1
|
Yin P, Xu J, Liu Y, Wang S, Liu T, Tang X, Hong N. T2-weighted magnetic resonance imaging radiogenomic features for the prediction of neoadjuvant chemotherapy response in patients with osteosarcoma. Acta Radiol 2025:2841851251337849. [PMID: 40375792 DOI: 10.1177/02841851251337849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
BackgroundOsteosarcoma (OS) is the most common primary malignant bone tumor. Exploring quantitative parameters that reflect the outcome of neoadjuvant chemotherapy (NACT) in patients with OS can help advance the treatment of patients.PurposeTo explore the role of T2-weighted (T2W) magnetic resonance imaging (MRI) radiogenomic features in characterizing changes in patients with OS and on NACT.Material and MethodsA total of 21 patients with OS were examined retrospectively and divided into a poor-response group (n = 13) and a good-response group (n = 8). A total of 98 radiomic features and 31 gene expression profiles were analyzed for each patient. Age, sex, alkaline phosphatase, pathologic type, tumor size, and tumor location were also analyzed. Comparisons between the good- and poor-response groups were made using the t-test, Mann-Whitney U test, or Fisher's exact test. The relationships between radiomic features and gene expression profiles were conducted using Spearman's correlative analyses.ResultsStatistical differences in 19 radiomics features and glutathione-s-transferase 1 were found between the good- and poor-response groups (P < 0.05). The receiver operating characteristic curve showed that four NGTDM busyness features had the best performance in predicting the NACT of patients with OS, with an area under the curve of 0.788, sensitivity of 0.750, and specificity of 0.923. Correlation analysis showed that the HLA_I, CD274, GSTP1, and CCND3 were significantly correlated with one or more radiomics features (P < 0.05).ConclusionThe T2W MRI radiogenomic features can be used as biomarkers for the early response evaluation of NACT in OS. This is the first study to analyze the association of T2 radiogenomic features with NACT in patients with OS to assist in the assessment of NACT.
Collapse
Affiliation(s)
- Ping Yin
- Department of Radiology, Peking University People's Hospital, Beijing, PR China
| | - Jie Xu
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, PR China
| | - Ying Liu
- Department of Radiology, Peking University People's Hospital, Beijing, PR China
| | - Sicong Wang
- MR Research China, GE Healthcare, Beijing, PR China
| | - Tao Liu
- Department of Radiology, Peking University People's Hospital, Beijing, PR China
| | - Xiaodong Tang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, PR China
| | - Nan Hong
- Department of Radiology, Peking University People's Hospital, Beijing, PR China
| |
Collapse
|
2
|
Chen J, Liu S, Lin Y, Hu W, Shi H, Liao N, Zhou M, Gao W, Chen Y, Shi P. The Quality and Accuracy of Radiomics Model in Diagnosing Osteoporosis: A Systematic Review and Meta-analysis. Acad Radiol 2025; 32:2863-2875. [PMID: 39701845 DOI: 10.1016/j.acra.2024.11.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/05/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024]
Abstract
RATIONALE AND OBJECTIVES The purpose of this study is to conduct a meta-analysis to evaluate the diagnostic performance of current radiomics models for diagnosing osteoporosis, as well as to assess the methodology and reporting quality of these radiomics studies. METHODS According to PRISMA guidelines, four databases including MEDLINE, Web of Science, Embase and the Cochrane Library were searched systematically to select relevant studies published before July 18, 2024. The articles that used radiomics models for diagnosing osteoporosis were considered eligible. The Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool and radiomics quality score (RQS) were used to assess the quality of included studies. The pooled diagnostic odds ratio (DOR), sensitivity, specificity, area under the summary receiver operator characteristic curve (AUC) were calculated to estimated diagnostic efficiency of pooled model. RESULTS A total of 25 studies were included, of which 24 provided usable data that were utilized for the meta-analysis, including 1553 patients with osteoporosis and 2200 patients without osteoporosis. The mean RQS score of included studies was 11.48 ± 4.92, with an adherence rate of 31.89%. The pooled DOR, sensitivity and specificity for model to diagnose osteoporosis were 81.72 (95% CI: 51.08 - 130.73), 0.90 (95% CI: 0.87-0.93) and 0.90 (95% CI: 0.87-0.93), respectively. The AUC was 0.96, indicating a high diagnostic capability. Subgroup analysis revealed that the use of different imaging modalities to construct radiomics models might be one source of heterogeneity. Radiomics models built using CT images and deep learning algorithms demonstrated higher diagnostic accuracy for osteoporosis. CONCLUSION Radiomics models for the diagnosis of osteoporosis have high diagnostic efficacy. In the future, radiomics models for diagnosing osteoporosis will be an efficient instrument to assist clinical doctors in screening osteoporosis patients. However, relevant guidelines should be followed strictly to improve the quality of radiomics studies.
Collapse
Affiliation(s)
- Jianan Chen
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China (J.C., S.L., Y.L., W.H., H.S., N.L., W.G., Y.C.)
| | - Song Liu
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China (J.C., S.L., Y.L., W.H., H.S., N.L., W.G., Y.C.)
| | - Youxi Lin
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China (J.C., S.L., Y.L., W.H., H.S., N.L., W.G., Y.C.)
| | - Wenjun Hu
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China (J.C., S.L., Y.L., W.H., H.S., N.L., W.G., Y.C.)
| | - Huihong Shi
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China (J.C., S.L., Y.L., W.H., H.S., N.L., W.G., Y.C.)
| | - Nianchun Liao
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China (J.C., S.L., Y.L., W.H., H.S., N.L., W.G., Y.C.)
| | - Miaomiao Zhou
- Department of Endocrinology, People's Hospital of Dingbian, Dingbian, Shanxi, PR China (M.Z.)
| | - Wenjie Gao
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China (J.C., S.L., Y.L., W.H., H.S., N.L., W.G., Y.C.)
| | - Yanbo Chen
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China (J.C., S.L., Y.L., W.H., H.S., N.L., W.G., Y.C.)
| | - Peijie Shi
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China (P.S.).
| |
Collapse
|
3
|
Benvenuti G, Marzi S, Vidiri A, Baldi J, Ceddia S, Riva F, Covello R, Terrenato I, Anelli V. Prediction of tumor response to neoadjuvant chemotherapy in high-grade osteosarcoma using clustering-based analysis of magnetic resonance imaging: an exploratory study. LA RADIOLOGIA MEDICA 2025; 130:13-24. [PMID: 39528860 DOI: 10.1007/s11547-024-01921-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE To evaluate the ability of magnetic resonance imaging (MRI)-based clustering analysis to predict the pathological response to neoadjuvant chemotherapy (NACT) in patients with primary high-grade osteosarcoma. MATERIALS AND METHODS Twenty-two patients were included in this retrospective study. All patients underwent MRIs before and after NACT. The entire tumor volume was manually delineated on post-contrast T1-weighted images and subsegmented into three clusters using the K-means algorithm. Histogram-based parameters were calculated for each lesion. The response to NACT was obtained from the histopathological assessment of the tumor necrosis rate following resection. The Mann-Whitney test was used to compare poor and fair-to-good responders. The receiver operating characteristic curve was used to evaluate the diagnostic performance of the optimal parameters. RESULTS At baseline, poor responders showed a significantly larger volume of cluster1 (Vol1) than fair-to-good responders (p = 0.038). After NACT, they exhibited a lower 10th percentile (P10) and kurtosis (p = 0.038 and 0.002, respectively). Vol1 at baseline and P10 after NACT had an AUC of 77% (95% CI 56-98%). The kurtosis after NACT had the best discriminative power, with an AUC of 89.7% (95% CI 75-100%). CONCLUSION The MRI-based histogram and clustering analysis provided a good ability to differentiate between poor and fair-to-good responders before and after NACT. Further investigations using larger datasets are required to corroborate our findings.
Collapse
Affiliation(s)
- Giovanni Benvenuti
- Radiology and Diagnostic Imaging Department, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Simona Marzi
- Medical Physics Laboratory, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Antonello Vidiri
- Radiology and Diagnostic Imaging Department, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Jacopo Baldi
- Oncological Orthopaedics Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Serena Ceddia
- Sarcomas and Rare Tumors Departmental Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Federica Riva
- Sarcomas and Rare Tumors Departmental Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
- Department of Clinical and Molecular Medicine, "La Sapienza" University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161, Rome, Italy
| | - Renato Covello
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Irene Terrenato
- Biostatistics Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Vincenzo Anelli
- Radiology and Diagnostic Imaging Department, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| |
Collapse
|
4
|
Long QY, Wang FY, Hu Y, Gao B, Zhang C, Ban BH, Tian XB. Development of the interpretable typing prediction model for osteosarcoma and chondrosarcoma based on machine learning and radiomics: a multicenter retrospective study. Front Med (Lausanne) 2024; 11:1497309. [PMID: 39635595 PMCID: PMC11614641 DOI: 10.3389/fmed.2024.1497309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024] Open
Abstract
Background Osteosarcoma and chondrosarcoma are common malignant bone tumors, and accurate differentiation between these two tumors is crucial for treatment strategies and prognosis assessment. However, traditional radiological methods face diagnostic challenges due to the similarity in imaging between the two. Methods Clinical CT images and pathological data of 76 patients confirmed by pathology from January 2018 to January 2024 were retrospectively collected from Guizhou Medical University Affiliated Hospital and Guizhou Medical University Second Affiliated Hospital. A total of 788 radiomic features, including shape, texture, and first-order statistics, were extracted in this study. Six machine learning models, including Random Forest (RF), Extra Trees (ET), AdaBoost, Gradient Boosting Tree (GB), Linear Discriminant Analysis (LDA), and XGBoost (XGB), were trained and validated. Additionally, the importance of features and the interpretability of the models were evaluated through SHAP value analysis. Results The RF model performed best in distinguishing between these two tumor types, with an AUC value close to perfect at 1.00. The ET and AdaBoost models also demonstrated high performance, with AUC values of 0.98 and 0.93, respectively. SHAP value analysis revealed significant influences of wavelet-transformed GLCM and First Order features on model predictions, further enhancing diagnostic interpretability. Conclusion This study confirms the effectiveness of combining machine learning with radiomic features in improving the accuracy and interpretability of osteosarcoma and chondrosarcoma diagnosis. The excellent performance of the RF model is particularly suitable for complex imaging data processing, providing valuable insights for the future.
