lumbar vertebral fat fraction (VFF) was measured using magnetic resonance imaging axial mDixon sequences. RESULTS When compared to baseline (percent change), lumbar vertebral fat fraction (VFF; measured using magnetic resonance imaging axial mDixon sequences) was lower in Exercise at 3mo at L2 (-3.7[6.8]%, p = 0.033) and L4 (-2.6[4.1]%, p = 0.015), but not in Control. There were no between-group effects. The effects of Exercise on VFF were sex-specific, with VFF lower in men at L2, L3, L4 at 3mo and at L1, L2, L3 and L4 at 6mo (p all ≤ 0.05), but not in women. Leg and trunk lean mass were increased at 3mo in Exercise. Changes in VFF correlated significantly with changes in total fat (ρ = 0.40) and lean (ρ = -0.41) masses, but not with lumbar BMD (ρ = -0.10) or visceral adipose tissue volume (ρ = 0.23). CONCLUSIONS This trial provided first prospective evidence in humans that a moderate exercise intervention may modulate lumbar VFF as a surrogate measure of MAT at 3mo, yet not 6mo. The effect of exercise on MAT may be more prominent in males than females.
Collapse
Affiliation(s)
- Daniel L Belavy
- Hochschule für Gesundheit (University of Applied Sciences), Department of Applied Health Sciences, Division of Physiotherapy, Gesundheitscampus 6-8, 44801 Bochum, Germany; Deakin University, Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Geelong, Victoria, Australia.
| | - Clint T Miller
- Deakin University, Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Geelong, Victoria, Australia.
| | - Patrick J Owen
- Deakin University, Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Geelong, Victoria, Australia.
| | - Timo Rantalainen
- Deakin University, Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Geelong, Victoria, Australia; Gerontology Research Center and Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.
| | - David Connell
- Imaging@Olympic Park, Melbourne, Victoria, Australia.
| | - Andrew J Hahne
- Low Back Research Team, College of Science, Health & Engineering, La Trobe University, Bundoora, Victoria, Australia.
| | - Jon J Ford
- Low Back Research Team, College of Science, Health & Engineering, La Trobe University, Bundoora, Victoria, Australia; Advance HealthCare, Boronia, Victoria, Australia.
| | - Guy Trudel
- Division of Physical Medicine and Rehabilitation, Department of Medicine, Bone and Joint Research Laboratory, University of Ottawa, The Ottawa Hospital Research Institute, Canada.
| |
Collapse
|
13
|
Little-Letsinger SE, Rubin J, Diekman B, Rubin CT, McGrath C, Pagnotti GM, Klett EL, Styner M. Exercise to Mend Aged-tissue Crosstalk in Bone Targeting Osteoporosis & Osteoarthritis. Semin Cell Dev Biol 2022; 123:22-35. [PMID: 34489173 PMCID: PMC8840966 DOI: 10.1016/j.semcdb.2021.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022]
Abstract
Aging induces alterations in bone structure and strength through a multitude of processes, exacerbating common aging- related diseases like osteoporosis and osteoarthritis. Cellular hallmarks of aging are examined, as related to bone and the marrow microenvironment, and ways in which these might contribute to a variety of age-related perturbations in osteoblasts, osteocytes, marrow adipocytes, chondrocytes, osteoclasts, and their respective progenitors. Cellular senescence, stem cell exhaustion, mitochondrial dysfunction, epigenetic and intracellular communication changes are central pathways and recognized as associated and potentially causal in aging. We focus on these in musculoskeletal system and highlight knowledge gaps in the literature regarding cellular and tissue crosstalk in bone, cartilage, and the bone marrow niche. While senolytics have been utilized to target aging pathways, here we propose non-pharmacologic, exercise-based interventions as prospective "senolytics" against aging effects on the skeleton. Increased bone mass and delayed onset or progression of osteoporosis and osteoarthritis are some of the recognized benefits of regular exercise across the lifespan. Further investigation is needed to delineate how cellular indicators of aging manifest in bone and the marrow niche and how altered cellular and tissue crosstalk impact disease progression, as well as consideration of exercise as a therapeutic modality, as a means to enhance discovery of bone-targeted therapies.