Collapse
Affiliation(s)
- Qing-Yuan Long
- The Second Affiliated Hospital of Guizhou Medical University, Kaili, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Feng-Yan Wang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Yue Hu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Gao
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Chuan Zhang
- The Second Affiliated Hospital of Guizhou Medical University, Kaili, China
| | - Bo-Heng Ban
- Qiannan State Hospital of Traditional Chinese Medicine, Duyun, China
| | - Xiao-Bin Tian
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| |
Collapse
|
5
|
Mori Y, Ren H, Mori N, Watanuki M, Hitachi S, Watanabe M, Mugikura S, Takase K. Magnetic Resonance Imaging Texture Analysis Based on Intraosseous and Extraosseous Lesions to Predict Prognosis in Patients with Osteosarcoma. Diagnostics (Basel) 2024; 14:2562. [PMID: 39594228 PMCID: PMC11593140 DOI: 10.3390/diagnostics14222562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Objectives: To construct an optimal magnetic resonance imaging (MRI) texture model to evaluate histological patterns and predict prognosis in patients with osteosarcoma (OS). Methods: Thirty-four patients underwent pretreatment MRI and were diagnosed as having OS by surgical resection or biopsy between September 2008 and June 2018. Histological patterns and 3-year survival were recorded. Manual segmentation was performed in intraosseous, extraosseous, and entire lesions on T1-weighted, T2-weighted, and contrast-enhanced T1-weighted images to extract texture features and perform principal component analysis. A support vector machine algorithm with 3-fold cross-validation was used to construct and validate the models. The area under the receiver operating characteristic curve (AUC) was calculated to evaluate diagnostic performance in evaluating histological patterns and 3-year survival. Results: Eight patients were chondroblastic and the remaining twenty-six patients were non-chondroblastic patterns. Twenty-seven patients were 3-year survivors, and the remaining seven patients were non-survivors. In discriminating chondroblastic from non-chondroblastic patterns, the model from extraosseous lesions on the T2-weighted images showed the highest diagnostic performance (AUCs of 0.94 and 0.89 in the training and validation sets). The model from intraosseous lesions on the T1-weighted images showed the highest diagnostic performance in discriminating 3-year non-survivors from survivors (AUCs of 0.99 and 0.88 in the training and validation sets) with a sensitivity, specificity, positive predictive value, and negative predictive value of 85.7%, 92.6%, 75.0%, and 96.2%, respectively. Conclusions: The texture models of extraosseous lesions on T2-weighted images can discriminate the chondroblastic pattern from non-chondroblastic patterns, while the texture models of intraosseous lesions on T1-weighted images can discriminate 3-year non-survivors from survivors.
Collapse
Affiliation(s)
- Yu Mori
- Department of Orthopaedic Surgery, School of Medicine, Tohoku University Graduate, Sendai 980-8574, Japan; (Y.M.); (M.W.)
| | - Hainan Ren
- Department of Diagnostic Radiology, School of Medicine, Tohoku University Graduate, Sendai 980-8574, Japan; (H.R.); (S.H.); (S.M.); (K.T.)
| | - Naoko Mori
- Department of Diagnostic Radiology, School of Medicine, Tohoku University Graduate, Sendai 980-8574, Japan; (H.R.); (S.H.); (S.M.); (K.T.)
- Department of Radiology, School of Medicine, Akita University Graduate, Akita 010-8543, Japan
| | - Munenori Watanuki
- Department of Orthopaedic Surgery, School of Medicine, Tohoku University Graduate, Sendai 980-8574, Japan; (Y.M.); (M.W.)
| | - Shin Hitachi
- Department of Diagnostic Radiology, School of Medicine, Tohoku University Graduate, Sendai 980-8574, Japan; (H.R.); (S.H.); (S.M.); (K.T.)
| | - Mika Watanabe
- Department of Pathology, School of Medicine, Tohoku University Graduate, Sendai 980-8574, Japan;
| | - Shunji Mugikura
- Department of Diagnostic Radiology, School of Medicine, Tohoku University Graduate, Sendai 980-8574, Japan; (H.R.); (S.H.); (S.M.); (K.T.)
- Division of Image Statistics, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8574, Japan
| | - Kei Takase
- Department of Diagnostic Radiology, School of Medicine, Tohoku University Graduate, Sendai 980-8574, Japan; (H.R.); (S.H.); (S.M.); (K.T.)
| |
Collapse
|
6
|
Tran K, Ginzburg D, Hong W, Attenberger U, Ko HS. Post-radiotherapy stage III/IV non-small cell lung cancer radiomics research: a systematic review and comparison of CLEAR and RQS frameworks. Eur Radiol 2024; 34:6527-6543. [PMID: 38625613 PMCID: PMC11399214 DOI: 10.1007/s00330-024-10736-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/07/2024] [Accepted: 03/04/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Lung cancer, the second most common cancer, presents persistently dismal prognoses. Radiomics, a promising field, aims to provide novel imaging biomarkers to improve outcomes. However, clinical translation faces reproducibility challenges, despite efforts to address them with quality scoring tools. OBJECTIVE This study had two objectives: 1) identify radiomics biomarkers in post-radiotherapy stage III/IV nonsmall cell lung cancer (NSCLC) patients, 2) evaluate research quality using the CLEAR (CheckList_for_EvaluAtion_of_Radiomics_research), RQS (Radiomics_Quality_Score) frameworks, and formulate an amalgamated CLEAR-RQS tool to enhance scientific rigor. MATERIALS AND METHODS A systematic literature review (Jun-Aug 2023, MEDLINE/PubMed/SCOPUS) was conducted concerning stage III/IV NSCLC, radiotherapy, and radiomic features (RF). Extracted data included study design particulars, such as sample size, radiotherapy/CT technique, selected RFs, and endpoints. CLEAR and RQS were merged into a CLEAR-RQS checklist. Three readers appraised articles utilizing CLEAR, RQS, and CLEAR-RQS metrics. RESULTS Out of 871 articles, 11 met the inclusion/exclusion criteria. The Median cohort size was 91 (range: 10-337) with 9 studies being single-center. No common RF were identified. The merged CLEAR-RQS checklist comprised 61 items. Most unreported items were within CLEAR's "methods" and "open-source," and within RQS's "phantom-calibration," "registry-enrolled prospective-trial-design," and "cost-effective-analysis" sections. No study scored above 50% on RQS. Median CLEAR scores were 55.74% (32.33/58 points), and for RQS, 17.59% (6.3/36 points). CLEAR-RQS article ranking fell between CLEAR and RQS and aligned with CLEAR. CONCLUSION Radiomics research in post-radiotherapy stage III/IV NSCLC exhibits variability and frequently low-quality reporting. The formulated CLEAR-RQS checklist may facilitate education and holds promise for enhancing radiomics research quality. CLINICAL RELEVANCE STATEMENT Current radiomics research in the field of stage III/IV postradiotherapy NSCLC is heterogenous, lacking reproducibility, with no identified imaging biomarker. Radiomics research quality assessment tools may enhance scientific rigor and thereby facilitate radiomics translation into clinical practice. KEY POINTS There is heterogenous and low radiomics research quality in postradiotherapy stage III/IV nonsmall cell lung cancer. Barriers to reproducibility are small cohort size, nonvalidated studies, missing technical parameters, and lack of data, code, and model sharing. CLEAR (CheckList_for_EvaluAtion_of_Radiomics_research), RQS (Radiomics_Quality_Score), and the amalgamated CLEAR-RQS tool are useful frameworks for assessing radiomics research quality and may provide a valuable resource for educational purposes in the field of radiomics.
Collapse
Affiliation(s)
- Kevin Tran
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Parkville, VIC 3052, Australia
| | - Daniel Ginzburg
- Department of Diagnostic and Interventional Radiology, Venusberg Campus 1, 53127, Bonn, Germany
| | - Wei Hong
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Ulrike Attenberger
- Department of Diagnostic and Interventional Radiology, Venusberg Campus 1, 53127, Bonn, Germany
| | - Hyun Soo Ko
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia.
- Department of Diagnostic and Interventional Radiology, Venusberg Campus 1, 53127, Bonn, Germany.
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, 305 Grattan St, Melbourne, VIC 3000, Australia.
| |
Collapse
|
7
|
Crombé A, Simonetti M, Longhi A, Hauger O, Fadli D, Spinnato P. Imaging of Osteosarcoma: Presenting Findings, Metastatic Patterns, and Features Related to Prognosis. J Clin Med 2024; 13:5710. [PMID: 39407770 PMCID: PMC11477067 DOI: 10.3390/jcm13195710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Osteosarcomas are rare malignancies (<1% of all cancers) that produce an osteoid matrix. Osteosarcomas are the second most frequent type of primary bone tumor after multiple myeloma and the most prevalent primary bone tumor in children. The spectrum of imaging findings of these malignancies varies significantly, reflecting different histological subtypes. For instance, conventional osteosarcoma typically presents with a mixed radiological pattern (lytic and bone mineralization) or with a completely eburneous one; aggressive periosteal reactions such as sunburst, Codman triangle, and soft-tissue components are frequently displayed. On the other hand, telangiectatic osteosarcoma usually presents as a purely lytic lesion with multiple fluid-fluid levels on MRI fluid-sensitive sequences. Other typical and atypical radiological patterns of presentation in other subtypes of osteosarcomas are described in this review. In addition to the characteristics associated with osteosarcoma subtyping, this review article also focuses on imaging features that have been associated with patient outcomes, namely response to chemotherapy and event-free and overall survivals. This includes simple semantic radiological features (such as tumor dimensions, anatomical location with difficulty of radical surgery, occurrence of pathological fractures, and presence of distant metastases), but also quantitative imaging parameters from diffusion-weighted imaging, dynamic contrast-enhanced MRI, and 18F-FDG positron emission tomography and radiomics approaches. Other particular features are described in the text. Overall, this comprehensive literature review aims to be a practical tool for oncologists, pathologists, surgeons, and radiologists involved in these patients' care.
Collapse
Affiliation(s)
- Amandine Crombé
- SARCOTARGET Team, Bordeaux Research Institute in Oncology (BRIC) INSERM U1312 & University of Bordeaux, F-33076 Bordeaux, France;
- Department of Skeletal Radiology, Pellegrin University Hospital, F-33076 Bordeaux, France
- Department of Radiology, Institut Bergonié, F-33076 Bordeaux, France
| | - Mario Simonetti
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Alessandra Longhi
- Osteoncology, Bone and Soft Tissue Sarcomas, and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Olivier Hauger
- Department of Skeletal Radiology, Pellegrin University Hospital, F-33076 Bordeaux, France
| | - David Fadli
- Department of Skeletal Radiology, Pellegrin University Hospital, F-33076 Bordeaux, France
| | - Paolo Spinnato
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| |
Collapse
|
8
|
Grossen AA, Evans AR, Ernst GL, Behnen CC, Zhao X, Bauer AM. The current landscape of machine learning-based radiomics in arteriovenous malformations: a systematic review and radiomics quality score assessment. Front Neurol 2024; 15:1398876. [PMID: 38915798 PMCID: PMC11194423 DOI: 10.3389/fneur.2024.1398876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/21/2024] [Indexed: 06/26/2024] Open
Abstract
Background Arteriovenous malformations (AVMs) are rare vascular anomalies involving a disorganization of arteries and veins with no intervening capillaries. In the past 10 years, radiomics and machine learning (ML) models became increasingly popular for analyzing diagnostic medical images. The goal of this review was to provide a comprehensive summary of current radiomic models being employed for the diagnostic, therapeutic, prognostic, and predictive outcomes in AVM management. Methods A systematic literature review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines, in which the PubMed and Embase databases were searched using the following terms: (cerebral OR brain OR intracranial OR central nervous system OR spine OR spinal) AND (AVM OR arteriovenous malformation OR arteriovenous malformations) AND (radiomics OR radiogenomics OR machine learning OR artificial intelligence OR deep learning OR computer-aided detection OR computer-aided prediction OR computer-aided treatment decision). A radiomics quality score (RQS) was calculated for all included studies. Results Thirteen studies were included, which were all retrospective in nature. Three studies (23%) dealt with AVM diagnosis and grading, 1 study (8%) gauged treatment response, 8 (62%) predicted outcomes, and the last one (8%) addressed prognosis. No radiomics model had undergone external validation. The mean RQS was 15.92 (range: 10-18). Conclusion We demonstrated that radiomics is currently being studied in different facets of AVM management. While not ready for clinical use, radiomics is a rapidly emerging field expected to play a significant future role in medical imaging. More prospective studies are warranted to determine the role of radiomics in the diagnosis, prediction of comorbidities, and treatment selection in AVM management.
Collapse
Affiliation(s)
- Audrey A. Grossen
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Alexander R. Evans
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Griffin L. Ernst
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Connor C. Behnen
- Data Science and Analytics, University of Oklahoma, Norman, OK, United States
| | - Xiaochun Zhao
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Andrew M. Bauer
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
9
|
Ponsiglione A, Gambardella M, Stanzione A, Green R, Cantoni V, Nappi C, Crocetto F, Cuocolo R, Cuocolo A, Imbriaco M. Radiomics for the identification of extraprostatic extension with prostate MRI: a systematic review and meta-analysis. Eur Radiol 2024; 34:3981-3991. [PMID: 37955670 PMCID: PMC11166859 DOI: 10.1007/s00330-023-10427-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/10/2023] [Accepted: 09/27/2023] [Indexed: 11/14/2023]
Abstract
OBJECTIVES Extraprostatic extension (EPE) of prostate cancer (PCa) is predicted using clinical nomograms. Incorporating MRI could represent a leap forward, although poor sensitivity and standardization represent unsolved issues. MRI radiomics has been proposed for EPE prediction. The aim of the study was to systematically review the literature and perform a meta-analysis of MRI-based radiomics approaches for EPE prediction. MATERIALS AND METHODS Multiple databases were systematically searched for radiomics studies on EPE detection up to June 2022. Methodological quality was appraised according to Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool and radiomics quality score (RQS). The area under the receiver operating characteristic curves (AUC) was pooled to estimate predictive accuracy. A random-effects model estimated overall effect size. Statistical heterogeneity was assessed with I2 value. Publication bias was evaluated with a funnel plot. Subgroup analyses were performed to explore heterogeneity. RESULTS Thirteen studies were included, showing limitations in study design and methodological quality (median RQS 10/36), with high statistical heterogeneity. Pooled AUC for EPE identification was 0.80. In subgroup analysis, test-set and cross-validation-based studies had pooled AUC of 0.85 and 0.89 respectively. Pooled AUC was 0.72 for deep learning (DL)-based and 0.82 for handcrafted radiomics studies and 0.79 and 0.83 for studies with multiple and single scanner data, respectively. Finally, models with the best predictive performance obtained using radiomics features showed pooled AUC of 0.82, while those including clinical data of 0.76. CONCLUSION MRI radiomics-powered models to identify EPE in PCa showed a promising predictive performance overall. However, methodologically robust, clinically driven research evaluating their diagnostic and therapeutic impact is still needed. CLINICAL RELEVANCE STATEMENT Radiomics might improve the management of prostate cancer patients increasing the value of MRI in the assessment of extraprostatic extension. However, it is imperative that forthcoming research prioritizes confirmation studies and a stronger clinical orientation to solidify these advancements. KEY POINTS • MRI radiomics deserves attention as a tool to overcome the limitations of MRI in prostate cancer local staging. • Pooled AUC was 0.80 for the 13 included studies, with high heterogeneity (84.7%, p < .001), methodological issues, and poor clinical orientation. • Methodologically robust radiomics research needs to focus on increasing MRI sensitivity and bringing added value to clinical nomograms at patient level.
Collapse
Affiliation(s)
- Andrea Ponsiglione
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | | | - Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy.
| | - Roberta Green
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Valeria Cantoni
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Carmela Nappi
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Felice Crocetto
- Department of Neurosciences, Human Reproduction and Odontostomatology, University of Naples Federico II, Naples, Italy
| | - Renato Cuocolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
| | - Alberto Cuocolo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Massimo Imbriaco
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| |
Collapse
|
10
|
Aghakhanyan G, Filidei T, Febi M, Fanni SC, Marciano A, Francischello R, Caputo FP, Tumminello L, Cioni D, Neri E, Volterrani D. Advancing Pediatric Sarcomas through Radiomics: A Systematic Review and Prospective Assessment Using Radiomics Quality Score (RQS) and Methodological Radiomics Score (METRICS). Diagnostics (Basel) 2024; 14:832. [PMID: 38667477 PMCID: PMC11049622 DOI: 10.3390/diagnostics14080832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Pediatric sarcomas, rare malignancies of mesenchymal origin, pose diagnostic and therapeutic challenges. In this review, we explore the role of radiomics in reshaping our understanding of pediatric sarcomas, emphasizing methodological considerations and applications such as diagnostics and predictive modeling. A systematic review conducted up to November 2023 identified 72 papers on radiomics analysis in pediatric sarcoma from PubMed/MEDLINE, Web of Knowledge, and Scopus. Following inclusion and exclusion criteria, 10 reports were included in this review. The studies, predominantly retrospective, focus on Ewing sarcoma and osteosarcoma, utilizing diverse imaging modalities, including CT, MRI, PET/CT, and PET/MRI. Manual segmentation is common, with a median of 35 features extracted. Radiomics Quality Score (RQS) and Methodological Radiomics Score (METRICS) assessments reveal a consistent emphasis on non-radiomic features, validation criteria, and improved methodological rigor in recent publications. Diagnostic applications dominate, with innovative studies exploring prognostic and treatment response aspects. Challenges include feature heterogeneity and sample size variations. The evolving landscape underscores the need for standardized methodologies. Despite challenges, the diagnostic and predictive potential of radiomics in pediatric oncology is evident, paving the way for precision medicine advancements.
Collapse
Affiliation(s)
- Gayane Aghakhanyan
- Department of Translational Research and of New Surgical and Medical Technology, University of Pisa, 56126 Pisa, Italy
| | - Tommaso Filidei
- Department of Translational Research and of New Surgical and Medical Technology, University of Pisa, 56126 Pisa, Italy
| | - Maria Febi
- Department of Translational Research and of New Surgical and Medical Technology, Academic Radiology, University of Pisa, 56126 Pisa, Italy (D.C.)
| | - Salvatore C. Fanni
- Department of Translational Research and of New Surgical and Medical Technology, Academic Radiology, University of Pisa, 56126 Pisa, Italy (D.C.)
| | - Andrea Marciano
- Department of Translational Research and of New Surgical and Medical Technology, University of Pisa, 56126 Pisa, Italy
| | - Roberto Francischello
- Department of Translational Research and of New Surgical and Medical Technology, Academic Radiology, University of Pisa, 56126 Pisa, Italy (D.C.)
| | - Francesca Pia Caputo
- Department of Translational Research and of New Surgical and Medical Technology, Academic Radiology, University of Pisa, 56126 Pisa, Italy (D.C.)
| | - Lorenzo Tumminello
- Department of Translational Research and of New Surgical and Medical Technology, Academic Radiology, University of Pisa, 56126 Pisa, Italy (D.C.)
| | - Dania Cioni
- Department of Translational Research and of New Surgical and Medical Technology, Academic Radiology, University of Pisa, 56126 Pisa, Italy (D.C.)
| | - Emanuele Neri
- Department of Translational Research and of New Surgical and Medical Technology, Academic Radiology, University of Pisa, 56126 Pisa, Italy (D.C.)
| | - Duccio Volterrani
- Department of Translational Research and of New Surgical and Medical Technology, University of Pisa, 56126 Pisa, Italy
- Regional Center of Nuclear Medicine, University Hospital of Pisa, 56126 Pisa, Italy
| |
Collapse
|
11
|
Akinci D'Antonoli T, Cavallo AU, Vernuccio F, Stanzione A, Klontzas ME, Cannella R, Ugga L, Baran A, Fanni SC, Petrash E, Ambrosini I, Cappellini LA, van Ooijen P, Kotter E, Pinto Dos Santos D, Cuocolo R. Reproducibility of radiomics quality score: an intra- and inter-rater reliability study. Eur Radiol 2024; 34:2791-2804. [PMID: 37733025 PMCID: PMC10957586 DOI: 10.1007/s00330-023-10217-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/03/2023] [Accepted: 07/30/2023] [Indexed: 09/22/2023]
Abstract
OBJECTIVES To investigate the intra- and inter-rater reliability of the total radiomics quality score (RQS) and the reproducibility of individual RQS items' score in a large multireader study. METHODS Nine raters with different backgrounds were randomly assigned to three groups based on their proficiency with RQS utilization: Groups 1 and 2 represented the inter-rater reliability groups with or without prior training in RQS, respectively; group 3 represented the intra-rater reliability group. Thirty-three original research papers on radiomics were evaluated by raters of groups 1 and 2. Of the 33 papers, 17 were evaluated twice with an interval of 1 month by raters of group 3. Intraclass coefficient (ICC) for continuous variables, and Fleiss' and Cohen's kappa (k) statistics for categorical variables were used. RESULTS The inter-rater reliability was poor to moderate for total RQS (ICC 0.30-055, p < 0.001) and very low to good for item's reproducibility (k - 0.12 to 0.75) within groups 1 and 2 for both inexperienced and experienced raters. The intra-rater reliability for total RQS was moderate for the less experienced rater (ICC 0.522, p = 0.009), whereas experienced raters showed excellent intra-rater reliability (ICC 0.91-0.99, p < 0.001) between the first and second read. Intra-rater reliability on RQS items' score reproducibility was higher and most of the items had moderate to good intra-rater reliability (k - 0.40 to 1). CONCLUSIONS Reproducibility of the total RQS and the score of individual RQS items is low. There is a need for a robust and reproducible assessment method to assess the quality of radiomics research. CLINICAL RELEVANCE STATEMENT There is a need for reproducible scoring systems to improve quality of radiomics research and consecutively close the translational gap between research and clinical implementation. KEY POINTS • Radiomics quality score has been widely used for the evaluation of radiomics studies. • Although the intra-rater reliability was moderate to excellent, intra- and inter-rater reliability of total score and point-by-point scores were low with radiomics quality score. • A robust, easy-to-use scoring system is needed for the evaluation of radiomics research.