Collapse
Affiliation(s)
- SE Little-Letsinger
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina at Chapel Hill
| | - J Rubin
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina at Chapel Hill,North Carolina Diabetes Research Center (NCDRC), University of North Carolina at Chapel Hill,Department of Medicine, Thurston Arthritis Research Center (TARC), University of North Carolina at Chapel Hill
| | - B Diekman
- Department of Medicine, Thurston Arthritis Research Center (TARC), University of North Carolina at Chapel Hill,Joint Departments of Biomedical Engineering NC State & University of North Carolina at Chapel Hill
| | - CT Rubin
- Department of Biomedical Engineering, State University of New York at Stony Brook
| | - C McGrath
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina at Chapel Hill
| | - GM Pagnotti
- Dept of Endocrine, Neoplasia, and Hormonal Disorders, University Texas MD Anderson Cancer Center, Houston
| | - EL Klett
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina at Chapel Hill,Department of Nutrition, School of Public Health, University of North Carolina at Chapel Hill
| | - M Styner
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina at Chapel Hill,North Carolina Diabetes Research Center (NCDRC), University of North Carolina at Chapel Hill,Department of Medicine, Thurston Arthritis Research Center (TARC), University of North Carolina at Chapel Hill
| |
Collapse
|
14
|
Chen L, Ma R, Luo P, Shi D, Shi X, Nian H, Chang SX, Yuan W, Li GW. Effects of Total Flavonoids of Epimedium on Bone Marrow Adipose Tissue in Ovariectomized Rats. Front Endocrinol (Lausanne) 2022; 13:900816. [PMID: 35733771 PMCID: PMC9207204 DOI: 10.3389/fendo.2022.900816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/04/2022] [Indexed: 12/30/2022] Open
Abstract
Bone marrow adipose tissue has brown fat characteristics. Several studies have demonstrated that total flavonoids of Epimedium (TFE) could prevent bone loss and reduce the white adiposity in bone marrow induced by ovariectomy (OVX) in rats. However, the effects of TFE on marrow brown fat in OVX rats remain unclear. In this word, we addressed this question expected to provide a new target for preventing and treating osteoporosis. Thirty-six 3-month-old female Sprague-Dawley rats were equally divided into Sham controls, OVX controls, and OVX treated with TFE. Chemical shift coding magnetic resonance was performed to detect marrow fat fraction at the left femur at baseline, 6 and 12 weeks post-OVX. Bone mineral density at the lumbar spine and femur was measured by dual-energy x-ray absorptiometry. Serum bone biomarkers by ELISA, trabecular bone microarchitecture at the proximal tibia by micro-CT, quantitative parameters of marrow adipocyte by hematoxylin, and eosin staining were evaluated. The marrow adipocyte gene and protein expressions profile were determined by real-time quantitative PCR and immunostaining in whole tibiae. We found that TFE treatment could decrease bone turnover rate and improved bone mineral density and trabecular microarchitecture in OVX rats. OVX resulted in marrow adipogenesis as evidenced by increased marrow fat fraction, larger marrow adipocyte size, increased adipocyte number and percentage of adipocyte area, marrow white adipocyte gene, and protein expression, including PPARγ2 and FABP4. These pathological changes induced by estrogen deficiency were restored by TFE treatment. TFE also increased brown adipocyte expressions of the transcription factor Ucp1 and Prdm16 in whole tibiae. There was no detectible protein expression of brown adipocyte markers in the proximal tibia. Taken together, TFE regulation of bone marrow adiposity in OVX rats is mediated, at least in part, via maintaining the reciprocity of white and brown adipose tissue.