Collapse
Affiliation(s)
- Tugba Akinci D'Antonoli
- Institute of Radiology and Nuclear Medicine, Cantonal Hospital Baselland, Liestal, Switzerland.
| | - Armando Ugo Cavallo
- Division of Radiology, Istituto Dermopatico dell'Immacolata (IDI) IRCCS, Rome, Italy
| | | | - Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Michail E Klontzas
- Department of Medical Imaging, University Hospital of Heraklion, Crete, Greece
- Department of Radiology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Roberto Cannella
- Section of Radiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Agah Baran
- MVZ Diagnostikum Berlin Gmbh, Diagnostisches Zentrum, Berlin, Germany
| | | | - Ekaterina Petrash
- Radiology Department, Research Institute of Children Oncology and Haematology of National Medical Research Center of Oncology n.a.N.N. Blokhin of Ministry of Health of RF, Moscow, Russia
| | - Ilaria Ambrosini
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| | | | - Peter van Ooijen
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elmar Kotter
- Department of Radiology, University Medical Center Freiburg, Freiburg, Germany
| | - Daniel Pinto Dos Santos
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
- Department of Radiology, University Hospital of Frankfurt, Frankfurt, Germany
| | - Renato Cuocolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
| |
Collapse
|
12
|
Xia W, Sun T, Wang Y, Tian Y, Yan L, Liang Y, He C, Zhang J, Huang H. A morphological study of symptomatic uterine niche using three-dimensional models from thin-slice magnetic resonance imaging. Reprod Biomed Online 2024; 48:103683. [PMID: 38340538 DOI: 10.1016/j.rbmo.2023.103683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 02/12/2024]
Abstract
RESEARCH QUESTION Is there a correlation between various morphological parameters of the uterine niche and post-menstrual spotting using three-dimensional models from thin-slice (1 mm) magnetic resonance imaging (MRI)? DESIGN This study retrospectively identified women diagnosed with a symptomatic niche by thin-slice MRI between December 2019 and December 2021. Univariable and multivariable linear regression models assessed the correlations between morphological parameters and the duration post-menstrual spotting. Morphological differences of the niche formed by one versus two Caesarean sections were analysed by univariable and multivariable logistic analysis. RESULTS A total of 205 women diagnosed with symptomatic niche were included in the study. The niche among most women with post-menstrual spotting was ellipsoidal, with width greater than length greater than depth, from which niche volume was estimated based on manual measurements (volume = 0.520 × length × width × depth). Manually calculated niche length (β = 0.257, 95% confidence interval [CI] 0.040-0.473, P = 0.020) and radiomically assessed minor axis length (β = 0.329, 95% CI 0.009-0.795, P = 0.045) both positively correlated with the duration of post-menstrual spotting, whereas the distance between the niche and external os (β = -0.120, 95% CI -0.202 to -0.038, P = 0.004) was inversely correlated. Women with two Cesarean sections reported more days of post-menstrual spotting (8.76 ± 3.54 versus 6.68 ± 3.90 days, P < 0.001) and had increased niche length diameter (adjusted odds ratio [aOR] 1.304, 95% CI 1.190-1.429) and a smaller surface-area-to-volume ratio (aOR 0.296, 95% CI 0.129-0.680). CONCLUSIONS Niche-associated post-menstrual spotting correlates with the length diameter of the niche and the distance between the niche and external os. Niches in women after two Caesarean sections tend to be longer in length diameter and more spherical.
Collapse
Affiliation(s)
- Wei Xia
- Department of Gynecology and Obstetrics, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Taotao Sun
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China; Department of Radiology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Wang
- Department of Gynecology and Obstetrics, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Yuan Tian
- Department of Gynecology and Obstetrics, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Li Yan
- Department of Gynecology and Obstetrics, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Yan Liang
- Department of Gynecology and Obstetrics, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Chuqing He
- Department of Gynecology and Obstetrics, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Jian Zhang
- Department of Gynecology and Obstetrics, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China.
| | - Hefeng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
De Angelis R, Casale R, Coquelet N, Ikhlef S, Mokhtari A, Simoni P, Bali MA. The impact of radiomics in the management of soft tissue sarcoma. Discov Oncol 2024; 15:62. [PMID: 38441726 PMCID: PMC10914656 DOI: 10.1007/s12672-024-00908-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
INTRODUCTION Soft tissue sarcomas (STSs) are rare malignancies. Pre-therapeutic tumour grading and assessment are crucial in making treatment decisions. Radiomics is a high-throughput method for analysing imaging data, providing quantitative information beyond expert assessment. This review highlights the role of radiomic texture analysis in STSs evaluation. MATERIALS AND METHODS We conducted a systematic review according to the Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A comprehensive search was conducted in PubMed/MEDLINE and Scopus using the search terms: 'radiomics [All Fields] AND ("soft tissue sarcoma" [All Fields] OR "soft tissue sarcomas" [All Fields])'. Only original articles, referring to humans, were included. RESULTS A preliminary search conducted on PubMed/MEDLINE and Scopus provided 74 and 93 studies respectively. Based on the previously described criteria, 49 papers were selected, with a publication range from July 2015 to June 2023. The main domains of interest were risk stratification, histological grading prediction, technical feasibility/reproductive aspects, treatment response. CONCLUSIONS With an increasing interest over the last years, the use of radiomics appears to have potential for assessing STSs from initial diagnosis to predicting treatment response. However, additional and extensive research is necessary to validate the effectiveness of radiomics parameters and to integrate them into a comprehensive decision support system.
Collapse
Affiliation(s)
- Riccardo De Angelis
- Institut Jules Bordet, Anderlecht, Belgium
- Université Libre de Bruxelles, Brussels, Belgium
| | - Roberto Casale
- Institut Jules Bordet, Anderlecht, Belgium.
- Université Libre de Bruxelles, Brussels, Belgium.
| | | | - Samia Ikhlef
- Institut Jules Bordet, Anderlecht, Belgium
- Université Libre de Bruxelles, Brussels, Belgium
| | - Ayoub Mokhtari
- Institut Jules Bordet, Anderlecht, Belgium.
- Université Libre de Bruxelles, Brussels, Belgium.
| | - Paolo Simoni
- Université Libre de Bruxelles, Brussels, Belgium
| | - Maria Antonietta Bali
- Institut Jules Bordet, Anderlecht, Belgium
- Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
14
|
Huang ML, Ren J, Jin ZY, Liu XY, Li Y, He YL, Xue HD. Application of magnetic resonance imaging radiomics in endometrial cancer: a systematic review and meta-analysis. LA RADIOLOGIA MEDICA 2024; 129:439-456. [PMID: 38349417 DOI: 10.1007/s11547-024-01765-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/03/2024] [Indexed: 03/16/2024]
Abstract
PURPOSE We aimed to systematically assess the methodological quality and clinical potential application of published magnetic resonance imaging (MRI)-based radiomics studies about endometrial cancer (EC). METHODS Studies of EC radiomics analyses published between 1 January 2000 and 19 March 2023 were extracted, and their methodological quality was evaluated using the radiomics quality score (RQS) and Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2). Pairwise correlation analyses and separate meta-analyses of studies exploring differential diagnoses and risk prediction were also performed. RESULTS Forty-five studies involving 3 aims were included. The mean RQS was 13.77 (range: 9-22.5); publication bias was observed in the areas of 'index test' and 'flow and timing'. A high RQS was significantly associated with therapy selection-aimed studies, low QUADAS-2 risk, recent publication year, and high-performance metrics. Raw data from 6 differential diagnosis and 34 risk prediction models were subjected to meta-analysis, revealing diagnostic odds ratios of 23.81 (95% confidence interval [CI] 8.48-66.83) and 18.23 (95% CI 13.68-24.29), respectively. CONCLUSION The methodological quality of radiomics studies involving patients with EC is unsatisfactory. However, MRI-based radiomics analyses showed promising utility in terms of differential diagnosis and risk prediction.
Collapse
Affiliation(s)
- Meng-Lin Huang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuai Fu Yuan 1#, Dongcheng Dist., Beijing, 100730, People's Republic of China
| | - Jing Ren
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuai Fu Yuan 1#, Dongcheng Dist., Beijing, 100730, People's Republic of China
| | - Zheng-Yu Jin
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuai Fu Yuan 1#, Dongcheng Dist., Beijing, 100730, People's Republic of China
| | - Xin-Yu Liu
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuai Fu Yuan 1#, Dongcheng Dist., Beijing, 100730, People's Republic of China
| | - Yuan Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Obstetric and Gynecologic Diseases, Shuai Fu Yuan 1#, Dongcheng Dist., Beijing, 100730, People's Republic of China.
| | - Yong-Lan He
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuai Fu Yuan 1#, Dongcheng Dist., Beijing, 100730, People's Republic of China.
| | - Hua-Dan Xue
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuai Fu Yuan 1#, Dongcheng Dist., Beijing, 100730, People's Republic of China.
| |
Collapse
|
15
|
Kawaguchi K, Miyama K, Endo M, Bise R, Kohashi K, Hirose T, Nabeshima A, Fujiwara T, Matsumoto Y, Oda Y, Nakashima Y. Viable tumor cell density after neoadjuvant chemotherapy assessed using deep learning model reflects the prognosis of osteosarcoma. NPJ Precis Oncol 2024; 8:16. [PMID: 38253709 PMCID: PMC10803362 DOI: 10.1038/s41698-024-00515-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/08/2023] [Indexed: 01/24/2024] Open
Abstract
Prognosis after neoadjuvant chemotherapy (NAC) for osteosarcoma is generally predicted using manual necrosis-rate assessments; however, necrosis rates obtained in these assessments are not reproducible and do not adequately reflect individual cell responses. We aimed to investigate whether viable tumor cell density assessed using a deep-learning model (DLM) reflects the prognosis of osteosarcoma. Seventy-one patients were included in this study. Initially, the DLM was trained to detect viable tumor cells, following which it calculated their density. Patients were stratified into high and low-viable tumor cell density groups based on DLM measurements, and survival analysis was performed to evaluate disease-specific survival and metastasis-free survival (DSS and MFS). The high viable tumor cell density group exhibited worse DSS (p = 0.023) and MFS (p = 0.033). DLM-evaluated viable density showed correct stratification of prognosis groups. Therefore, this evaluation method may enable precise stratification of the prognosis in osteosarcoma patients treated with NAC.
Collapse
Affiliation(s)
- Kengo Kawaguchi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Kazuki Miyama
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
- Department of Advanced Information Technology, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Makoto Endo
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
| | - Ryoma Bise
- Department of Advanced Information Technology, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Kenichi Kohashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
- Department of Pathology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-Ku, Osaka, 545-8585, Japan
| | - Takeshi Hirose
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Akira Nabeshima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Toshifumi Fujiwara
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yoshihiro Matsumoto
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
- Department of Orthopaedic Surgery, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
16
|
Zhou HY, Cheng JM, Chen TW, Zhang XM, Ou J, Cao JM, Li HJ. A Systematic Review and Meta-Analysis of MRI Radiomics for Predicting Microvascular Invasion in Patients with Hepatocellular Carcinoma. Curr Med Imaging 2024; 20:1-11. [PMID: 38389371 DOI: 10.2174/0115734056256824231204073534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/28/2023] [Accepted: 09/08/2023] [Indexed: 02/24/2024]
Abstract
BACKGROUND The prediction power of MRI radiomics for microvascular invasion (MVI) in patients with hepatocellular carcinoma (HCC) remains uncertain. OBJECTIVE To investigate the prediction performance of MRI radiomics for MVI in HCC. METHODS Original studies focusing on preoperative prediction performance of MRI radiomics for MVI in HCC, were systematically searched from databases of PubMed, Embase, Web of Science and Cochrane Library. Radiomics quality score (RQS) and risk of bias of involved studies were evaluated. Meta-analysis was carried out to demonstrate the value of MRI radiomics for MVI prediction in HCC. Influencing factors of the prediction performance of MRI radiomics were identified by subgroup analyses. RESULTS 13 studies classified as type 2a or above according to the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis statement were eligible for this systematic review and meta-analysis. The studies achieved an average RQS of 14 (ranging from 11 to 17), accounting for 38.9% of the total points. MRI radiomics achieved a pooled sensitivity of 0.82 (95%CI: 0.78 - 0.86), specificity of 0.79 (95%CI: 0.76 - 0.83) and area under the summary receiver operator characteristic curve (AUC) of 0.88 (95%CI: 0.84 - 0.91) to predict MVI in HCC. Radiomics models combined with clinical features achieved superior performances compared to models without the combination (AUC: 0.90 vs 0.85, P < 0.05). CONCLUSION MRI radiomics has the potential for preoperative prediction of MVI in HCC. Further studies with high methodological quality should be designed to improve the reliability and reproducibility of the radiomics models for clinical application. The systematic review and meta-analysis was registered prospectively in the International Prospective Register of Systematic Reviews (No. CRD42022333822).