Collapse
Affiliation(s)
- Lei Chen
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui Ma
- Department of Geriatrics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peng Luo
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Shi
- Department of Geriatrics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao Shi
- Department of Geriatrics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Nian
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shi-Xin Chang
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Shi-Xin Chang, ; Wei Yuan, ; Guan-Wu Li,
| | - Wei Yuan
- Department of Orthopaedics, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- *Correspondence: Shi-Xin Chang, ; Wei Yuan, ; Guan-Wu Li,
| | - Guan-Wu Li
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Shi-Xin Chang, ; Wei Yuan, ; Guan-Wu Li,
| |
Collapse
|
15
|
Wang J, Yi P, Huang Y, Yu Q, Mei Y, Chen J, Feng Y, Zhang X. Quantitative evaluation of bone marrow fat content and unsaturated fatty index in young male soccer players using proton magnetic resonance spectroscopy ( 1H-MRS): a preliminary study. Quant Imaging Med Surg 2021; 11:4275-4286. [PMID: 34603983 DOI: 10.21037/qims-21-64] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/08/2021] [Indexed: 12/17/2022]
Abstract
Background Marrow fat exists as a distinct adipose tissue and plays a critical role in affecting both the quantity and quality of bone. However, the effect of soccer training on marrow fat has been rarely reported. This study aims to evaluate and characterize the marrow fat content and composition in different bone areas of soccer players and age-matched healthy subjects using proton magnetic resonance spectroscopy (1H-MRS). Methods Between May 2020 and June 2020, 20 professional soccer players (20.7±0.9 years) and 20 age-matched healthy subjects (21.2±0.8 years) were enrolled in this cross-sectional study. The 1H-MRS were acquired from the 3rd lumbar vertebrae, bilateral femoral necks, and distal tibias of all subjects using a single-voxel point-resolved spatially localized spectroscopy (PRESS) sequence. Four soccer players underwent a second magnetic resonance (MR) examination within a 30-minute interval after the initial scan to evaluate test-retest reproducibility. Inter- and intra-observer measurement reliabilities were assessed using 10 randomly selected spectra from the soccer players group. All spectra were processed using the jMRUI software package (http://www.jmrui.eu/). Quantified water and lipid signals were used to calculate fat content (FC) and the unsaturated fatty index (UI). Results Compared with healthy subjects, we found that soccer players had a lower FC in L3 and bilateral femoral necks and higher UI in the left femoral neck (P<0.05). All FC and UI values of the bilateral distal tibias showed no significant differences between the two groups (P>0.05). The UI values of the right femoral neck or distal tibia were markedly higher than the left side in both inactive subjects and soccer players (P<0.05, except for the femoral neck in players), and there were notable ΔUI differences in the lower limbs between the soccer players and the healthy subjects (P<0.05). Conclusions Soccer practice can be considered a positive sport that contributes to decreasing FC in lumbar vertebrae and femoral necks and increasing the UI in femoral necks. Quantitative MRS provides an ideal modality to predict marrow fat metabolism caused by mechanical stimulation.
Collapse
Affiliation(s)
- Jian Wang
- Department of Medical Imaging, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Guangzhou, China
| | - Peiwei Yi
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Yaobin Huang
- Department of Medical Imaging, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Guangzhou, China
| | - Qinqin Yu
- Department of Medical Imaging, Shanghai General Hospital, Shanghai, China
| | - Yingjie Mei
- China International Center, Philips Healthcare, Guangzhou, China
| | - Jialing Chen
- Department of Medical Imaging, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Guangzhou, China
| | - Yanqiu Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Xiaodong Zhang
- Department of Medical Imaging, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Guangzhou, China
| |
Collapse
|
16
|
The Impact of Sedentary Lifestyle, High-fat Diet, Tobacco Smoke, and Alcohol Intake on the Hematopoietic Stem Cell Niches. Hemasphere 2021; 5:e615. [PMID: 34291194 PMCID: PMC8288907 DOI: 10.1097/hs9.0000000000000615] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/07/2021] [Indexed: 11/25/2022] Open
Abstract
Hematopoietic stem and progenitor cells maintain hematopoiesis throughout life by generating all major blood cell lineages through the process of self-renewal and differentiation. In adult mammals, hematopoietic stem cells (HSCs) primarily reside in the bone marrow (BM) at special microenvironments called “niches.” Niches are thought to extrinsically orchestrate the HSC fate including their quiescence and proliferation. Insight into the HSC niches mainly comes from studies in mice using surface marker identification and imaging to visualize HSC localization and association with niche cells. The advantage of mouse models is the possibility to study the 3-dimensional BM architecture and cell interactions in an intact traceable system. However, this may not be directly translational to human BM. Sedentary lifestyle, unhealthy diet, excessive alcohol intake, and smoking are all known risk factors for various diseases including hematological disorders and cancer, but how do lifestyle factors impact hematopoiesis and the associated niches? Here, we review current knowledge about the HSC niches and how unhealthy lifestyle may affect it. In addition, we summarize epidemiological data concerning the influence of lifestyle factors on hematological disorders and malignancies.
Collapse
|
17
|
Askani E, Rospleszcz S, Rothenbacher T, Wawro N, Messmann H, De Cecco CN, von Krüchten R, Kulka C, Kiefer LS, Rathmann W, Peters A, Schlett CL, Bamberg F, Linseisen J, Storz C. Dietary habits and the presence and degree of asymptomatic diverticular disease by magnetic resonance imaging in a Western population: a population-based cohort study. Nutr Metab (Lond) 2021; 18:73. [PMID: 34271946 PMCID: PMC8283990 DOI: 10.1186/s12986-021-00599-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/03/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite the worldwide burden of diverticular disease, the connections between diverticular disease and dietary habits remain poorly understood, particularly in an asymptomatic representative sample. We investigated the association between asymptomatic diverticular disease as assessed by magnetic resonance imaging (MRI) and dietary habits in a Western study cohort. METHODS Participants from a cross-sectional sample of a population-based cohort study underwent whole-body 3T-MRI including an isotropic VIBE-Dixon sequence. The presence and extent of diverticular disease was assessed in blinded fashion. Habitual dietary intake was recorded using a blended approach, applying 24-h food lists and a food-frequency questionnaire. Traditional cardiometabolic risk factors were obtained by interviews and medical examination. Univariate and multivariate associations were calculated. RESULTS A total of 308 subjects were included in this analysis (56% male, 56.4 ± 9.1 years). 39.9% had any form of diverticular disease and 15.3% had advanced asymptomatic diverticular disease. After adjustment for age, sex and total energy intake a higher intake of fiber and vegetables was associated with a lower odds for asymptomatic diverticular disease (fiber: OR 0.68 95% CI [0.48, 0.95]; vegetables: OR 0.72 95% CI [0.53, 0.97]) and an increased intake of meat was associated with an approximately two-fold higher odds for advanced asymptomatic diverticular disease (OR 1.84 95% CI [1.13, 2.99]). However, after additional adjustment for body-mass-index (BMI), alcohol consumption, smoking behavior and physical activity only a high fiber and vegetables intake remained significantly associated with lower odds of asymptomatic diverticular disease. CONCLUSION Our results indicate that a high-fiber diet and increased intake of vegetables is associated with lower odds of having asymptomatic diverticular disease, independent of age, sex, total energy intake, BMI and other life-style factors.
Collapse
Affiliation(s)
- Esther Askani
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Susanne Rospleszcz
- Chair of Epidemiology, Institute for Medical Information Processing, Biometry, and Epidemiology, Ludwig-Maximilians-University Munich, Munich, Germany.,Institute of Epidemiology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Theresa Rothenbacher
- Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany
| | - Nina Wawro
- Independent Research Group Clinical Epidemiology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Chair of Epidemiology, Ludwig-Maximilians University of Munich, UNIKA-T Augsburg, Augsburg, Germany
| | - Helmut Messmann
- Department of Internal Medicine III, Klinikum Augsburg, Augsburg, Germany
| | - Carlo N De Cecco
- Division of Cardiothoracic Imaging, Department of Radiology and Imaging Sciences, Emory University Hospital, Atlanta, GA, USA
| | - Ricarda von Krüchten
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Charlotte Kulka
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Lena S Kiefer
- Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany
| | - Wolfgang Rathmann
- Institute of Biometrics and Epidemiology, German Diabetes Center, Duesseldorf, Germany
| | - Annette Peters
- Chair of Epidemiology, Institute for Medical Information Processing, Biometry, and Epidemiology, Ludwig-Maximilians-University Munich, Munich, Germany.,Institute of Epidemiology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,German Center for Cardiovascular Disease Research (DZHK E.V.), Munich, Germany
| | - Christopher L Schlett
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Jakob Linseisen
- Independent Research Group Clinical Epidemiology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Chair of Epidemiology, Ludwig-Maximilians University of Munich, UNIKA-T Augsburg, Augsburg, Germany
| | - Corinna Storz
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany.