Collapse
Affiliation(s)
- Hai-Ying Zhou
- Sichuan Key Laboratory of Medical Imaging, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Jin-Mei Cheng
- Sichuan Key Laboratory of Medical Imaging, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Tian-Wu Chen
- Sichuan Key Laboratory of Medical Imaging, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
- Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xiao-Ming Zhang
- Sichuan Key Laboratory of Medical Imaging, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Jing Ou
- Sichuan Key Laboratory of Medical Imaging, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Jin-Ming Cao
- Department of Radiology, Nanchong Central Hospital/Second School of Clinical Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Hong-Jun Li
- Department of Radiology, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
17
|
Guermazi A, Omoumi P, Tordjman M, Fritz J, Kijowski R, Regnard NE, Carrino J, Kahn CE, Knoll F, Rueckert D, Roemer FW, Hayashi D. How AI May Transform Musculoskeletal Imaging. Radiology 2024; 310:e230764. [PMID: 38165245 PMCID: PMC10831478 DOI: 10.1148/radiol.230764] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/18/2023] [Accepted: 07/11/2023] [Indexed: 01/03/2024]
Abstract
While musculoskeletal imaging volumes are increasing, there is a relative shortage of subspecialized musculoskeletal radiologists to interpret the studies. Will artificial intelligence (AI) be the solution? For AI to be the solution, the wide implementation of AI-supported data acquisition methods in clinical practice requires establishing trusted and reliable results. This implementation will demand close collaboration between core AI researchers and clinical radiologists. Upon successful clinical implementation, a wide variety of AI-based tools can improve the musculoskeletal radiologist's workflow by triaging imaging examinations, helping with image interpretation, and decreasing the reporting time. Additional AI applications may also be helpful for business, education, and research purposes if successfully integrated into the daily practice of musculoskeletal radiology. The question is not whether AI will replace radiologists, but rather how musculoskeletal radiologists can take advantage of AI to enhance their expert capabilities.
Collapse
Affiliation(s)
- Ali Guermazi
- From the Department of Radiology, Boston University School of
Medicine, Boston, Mass (A.G., F.W.R., D.H.); Department of Radiology, VA Boston
Healthcare System, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.);
Department of Radiology, Lausanne University Hospital and University of
Lausanne, Lausanne, Switzerland (P.O.); Department of Radiology, Hotel Dieu
Hospital and University Paris Cité, Paris, France (M.T.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.,
R.K.); Gleamer, Paris, France (N.E.R.); Réseau d’Imagerie Sud
Francilien, Clinique du Mousseau Ramsay Santé, Evry, France (N.E.R.);
Pôle Médical Sénart, Lieusaint, France (N.E.R.); Department
of Radiology and Imaging, Hospital for Special Surgery and Weill Cornell
Medicine, New York, NY (J.C.); Department of Radiology and Institute for
Biomedical Informatics, University of Pennsylvania, Philadelphia, Penn (C.E.K.);
Departments of Artificial Intelligence in Biomedical Engineering (F.K.) and
Radiology (F.W.R.), Universitätsklinikum Erlangen &
Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen,
Germany (F.K.); School of Medicine & Computation, Information and
Technology Klinikum rechts der Isar, Technical University Munich,
München, Germany (D.R.); Department of Computing, Imperial College
London, London, England (D.R.); and Department of Radiology, Tufts Medical
Center, Tufts University School of Medicine, Boston, Mass (D.H.)
| | - Patrick Omoumi
- From the Department of Radiology, Boston University School of
Medicine, Boston, Mass (A.G., F.W.R., D.H.); Department of Radiology, VA Boston
Healthcare System, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.);
Department of Radiology, Lausanne University Hospital and University of
Lausanne, Lausanne, Switzerland (P.O.); Department of Radiology, Hotel Dieu
Hospital and University Paris Cité, Paris, France (M.T.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.,
R.K.); Gleamer, Paris, France (N.E.R.); Réseau d’Imagerie Sud
Francilien, Clinique du Mousseau Ramsay Santé, Evry, France (N.E.R.);
Pôle Médical Sénart, Lieusaint, France (N.E.R.); Department
of Radiology and Imaging, Hospital for Special Surgery and Weill Cornell
Medicine, New York, NY (J.C.); Department of Radiology and Institute for
Biomedical Informatics, University of Pennsylvania, Philadelphia, Penn (C.E.K.);
Departments of Artificial Intelligence in Biomedical Engineering (F.K.) and
Radiology (F.W.R.), Universitätsklinikum Erlangen &
Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen,
Germany (F.K.); School of Medicine & Computation, Information and
Technology Klinikum rechts der Isar, Technical University Munich,
München, Germany (D.R.); Department of Computing, Imperial College
London, London, England (D.R.); and Department of Radiology, Tufts Medical
Center, Tufts University School of Medicine, Boston, Mass (D.H.)
| | - Mickael Tordjman
- From the Department of Radiology, Boston University School of
Medicine, Boston, Mass (A.G., F.W.R., D.H.); Department of Radiology, VA Boston
Healthcare System, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.);
Department of Radiology, Lausanne University Hospital and University of
Lausanne, Lausanne, Switzerland (P.O.); Department of Radiology, Hotel Dieu
Hospital and University Paris Cité, Paris, France (M.T.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.,
R.K.); Gleamer, Paris, France (N.E.R.); Réseau d’Imagerie Sud
Francilien, Clinique du Mousseau Ramsay Santé, Evry, France (N.E.R.);
Pôle Médical Sénart, Lieusaint, France (N.E.R.); Department
of Radiology and Imaging, Hospital for Special Surgery and Weill Cornell
Medicine, New York, NY (J.C.); Department of Radiology and Institute for
Biomedical Informatics, University of Pennsylvania, Philadelphia, Penn (C.E.K.);
Departments of Artificial Intelligence in Biomedical Engineering (F.K.) and
Radiology (F.W.R.), Universitätsklinikum Erlangen &
Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen,
Germany (F.K.); School of Medicine & Computation, Information and
Technology Klinikum rechts der Isar, Technical University Munich,
München, Germany (D.R.); Department of Computing, Imperial College
London, London, England (D.R.); and Department of Radiology, Tufts Medical
Center, Tufts University School of Medicine, Boston, Mass (D.H.)
| | - Jan Fritz
- From the Department of Radiology, Boston University School of
Medicine, Boston, Mass (A.G., F.W.R., D.H.); Department of Radiology, VA Boston
Healthcare System, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.);
Department of Radiology, Lausanne University Hospital and University of
Lausanne, Lausanne, Switzerland (P.O.); Department of Radiology, Hotel Dieu
Hospital and University Paris Cité, Paris, France (M.T.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.,
R.K.); Gleamer, Paris, France (N.E.R.); Réseau d’Imagerie Sud
Francilien, Clinique du Mousseau Ramsay Santé, Evry, France (N.E.R.);
Pôle Médical Sénart, Lieusaint, France (N.E.R.); Department
of Radiology and Imaging, Hospital for Special Surgery and Weill Cornell
Medicine, New York, NY (J.C.); Department of Radiology and Institute for
Biomedical Informatics, University of Pennsylvania, Philadelphia, Penn (C.E.K.);
Departments of Artificial Intelligence in Biomedical Engineering (F.K.) and
Radiology (F.W.R.), Universitätsklinikum Erlangen &
Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen,
Germany (F.K.); School of Medicine & Computation, Information and
Technology Klinikum rechts der Isar, Technical University Munich,
München, Germany (D.R.); Department of Computing, Imperial College
London, London, England (D.R.); and Department of Radiology, Tufts Medical
Center, Tufts University School of Medicine, Boston, Mass (D.H.)
| | - Richard Kijowski
- From the Department of Radiology, Boston University School of
Medicine, Boston, Mass (A.G., F.W.R., D.H.); Department of Radiology, VA Boston
Healthcare System, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.);
Department of Radiology, Lausanne University Hospital and University of
Lausanne, Lausanne, Switzerland (P.O.); Department of Radiology, Hotel Dieu
Hospital and University Paris Cité, Paris, France (M.T.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.,
R.K.); Gleamer, Paris, France (N.E.R.); Réseau d’Imagerie Sud
Francilien, Clinique du Mousseau Ramsay Santé, Evry, France (N.E.R.);
Pôle Médical Sénart, Lieusaint, France (N.E.R.); Department
of Radiology and Imaging, Hospital for Special Surgery and Weill Cornell
Medicine, New York, NY (J.C.); Department of Radiology and Institute for
Biomedical Informatics, University of Pennsylvania, Philadelphia, Penn (C.E.K.);
Departments of Artificial Intelligence in Biomedical Engineering (F.K.) and
Radiology (F.W.R.), Universitätsklinikum Erlangen &
Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen,
Germany (F.K.); School of Medicine & Computation, Information and
Technology Klinikum rechts der Isar, Technical University Munich,
München, Germany (D.R.); Department of Computing, Imperial College
London, London, England (D.R.); and Department of Radiology, Tufts Medical
Center, Tufts University School of Medicine, Boston, Mass (D.H.)
| | - Nor-Eddine Regnard
- From the Department of Radiology, Boston University School of
Medicine, Boston, Mass (A.G., F.W.R., D.H.); Department of Radiology, VA Boston
Healthcare System, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.);
Department of Radiology, Lausanne University Hospital and University of
Lausanne, Lausanne, Switzerland (P.O.); Department of Radiology, Hotel Dieu
Hospital and University Paris Cité, Paris, France (M.T.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.,
R.K.); Gleamer, Paris, France (N.E.R.); Réseau d’Imagerie Sud
Francilien, Clinique du Mousseau Ramsay Santé, Evry, France (N.E.R.);
Pôle Médical Sénart, Lieusaint, France (N.E.R.); Department
of Radiology and Imaging, Hospital for Special Surgery and Weill Cornell
Medicine, New York, NY (J.C.); Department of Radiology and Institute for
Biomedical Informatics, University of Pennsylvania, Philadelphia, Penn (C.E.K.);
Departments of Artificial Intelligence in Biomedical Engineering (F.K.) and
Radiology (F.W.R.), Universitätsklinikum Erlangen &
Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen,
Germany (F.K.); School of Medicine & Computation, Information and
Technology Klinikum rechts der Isar, Technical University Munich,
München, Germany (D.R.); Department of Computing, Imperial College
London, London, England (D.R.); and Department of Radiology, Tufts Medical
Center, Tufts University School of Medicine, Boston, Mass (D.H.)