| |
Collapse
|
18
|
T2-weighted Dixon MRI of the spine: A feasibility study of quantitative vertebral bone marrow analysis. Diagn Interv Imaging 2021; 102:431-438. [PMID: 33612414 DOI: 10.1016/j.diii.2021.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/17/2021] [Accepted: 01/30/2021] [Indexed: 12/30/2022]
Abstract
PURPOSE To compare the measurements of fat fraction (FF) and in-phase vs. opposed-phase ratio between two-dimensional T2-weighted (T2W) spin-echo (SE) Dixon and three-dimensional (3D) T1-weighted (T1W) volume interpolated breath-hold examination (VIBE) Dixon sequences in malignant vertebral lesions and normal vertebral bone marrow. MATERIALS AND METHODS Thirty patients with focal vertebral malignancies (20 men, mean age, 67.3±9.4 [SD] years; age range: 41-84 years) and 30 patients without malignant spinal disease (11 men, mean age, 70.1±12.9 [SD]; age range: 53-93 years) were retrospectively included. Each patient underwent spine MRI at 1.5 Tesla including T2W SE and T1W VIBE 2-point Dixon sequences. Two readers independently performed 3D-volume of interest (VOI) and region of interest (ROI)-based FF and IO-ratio measurements of malignant lesions and normal vertebrae. Student t-test, Pearson correlation (r) test and two-way mixed model intraclass correlation coefficients (ICC) were used to compare measurements. RESULTS T2W SE and T1W VIBE mean FF and IO-ratio were significantly smaller in malignancy compared to normal marrow, but there were significant differences of paired measurement mean values between T2W SE and T1W VIBE Dixon parameters in malignant lesions T2W SE VOI FF=9%, T2W SE ROI FF=7%, T2W SE IO-ratio=4% vs. T1W VIBE VOI FF=11%, T1W VIBE ROI FF=9%, T1W VIBE IO-ratio=-2%, and in normal vertebrae T2W SE VOI FF=74%, T2W SE ROI FF=77%, T2W SE IO-ratio=51% vs. T1W VIBE VOI FF=67%, T1W VIBE ROI FF=73%, T1W VIBE IO-ratio=58% (each P comparing the paired T2W TSE and T1W VIBE parameter, respectively<0.001). There was excellent positive correlation between T2W SE and T1W VIBE-FF (r≥0.99) and VOI and ROI FF measurements for each sequence (r≥0.99). Inter-reader agreement was excellent for all measurements (ICC≥0.94 for all). CONCLUSION Calculation of T2W SE Dixon derived FF is feasible and gave valid results that help discriminate between malignant vertebral lesions and normal vertebral bone marrow.
Collapse
|
19
|
Intervertebral Disc and Adipokine Leptin-Loves Me, Loves Me Not. Int J Mol Sci 2020; 22:ijms22010375. [PMID: 33396484 PMCID: PMC7795371 DOI: 10.3390/ijms22010375] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 12/25/2022] Open
Abstract
Leptin—the most famous adipose tissue-secreted hormone—in the human body is mostly observed in a negative connotation, as the hormone level increases with the accumulation of body fat. Nowadays, fatness is becoming another normal body shape. Fatness is burdened with numerous illnesses—including low back pain and degenerative disease of lumbar intervertebral disc (IVD). IVD degeneration and IVD inflammation are two indiscerptible phenomena. Irrespective of the underlying pathophysiological background (trauma, obesity, nutrient deficiency), the inflammation is crucial in triggering IVD degeneration. Leptin is usually depicted as a proinflammatory adipokine. Many studies aimed at explaining the role of leptin in IVD degeneration, though mostly in in vitro and on animal models, confirmed leptin’s “bad reputation”. However, several studies found that leptin might have protective role in IVD metabolism. This review examines the current literature on the metabolic role of different depots of adipose tissue, with focus on leptin, in pathogenesis of IVD degeneration.
Collapse
|
20
|
Little-Letsinger SE, Pagnotti GM, McGrath C, Styner M. Exercise and Diet: Uncovering Prospective Mediators of Skeletal Fragility in Bone and Marrow Adipose Tissue. Curr Osteoporos Rep 2020; 18:774-789. [PMID: 33068251 PMCID: PMC7736569 DOI: 10.1007/s11914-020-00634-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW To highlight recent basic, translational, and clinical works demonstrating exercise and diet regulation of marrow adipose tissue (MAT) and bone and how this informs current understanding of the relationship between marrow adiposity and musculoskeletal health. RECENT FINDINGS Marrow adipocytes accumulate in the bone in the setting of not only hypercaloric intake (calorie excess; e.g., diet-induced obesity) but also with hypocaloric intake (calorie restriction; e.g., anorexia), despite the fact that these states affect bone differently. With hypercaloric intake, bone quantity is largely unaffected, whereas with hypocaloric intake, bone quantity and quality are greatly diminished. Voluntary running exercise in rodents was found to lower MAT and promote bone in eucaloric and hypercaloric states, while degrading bone in hypocaloric states, suggesting differential modulation of MAT and bone, dependent upon whole-body energy status. Energy status alters bone metabolism and bioenergetics via substrate availability or excess, which plays a key role in the response of bone and MAT to mechanical stimuli. Marrow adipose tissue (MAT) is a fat depot with a potential role in-as well as responsivity to-whole-body energy metabolism. Understanding the localized function of this depot in bone cell bioenergetics and substrate storage, principally in the exercised state, will aid to uncover putative therapeutic targets for skeletal fragility.