| | - John Carrino
- From the Department of Radiology, Boston University School of
Medicine, Boston, Mass (A.G., F.W.R., D.H.); Department of Radiology, VA Boston
Healthcare System, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.);
Department of Radiology, Lausanne University Hospital and University of
Lausanne, Lausanne, Switzerland (P.O.); Department of Radiology, Hotel Dieu
Hospital and University Paris Cité, Paris, France (M.T.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.,
R.K.); Gleamer, Paris, France (N.E.R.); Réseau d’Imagerie Sud
Francilien, Clinique du Mousseau Ramsay Santé, Evry, France (N.E.R.);
Pôle Médical Sénart, Lieusaint, France (N.E.R.); Department
of Radiology and Imaging, Hospital for Special Surgery and Weill Cornell
Medicine, New York, NY (J.C.); Department of Radiology and Institute for
Biomedical Informatics, University of Pennsylvania, Philadelphia, Penn (C.E.K.);
Departments of Artificial Intelligence in Biomedical Engineering (F.K.) and
Radiology (F.W.R.), Universitätsklinikum Erlangen &
Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen,
Germany (F.K.); School of Medicine & Computation, Information and
Technology Klinikum rechts der Isar, Technical University Munich,
München, Germany (D.R.); Department of Computing, Imperial College
London, London, England (D.R.); and Department of Radiology, Tufts Medical
Center, Tufts University School of Medicine, Boston, Mass (D.H.)
| | - Charles E. Kahn
- From the Department of Radiology, Boston University School of
Medicine, Boston, Mass (A.G., F.W.R., D.H.); Department of Radiology, VA Boston
Healthcare System, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.);
Department of Radiology, Lausanne University Hospital and University of
Lausanne, Lausanne, Switzerland (P.O.); Department of Radiology, Hotel Dieu
Hospital and University Paris Cité, Paris, France (M.T.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.,
R.K.); Gleamer, Paris, France (N.E.R.); Réseau d’Imagerie Sud
Francilien, Clinique du Mousseau Ramsay Santé, Evry, France (N.E.R.);
Pôle Médical Sénart, Lieusaint, France (N.E.R.); Department
of Radiology and Imaging, Hospital for Special Surgery and Weill Cornell
Medicine, New York, NY (J.C.); Department of Radiology and Institute for
Biomedical Informatics, University of Pennsylvania, Philadelphia, Penn (C.E.K.);
Departments of Artificial Intelligence in Biomedical Engineering (F.K.) and
Radiology (F.W.R.), Universitätsklinikum Erlangen &
Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen,
Germany (F.K.); School of Medicine & Computation, Information and
Technology Klinikum rechts der Isar, Technical University Munich,
München, Germany (D.R.); Department of Computing, Imperial College
London, London, England (D.R.); and Department of Radiology, Tufts Medical
Center, Tufts University School of Medicine, Boston, Mass (D.H.)
| | - Florian Knoll
- From the Department of Radiology, Boston University School of
Medicine, Boston, Mass (A.G., F.W.R., D.H.); Department of Radiology, VA Boston
Healthcare System, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.);
Department of Radiology, Lausanne University Hospital and University of
Lausanne, Lausanne, Switzerland (P.O.); Department of Radiology, Hotel Dieu
Hospital and University Paris Cité, Paris, France (M.T.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.,
R.K.); Gleamer, Paris, France (N.E.R.); Réseau d’Imagerie Sud
Francilien, Clinique du Mousseau Ramsay Santé, Evry, France (N.E.R.);
Pôle Médical Sénart, Lieusaint, France (N.E.R.); Department
of Radiology and Imaging, Hospital for Special Surgery and Weill Cornell
Medicine, New York, NY (J.C.); Department of Radiology and Institute for
Biomedical Informatics, University of Pennsylvania, Philadelphia, Penn (C.E.K.);
Departments of Artificial Intelligence in Biomedical Engineering (F.K.) and
Radiology (F.W.R.), Universitätsklinikum Erlangen &
Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen,
Germany (F.K.); School of Medicine & Computation, Information and
Technology Klinikum rechts der Isar, Technical University Munich,
München, Germany (D.R.); Department of Computing, Imperial College
London, London, England (D.R.); and Department of Radiology, Tufts Medical
Center, Tufts University School of Medicine, Boston, Mass (D.H.)
| | - Daniel Rueckert
- From the Department of Radiology, Boston University School of
Medicine, Boston, Mass (A.G., F.W.R., D.H.); Department of Radiology, VA Boston
Healthcare System, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.);
Department of Radiology, Lausanne University Hospital and University of
Lausanne, Lausanne, Switzerland (P.O.); Department of Radiology, Hotel Dieu
Hospital and University Paris Cité, Paris, France (M.T.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.,
R.K.); Gleamer, Paris, France (N.E.R.); Réseau d’Imagerie Sud
Francilien, Clinique du Mousseau Ramsay Santé, Evry, France (N.E.R.);
Pôle Médical Sénart, Lieusaint, France (N.E.R.); Department
of Radiology and Imaging, Hospital for Special Surgery and Weill Cornell
Medicine, New York, NY (J.C.); Department of Radiology and Institute for
Biomedical Informatics, University of Pennsylvania, Philadelphia, Penn (C.E.K.);
Departments of Artificial Intelligence in Biomedical Engineering (F.K.) and
Radiology (F.W.R.), Universitätsklinikum Erlangen &
Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen,
Germany (F.K.); School of Medicine & Computation, Information and
Technology Klinikum rechts der Isar, Technical University Munich,
München, Germany (D.R.); Department of Computing, Imperial College
London, London, England (D.R.); and Department of Radiology, Tufts Medical
Center, Tufts University School of Medicine, Boston, Mass (D.H.)
| | - Frank W. Roemer
- From the Department of Radiology, Boston University School of
Medicine, Boston, Mass (A.G., F.W.R., D.H.); Department of Radiology, VA Boston
Healthcare System, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.);
Department of Radiology, Lausanne University Hospital and University of
Lausanne, Lausanne, Switzerland (P.O.); Department of Radiology, Hotel Dieu
Hospital and University Paris Cité, Paris, France (M.T.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.,
R.K.); Gleamer, Paris, France (N.E.R.); Réseau d’Imagerie Sud
Francilien, Clinique du Mousseau Ramsay Santé, Evry, France (N.E.R.);
Pôle Médical Sénart, Lieusaint, France (N.E.R.); Department
of Radiology and Imaging, Hospital for Special Surgery and Weill Cornell
Medicine, New York, NY (J.C.); Department of Radiology and Institute for
Biomedical Informatics, University of Pennsylvania, Philadelphia, Penn (C.E.K.);
Departments of Artificial Intelligence in Biomedical Engineering (F.K.) and
Radiology (F.W.R.), Universitätsklinikum Erlangen &
Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen,
Germany (F.K.); School of Medicine & Computation, Information and
Technology Klinikum rechts der Isar, Technical University Munich,
München, Germany (D.R.); Department of Computing, Imperial College
London, London, England (D.R.); and Department of Radiology, Tufts Medical
Center, Tufts University School of Medicine, Boston, Mass (D.H.)
| | - Daichi Hayashi
- From the Department of Radiology, Boston University School of
Medicine, Boston, Mass (A.G., F.W.R., D.H.); Department of Radiology, VA Boston
Healthcare System, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.);
Department of Radiology, Lausanne University Hospital and University of
Lausanne, Lausanne, Switzerland (P.O.); Department of Radiology, Hotel Dieu
Hospital and University Paris Cité, Paris, France (M.T.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.,
R.K.); Gleamer, Paris, France (N.E.R.); Réseau d’Imagerie Sud
Francilien, Clinique du Mousseau Ramsay Santé, Evry, France (N.E.R.);
Pôle Médical Sénart, Lieusaint, France (N.E.R.); Department
of Radiology and Imaging, Hospital for Special Surgery and Weill Cornell
Medicine, New York, NY (J.C.); Department of Radiology and Institute for
Biomedical Informatics, University of Pennsylvania, Philadelphia, Penn (C.E.K.);
Departments of Artificial Intelligence in Biomedical Engineering (F.K.) and
Radiology (F.W.R.), Universitätsklinikum Erlangen &
Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen,
Germany (F.K.); School of Medicine & Computation, Information and
Technology Klinikum rechts der Isar, Technical University Munich,
München, Germany (D.R.); Department of Computing, Imperial College
London, London, England (D.R.); and Department of Radiology, Tufts Medical
Center, Tufts University School of Medicine, Boston, Mass (D.H.)
| |
Collapse
|
18
|
Zhong J, Xing Y, Lu J, Zhang G, Mao S, Chen H, Yin Q, Cen Q, Jiang R, Hu Y, Ding D, Ge X, Zhang H, Yao W. The endorsement of general and artificial intelligence reporting guidelines in radiological journals: a meta-research study. BMC Med Res Methodol 2023; 23:292. [PMID: 38093215 PMCID: PMC10717715 DOI: 10.1186/s12874-023-02117-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Complete reporting is essential for clinical research. However, the endorsement of reporting guidelines in radiological journals is still unclear. Further, as a field extensively utilizing artificial intelligence (AI), the adoption of both general and AI reporting guidelines would be necessary for enhancing quality and transparency of radiological research. This study aims to investigate the endorsement of general reporting guidelines and those for AI applications in medical imaging in radiological journals, and explore associated journal characteristic variables. METHODS This meta-research study screened journals from the Radiology, Nuclear Medicine & Medical Imaging category, Science Citation Index Expanded of the 2022 Journal Citation Reports, and excluded journals not publishing original research, in non-English languages, and instructions for authors unavailable. The endorsement of fifteen general reporting guidelines and ten AI reporting guidelines was rated using a five-level tool: "active strong", "active weak", "passive moderate", "passive weak", and "none". The association between endorsement and journal characteristic variables was evaluated by logistic regression analysis. RESULTS We included 117 journals. The top-five endorsed reporting guidelines were CONSORT (Consolidated Standards of Reporting Trials, 58.1%, 68/117), PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses, 54.7%, 64/117), STROBE (STrengthening the Reporting of Observational Studies in Epidemiology, 51.3%, 60/117), STARD (Standards for Reporting of Diagnostic Accuracy, 50.4%, 59/117), and ARRIVE (Animal Research Reporting of In Vivo Experiments, 35.9%, 42/117). The most implemented AI reporting guideline was CLAIM (Checklist for Artificial Intelligence in Medical Imaging, 1.7%, 2/117), while other nine AI reporting guidelines were not mentioned. The Journal Impact Factor quartile and publisher were associated with endorsement of reporting guidelines in radiological journals. CONCLUSIONS The general reporting guideline endorsement was suboptimal in radiological journals. The implementation of reporting guidelines for AI applications in medical imaging was extremely low. Their adoption should be strengthened to facilitate quality and transparency of radiological study reporting.