Collapse
Affiliation(s)
- Sarah E Little-Letsinger
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina, Chapel Hill, NC, USA.
| | - Gabriel M Pagnotti
- Department of Medicine, Division of Endocrinology, Indiana University, Indianapolis, IN, USA
| | - Cody McGrath
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina, Chapel Hill, NC, USA
| | - Maya Styner
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
21
|
Vertebral Bone Marrow Fat Is independently Associated to VAT but Not to SAT: KORA FF4-Whole-Body MR Imaging in a Population-Based Cohort. Nutrients 2020; 12:nu12051527. [PMID: 32456276 PMCID: PMC7284541 DOI: 10.3390/nu12051527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/13/2020] [Accepted: 05/21/2020] [Indexed: 11/18/2022] Open
Abstract
The objective of the current study was to assess the relationship of bone marrow adipose tissue (BMAT) content to abdominal fat depots, including visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT), as well as cardiovascular risk factors (CVRF) beyond physical activity in a population-based cohort study undergoing whole-body magnetic resonance (MR) imaging. Subjects of the Cooperative Health Research in the Augsburg Region (KORA) FF4 study without known cardiovascular disease underwent fat fraction quantification in vertebrae (BMATL1/L2) via a 2-point T1-weighted volumetric interpolated breath-hold examination (VIBE) Dixon sequence. The same MR sequence was applied to quantify VAT and SAT volume. Subjects’ characteristics, including physical activity, were determined through standardized exams and self-assessment questionnaires. Univariate and multivariate linear regression were applied. In the cohort of 378 subjects (56 ± 9.1years; 42.1% female), BMATL1/L2 was 54.3 ± 10.1%, VAT was 4.54 ± 2.71 L, and SAT was 8.10 ± 3.68 L. VAT differed significantly across BMATL1/L2 tertiles (3.60 ± 2.76 vs. 4.92 ± 2.66 vs. 5.11 ± 2.48; p < 0.001), there was no significant differences for SAT (p = 0.39). In the fully adjusted model, VAT remained positively associated with BMATL1/L2 (β = 0.53, p = 0.03). Furthermore, BMATL1/L2 was associated with age (β = 5.40 per 10-years, p < 0.001), hemoglobin A1c (HbA1c; β = 1.55 per 1%, p = 0.04), lipids (β = 0.20 per 10 mg/dL triglycerides; β = 0.40 per 10 mg/dL low-density lipoprotein (LDL); β =−3.21 lipid-lowering medication; all p < 0.05), and less physical activity (β = 3.7 “no or nearly no exercise” as compared to “≥2 h per week, regularly”, p = 0.003); gender was not significantly different (p = 0.57). In the population-based cohort, VAT but not SAT were associated with higher BMATL1/L2 independently of physical activity and other cardiovascular risk factors. Further, BMATL1/L2 increased with older age, less physical activity, higher HbA1c, and increased lipids but decreased with lipid-lowering medication.
Collapse
|
22
|
Spurny M, Jiang Y, Sowah SA, Schübel R, Nonnenmacher T, Bertheau R, Kirsten R, Johnson T, Hillengass J, Schlett CL, von Stackelberg O, Ulrich CM, Kaaks R, Kauczor HU, Kühn T, Nattenmüller J. Changes in Bone Marrow Fat upon Dietary-Induced Weight Loss. Nutrients 2020; 12:nu12051509. [PMID: 32455947 PMCID: PMC7284630 DOI: 10.3390/nu12051509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/09/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Bone marrow fat is implicated in metabolism, bone health and haematological diseases. Thus, this study aims to analyse the impact of moderate weight loss on bone marrow fat content (BMFC) in obese, healthy individuals. Methods: Data of the HELENA-Trial (Healthy nutrition and energy restriction as cancer prevention strategies: a randomized controlled intervention trial), a randomized controlled trial (RCT) among 137 non-smoking, overweight or obese participants, were analysed to quantify the Magnetic Resonance Imaging (MRI)-derived BMFC at baseline, after a 12-week dietary intervention phase, and after a 50-week follow-up. The study cohort was classified into quartiles based on changes in body weight between baseline and week 12. Changes in BMFC in respect of weight loss were analysed by linear mixed models. Spearman’s coefficients were used to assess correlations between anthropometric parameters, blood biochemical markers, blood cells and BMFC. Results: Relative changes in BMFC from baseline to week 12 were 0.0 ± 0.2%, −3.2 ± 0.1%, −6.1 ± 0.2% and −11.5 ± 0.6% for Q1 to Q4. Across all four quartiles and for the two-group comparison, Q1 versus Q4, there was a significant difference (p < 0.05) for changes in BMFC. BMFC was not associated with blood cell counts and showed only weaker correlations (<0.3) with metabolic biomarkers. Conclusion: Weight loss is associated with a decrease of BMFC. However, BMFC showed no stronger associations with inflammatory and metabolic biomarkers.
Collapse
Affiliation(s)
- Manuela Spurny
- Heidelberg University Hospital, Diagnostic and Interventional Radiology, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany; (M.S.); (Y.J.); (R.S.); (T.N.); (R.B.); (O.v.S.); (H.-U.K.)
| | - Yixin Jiang
- Heidelberg University Hospital, Diagnostic and Interventional Radiology, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany; (M.S.); (Y.J.); (R.S.); (T.N.); (R.B.); (O.v.S.); (H.-U.K.)
| | - Solomon A. Sowah
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; (S.A.S.); (R.K.); (T.J.); (R.K.); (T.K.)
| | - Ruth Schübel
- Heidelberg University Hospital, Diagnostic and Interventional Radiology, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany; (M.S.); (Y.J.); (R.S.); (T.N.); (R.B.); (O.v.S.); (H.-U.K.)
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; (S.A.S.); (R.K.); (T.J.); (R.K.); (T.K.)
| | - Tobias Nonnenmacher
- Heidelberg University Hospital, Diagnostic and Interventional Radiology, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany; (M.S.); (Y.J.); (R.S.); (T.N.); (R.B.); (O.v.S.); (H.-U.K.)
| | - Robert Bertheau
- Heidelberg University Hospital, Diagnostic and Interventional Radiology, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany; (M.S.); (Y.J.); (R.S.); (T.N.); (R.B.); (O.v.S.); (H.-U.K.)
| | - Romy Kirsten
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; (S.A.S.); (R.K.); (T.J.); (R.K.); (T.K.)
| | - Theron Johnson
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; (S.A.S.); (R.K.); (T.J.); (R.K.); (T.K.)
| | - Jens Hillengass
- Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, New York 14263, USA;
| | - Christopher L. Schlett
- Department of Diagnostic and Interventional Radiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, D-79106 Freiburg, Germany;
| | - Oyunbileg von Stackelberg
- Heidelberg University Hospital, Diagnostic and Interventional Radiology, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany; (M.S.); (Y.J.); (R.S.); (T.N.); (R.B.); (O.v.S.); (H.-U.K.)
| | - Cornelia M. Ulrich
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112-5550, USA;
| | - Rudolf Kaaks
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; (S.A.S.); (R.K.); (T.J.); (R.K.); (T.K.)
| | - Hans-Ulrich Kauczor
- Heidelberg University Hospital, Diagnostic and Interventional Radiology, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany; (M.S.); (Y.J.); (R.S.); (T.N.); (R.B.); (O.v.S.); (H.-U.K.)
| | - Tilman Kühn
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; (S.A.S.); (R.K.); (T.J.); (R.K.); (T.K.)
| | - Johanna Nattenmüller
- Heidelberg University Hospital, Diagnostic and Interventional Radiology, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany; (M.S.); (Y.J.); (R.S.); (T.N.); (R.B.); (O.v.S.); (H.-U.K.)
- Correspondence: ; Tel.: +49-6221-5636462
| |
Collapse
|