Collapse
Affiliation(s)
- Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yue Xing
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Junjie Lu
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Guangcheng Zhang
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Shiqi Mao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Haoda Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qian Yin
- Department of Pathology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Qingqing Cen
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Run Jiang
- Department of Pharmacovigilance, Shanghai Hansoh BioMedical Co., Ltd., Shanghai, 201203, China
| | - Yangfan Hu
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Defang Ding
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Xiang Ge
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Weiwu Yao
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| |
Collapse
|
19
|
Shahidi R, Baradaran M, Asgarzadeh A, Bagherieh S, Tajabadi Z, Farhadi A, Korani SS, Khalafi M, Shobeiri P, Sadeghsalehi H, Shafieioun A, Yazdanifar MA, Singhal A, Sotoudeh H. Diagnostic performance of MRI radiomics for classification of Alzheimer's disease, mild cognitive impairment, and normal subjects: a systematic review and meta-analysis. Aging Clin Exp Res 2023; 35:2333-2348. [PMID: 37801265 DOI: 10.1007/s40520-023-02565-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a debilitating neurodegenerative disease. Early diagnosis of AD and its precursor, mild cognitive impairment (MCI), is crucial for timely intervention and management. Radiomics involves extracting quantitative features from medical images and analyzing them using advanced computational algorithms. These characteristics have the potential to serve as biomarkers for disease classification, treatment response prediction, and patient stratification. Of note, Magnetic resonance imaging (MRI) radiomics showed a promising result for diagnosing and classifying AD, and MCI from normal subjects. Thus, we aimed to systematically evaluate the diagnostic performance of the MRI radiomics for this task. METHODS AND MATERIALS A comprehensive search of the current literature was conducted using relevant keywords in PubMed/MEDLINE, Embase, Scopus, and Web of Science databases from inception to August 5, 2023. Original studies discussing the diagnostic performance of MRI radiomics for the classification of AD, MCI, and normal subjects were included. Method quality was evaluated with the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) and the Radiomics Quality Score (RQS) tools. RESULTS We identified 13 studies that met the inclusion criteria, involving a total of 5448 participants. The overall quality of the included studies was moderate to high. The pooled sensitivity and specificity of MRI radiomics for differentiating AD from normal subjects were 0.92 (95% CI [0.85; 0.96]) and 0.91 (95% CI [0.85; 0.95]), respectively. The pooled sensitivity and specificity of MRI radiomics for differentiating MCI from normal subjects were 0.74 (95% CI [0.60; 0.85]) and 0.79 (95% CI [0.70; 0.86]), respectively. Also, the pooled sensitivity and specificity of MRI radiomics for differentiating AD from MCI were 0.73 (95% CI [0.64; 0.80]) and 0.79 (95% CI [0.64; 0.90]), respectively. CONCLUSION MRI radiomics has promising diagnostic performance in differentiating AD, MCI, and normal subjects. It can potentially serve as a non-invasive and reliable tool for early diagnosis and classification of AD and MCI.
Collapse
Affiliation(s)
- Ramin Shahidi
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mansoureh Baradaran
- Department of Radiology, Imam Ali Hospital, North Khorasan University of Medical Science, Bojnurd, Iran
| | - Ali Asgarzadeh
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sara Bagherieh
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zohreh Tajabadi
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Farhadi
- Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | - Mohammad Khalafi
- Department of Radiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parnian Shobeiri
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Hamidreza Sadeghsalehi
- Department of Artificial Intelligence in Medical Sciences, Faculty of Advanced Technologies in Medicine, Iran University Of Medical Sciences, Tehran, Iran
| | - Arezoo Shafieioun
- Department of Radiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Aparna Singhal
- Neuroradiology Section, Department of Radiology, The University of Alabama at Birmingham, Alabama, USA
| | - Houman Sotoudeh
- Neuroradiology Section, Department of Radiology, The University of Alabama at Birmingham, Alabama, USA.
- O'Neal Comprehensive Cancer Center, UAB, The University of Alabama at Birmingham, JTN 333, 619 19th St S, Birmingham, AL, 35294, USA.
| |
Collapse
|
20
|
Wang M, Mei T, Gong Y. The quality and clinical translation of radiomics studies based on MRI for predicting Ki-67 levels in patients with breast cancer. Br J Radiol 2023; 96:20230172. [PMID: 37724784 PMCID: PMC10546437 DOI: 10.1259/bjr.20230172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/13/2023] [Accepted: 08/02/2023] [Indexed: 09/21/2023] Open
Abstract
OBJECTIVE To evaluate the methodological quality of radiomics literature predicting Ki-67 levels based on MRI in patients with breast cancer (BC) and to propose suggestions for clinical translation. METHODS In this review, we searched PubMed, Embase, and Web of Science for studies published on radiomics in patients with BC. We evaluated the methodological quality of the studies using the Radiomics Quality Score (RQS). The Cochrane Collaboration's software (RevMan 5.4), Meta-DiSc (v. 1.4) and IBM SPSS (v. 26.0) were used for all statistical analyses. RESULTS Eighteen studies met our inclusion criteria, and the average RQS was 10.17 (standard deviation [SD]: 3.54). None of these studies incorporated any of the following items: a phantom study on all scanners, cut-off analyses, prospective study, cost-effectiveness analysis, or open science and data. In the meta-analysis, it showed apparent diffusion coefficient (ADC) played a better role to predict Ki-67 level than dynamic contrast-enhanced (DCE) MRI in the radiomics, with the pooled area under the curve (AUC) of 0.969. CONCLUSION Ki-67 index is a common tumor biomarker with high clinical value. Radiomics is an ever-growing quantitative data-mining method helping predict tumor biomarkers from medical images. However, the quality of the reviewed studies evaluated by the RQS was not so satisfactory and there are ample opportunities for improvement. Open science and data, external validation, phantom study, publicly open radiomics database and standardization in the radiomics practice are what researchers should pay more attention to in the future. ADVANCES IN KNOWLEDGE The RQS tool considered the radiomics used to predict the Ki-67 level was of poor quality. ADC performed better than DCE in radiomic prediction. We propose some measures to facilitate the clinical translation of radiomics.
Collapse
Affiliation(s)
- Min Wang
- Division of Thoracic Tumor Multidisciplinary Treatment, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Mei
- Division of Thoracic Tumor Multidisciplinary Treatment, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Youling Gong
- Division of Thoracic Tumor Multidisciplinary Treatment, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Jiang T, Zhao Z, Liu X, Shen C, Mu M, Cai Z, Zhang B. Methodological quality of radiomic-based prognostic studies in gastric cancer: a cross-sectional study. Front Oncol 2023; 13:1161237. [PMID: 37731636 PMCID: PMC10507631 DOI: 10.3389/fonc.2023.1161237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/16/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Machine learning radiomics models are increasingly being used to predict gastric cancer prognoses. However, the methodological quality of these models has not been evaluated. Therefore, this study aimed to evaluate the methodological quality of radiomics studies in predicting the prognosis of gastric cancer, summarize their methodological characteristics and performance. METHODS The PubMed and Embase databases were searched for radiomics studies used to predict the prognosis of gastric cancer published in last 5 years. The characteristics of the studies and the performance of the models were extracted from the eligible full texts. The methodological quality, reporting completeness and risk of bias of the included studies were evaluated using the RQS, TRIPOD and PROBAST. The discrimination ability scores of the models were also compared. RESULTS Out of 283 identified records, 22 studies met the inclusion criteria. The study endpoints included survival time, treatment response, and recurrence, with reported discriminations ranging between 0.610 and 0.878 in the validation dataset. The mean overall RQS value was 15.32 ± 3.20 (range: 9 to 21). The mean adhered items of the 35 item of TRIPOD checklist was 20.45 ± 1.83. The PROBAST showed all included studies were at high risk of bias. CONCLUSION The current methodological quality of gastric cancer radiomics studies is insufficient. Large and reasonable sample, prospective, multicenter and rigorously designed studies are required to improve the quality of radiomics models for gastric cancer prediction. STUDY REGISTRATION This protocol was prospectively registered in the Open Science Framework Registry (https://osf.io/ja52b).
Collapse
Affiliation(s)
- Tianxiang Jiang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhou Zhao
- Department of Gastrointestinal Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Xueting Liu
- Department of Medical Discipline Construction, West China Hospital, Sichuan University, Chengdu, China
| | - Chaoyong Shen
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Mingchun Mu
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhaolun Cai
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Zhang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Huang ML, Ren J, Jin ZY, Liu XY, He YL, Li Y, Xue HD. A systematic review and meta-analysis of CT and MRI radiomics in ovarian cancer: methodological issues and clinical utility. Insights Imaging 2023; 14:117. [PMID: 37395888 DOI: 10.1186/s13244-023-01464-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/11/2023] [Indexed: 07/04/2023] Open
Abstract
OBJECTIVES We aimed to present the state of the art of CT- and MRI-based radiomics in the context of ovarian cancer (OC), with a focus on the methodological quality of these studies and the clinical utility of these proposed radiomics models. METHODS Original articles investigating radiomics in OC published in PubMed, Embase, Web of Science, and the Cochrane Library between January 1, 2002, and January 6, 2023, were extracted. The methodological quality was evaluated using the radiomics quality score (RQS) and Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2). Pairwise correlation analyses were performed to compare the methodological quality, baseline information, and performance metrics. Additional meta-analyses of studies exploring differential diagnoses and prognostic prediction in patients with OC were performed separately. RESULTS Fifty-seven studies encompassing 11,693 patients were included. The mean RQS was 30.7% (range - 4 to 22); less than 25% of studies had a high risk of bias and applicability concerns in each domain of QUADAS-2. A high RQS was significantly associated with a low QUADAS-2 risk and recent publication year. Significantly higher performance metrics were observed in studies examining differential diagnosis; 16 such studies as well as 13 exploring prognostic prediction were included in a separate meta-analysis, which revealed diagnostic odds ratios of 25.76 (95% confidence interval (CI) 13.50-49.13) and 12.55 (95% CI 8.38-18.77), respectively. CONCLUSION Current evidence suggests that the methodological quality of OC-related radiomics studies is unsatisfactory. Radiomics analysis based on CT and MRI showed promising results in terms of differential diagnosis and prognostic prediction. CRITICAL RELEVANCE STATEMENT Radiomics analysis has potential clinical utility; however, shortcomings persist in existing studies in terms of reproducibility. We suggest that future radiomics studies should be more standardized to better bridge the gap between concepts and clinical applications.
Collapse
Affiliation(s)
- Meng-Lin Huang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Jing Ren
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Zheng-Yu Jin
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Xin-Yu Liu
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Yong-Lan He
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.
| | - Yuan Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, People's Republic of China.
| | - Hua-Dan Xue
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.
| |
Collapse
|
23
|
Zhao LT, Liu ZY, Xie WF, Shao LZ, Lu J, Tian J, Liu JG. What benefit can be obtained from magnetic resonance imaging diagnosis with artificial intelligence in prostate cancer compared with clinical assessments? Mil Med Res 2023; 10:29. [PMID: 37357263 PMCID: PMC10291794 DOI: 10.1186/s40779-023-00464-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/07/2023] [Indexed: 06/27/2023] Open
Abstract
The present study aimed to explore the potential of artificial intelligence (AI) methodology based on magnetic resonance (MR) images to aid in the management of prostate cancer (PCa). To this end, we reviewed and summarized the studies comparing the diagnostic and predictive performance for PCa between AI and common clinical assessment methods based on MR images and/or clinical characteristics, thereby investigating whether AI methods are generally superior to common clinical assessment methods for the diagnosis and prediction fields of PCa. First, we found that, in the included studies of the present study, AI methods were generally equal to or better than the clinical assessment methods for the risk assessment of PCa, such as risk stratification of prostate lesions and the prediction of therapeutic outcomes or PCa progression. In particular, for the diagnosis of clinically significant PCa, the AI methods achieved a higher summary receiver operator characteristic curve (SROC-AUC) than that of the clinical assessment methods (0.87 vs. 0.82). For the prediction of adverse pathology, the AI methods also achieved a higher SROC-AUC than that of the clinical assessment methods (0.86 vs. 0.75). Second, as revealed by the radiomics quality score (RQS), the studies included in the present study presented a relatively high total average RQS of 15.2 (11.0-20.0). Further, the scores of the individual RQS elements implied that the AI models in these studies were constructed with relatively perfect and standard radiomics processes, but the exact generalizability and clinical practicality of the AI models should be further validated using higher levels of evidence, such as prospective studies and open-testing datasets.
Collapse
Affiliation(s)
- Li-Tao Zhao
- School of Engineering Medicine, Beihang University, Beijing, 100191 China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191 China
| | - Zhen-Yu Liu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100080 China
| | - Wan-Fang Xie
- School of Engineering Medicine, Beihang University, Beijing, 100191 China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191 China
| | - Li-Zhi Shao
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, 100190 China
| | - Jian Lu
- Department of Urology, Peking University Third Hospital, Peking University, 100191 Beijing, China
| | - Jie Tian
- School of Engineering Medicine, Beihang University, Beijing, 100191 China
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, 100190 China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People’s Republic of China, 100191 Beijing, China
| | - Jian-Gang Liu
- School of Engineering Medicine, Beihang University, Beijing, 100191 China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People’s Republic of China, 100191 Beijing, China
- Beijing Engineering Research Center of Cardiovascular Wisdom Diagnosis and Treatment, Beijing, 100029 China
| |
Collapse
|
24
|
Zhong J, Lu J, Zhang G, Mao S, Chen H, Yin Q, Hu Y, Xing Y, Ding D, Ge X, Zhang H, Yao W. An overview of meta-analyses on radiomics: more evidence is needed to support clinical translation. Insights Imaging 2023; 14:111. [PMID: 37336830 DOI: 10.1186/s13244-023-01437-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/14/2023] [Indexed: 06/21/2023] Open
Abstract
OBJECTIVE To conduct an overview of meta-analyses of radiomics studies assessing their study quality and evidence level. METHODS A systematical search was updated via peer-reviewed electronic databases, preprint servers, and systematic review protocol registers until 15 November 2022. Systematic reviews with meta-analysis of primary radiomics studies were included. Their reporting transparency, methodological quality, and risk of bias were assessed by PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) 2020 checklist, AMSTAR-2 (A MeaSurement Tool to Assess systematic Reviews, version 2) tool, and ROBIS (Risk Of Bias In Systematic reviews) tool, respectively. The evidence level supporting the radiomics for clinical use was rated. RESULTS We identified 44 systematic reviews with meta-analyses on radiomics research. The mean ± standard deviation of PRISMA adherence rate was 65 ± 9%. The AMSTAR-2 tool rated 5 and 39 systematic reviews as low and critically low confidence, respectively. The ROBIS assessment resulted low, unclear and high risk in 5, 11, and 28 systematic reviews, respectively. We reperformed 53 meta-analyses in 38 included systematic reviews. There were 3, 7, and 43 meta-analyses rated as convincing, highly suggestive, and weak levels of evidence, respectively. The convincing level of evidence was rated in (1) T2-FLAIR radiomics for IDH-mutant vs IDH-wide type differentiation in low-grade glioma, (2) CT radiomics for COVID-19 vs other viral pneumonia differentiation, and (3) MRI radiomics for high-grade glioma vs brain metastasis differentiation. CONCLUSIONS The systematic reviews on radiomics were with suboptimal quality. A limited number of radiomics approaches were supported by convincing level of evidence. CLINICAL RELEVANCE STATEMENT The evidence supporting the clinical application of radiomics are insufficient, calling for researches translating radiomics from an academic tool to a practicable adjunct towards clinical deployment.
Collapse
Affiliation(s)
- Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Junjie Lu
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Guangcheng Zhang
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Shiqi Mao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Haoda Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qian Yin
- Department of Pathology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yangfan Hu
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yue Xing
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Defang Ding
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Xiang Ge
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Weiwu Yao
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| |
Collapse
|
25
|
Zhong J, Xing Y, Zhang G, Hu Y, Ding D, Ge X, Pan Z, Yin Q, Zhang H, Yang Q, Zhang H, Yao W. A systematic review of radiomics in giant cell tumor of bone (GCTB): the potential of analysis on individual radiomics feature for identifying genuine promising imaging biomarkers. J Orthop Surg Res 2023; 18:414. [PMID: 37287036 DOI: 10.1186/s13018-023-03863-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 05/16/2023] [Indexed: 06/09/2023] Open
Abstract
PURPOSE To systematically assess the quality of radiomics research in giant cell tumor of bone (GCTB) and to test the feasibility of analysis at the level of radiomics feature. METHODS We searched PubMed, Embase, Web of Science, China National Knowledge Infrastructure, and Wanfang Data to identify articles of GCTB radiomics until 31 July 2022. The studies were assessed by radiomics quality score (RQS), transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) statement, checklist for artificial intelligence in medical imaging (CLAIM), and modified quality assessment of diagnostic accuracy studies (QUADAS-2) tool. The radiomic features selected for model development were documented. RESULTS Nine articles were included. The average of the ideal percentage of RQS, the TRIPOD adherence rate and the CLAIM adherence rate were 26%, 56%, and 57%, respectively. The risk of bias and applicability concerns were mainly related to the index test. The shortness in external validation and open science were repeatedly emphasized. In GCTB radiomics models, the gray level co-occurrence matrix features (40%), first order features (28%), and gray-level run-length matrix features (18%) were most selected features out of all reported features. However, none of the individual feature has appeared repeatably in multiple studies. It is not possible to meta-analyze radiomics features at present. CONCLUSION The quality of GCTB radiomics studies is suboptimal. The reporting of individual radiomics feature data is encouraged. The analysis at the level of radiomics feature has potential to generate more practicable evidence for translating radiomics into clinical application.
Collapse
Affiliation(s)
- Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yue Xing
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Guangcheng Zhang
- Department of Sports Medicine, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yangfan Hu
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Defang Ding
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Xiang Ge
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Zhen Pan
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Qian Yin
- Department of Pathology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Huizhen Zhang
- Department of Pathology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Qingcheng Yang
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, 200025, China.
| | - Weiwu Yao
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| |
Collapse
|
26
|
Cui T, Liu R, Jing Y, Fu J, Chen J. Development of machine learning models aiming at knee osteoarthritis diagnosing: an MRI radiomics analysis. J Orthop Surg Res 2023; 18:375. [PMID: 37210510 PMCID: PMC10199595 DOI: 10.1186/s13018-023-03837-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/06/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND To develop and assess the performance of machine learning (ML) models based on magnetic resonance imaging (MRI) radiomics analysis for knee osteoarthritis (KOA) diagnosis. METHODS This retrospective study analysed 148 consecutive patients (72 with KOA and 76 without) with available MRI image data, where radiomics features in cartilage portions were extracted and then filtered. Intraclass correlation coefficient (ICC) was calculated to quantify the reproducibility of features, and a threshold of 0.8 was set. The training and validation cohorts consisted of 117 and 31 cases, respectively. Least absolute shrinkage and selection operator (LASSO) regression method was employed for feature selection. The ML classifiers were logistic regression (LR), K-nearest neighbour (KNN) and support vector machine (SVM). In each algorithm, ten models derived from all available planes of three joint compartments and their various combinations were, respectively, constructed for comparative analysis. The performance of classifiers was mainly evaluated and compared by receiver operating characteristic (ROC) analysis. RESULTS All models achieved satisfying performances, especially the Final model, where accuracy and area under ROC curve (AUC) of LR classifier were 0.968, 0.983 (0.957-1.000, 95% CI) in the validation cohort, and 0.940, 0.984 (0.969-0.995, 95% CI) in the training cohort, respectively. CONCLUSION The MRI radiomics analysis represented promising performance in noninvasive and preoperative KOA diagnosis, especially when considering all available planes of all three compartments of knee joints.
Collapse
Affiliation(s)
- Tingrun Cui
- Medical School of Chinese PLA, Beijing, China
- Department of Orthopaedics, The First Medical Centre of Chinese PLA General Hospital, Beijing, China
| | - Ruilong Liu
- Department of Bone and Joint Surgery, Jining No. 2 People’s Hospital, Jining, Shandong China
| | - Yang Jing
- Huiying Medical Technology Co. Ltd, Beijing, China
| | - Jun Fu
- Department of Orthopaedics, The First Medical Centre of Chinese PLA General Hospital, Beijing, China
| | - Jiying Chen
- Department of Orthopaedics, The First Medical Centre of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
27
|
Spadarella G, Stanzione A, Akinci D'Antonoli T, Andreychenko A, Fanni SC, Ugga L, Kotter E, Cuocolo R. Systematic review of the radiomics quality score applications: an EuSoMII Radiomics Auditing Group Initiative. Eur Radiol 2023; 33:1884-1894. [PMID: 36282312 PMCID: PMC9935718 DOI: 10.1007/s00330-022-09187-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/31/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The main aim of the present systematic review was a comprehensive overview of the Radiomics Quality Score (RQS)-based systematic reviews to highlight common issues and challenges of radiomics research application and evaluate the relationship between RQS and review features. METHODS The literature search was performed on multiple medical literature archives according to PRISMA guidelines for systematic reviews that reported radiomic quality assessment through the RQS. Reported scores were converted to a 0-100% scale. The Mann-Whitney and Kruskal-Wallis tests were used to compare RQS scores and review features. RESULTS The literature research yielded 345 articles, from which 44 systematic reviews were finally included in the analysis. Overall, the median of RQS was 21.00% (IQR = 11.50). No significant differences of RQS were observed in subgroup analyses according to targets (oncological/not oncological target, neuroradiology/body imaging focus and one imaging technique/more than one imaging technique, characterization/prognosis/detection/other). CONCLUSIONS Our review did not reveal a significant difference of quality of radiomic articles reported in systematic reviews, divided in different subgroups. Furthermore, low overall methodological quality of radiomics research was found independent of specific application domains. While the RQS can serve as a reference tool to improve future study designs, future research should also be aimed at improving its reliability and developing new tools to meet an ever-evolving research space. KEY POINTS • Radiomics is a promising high-throughput method that may generate novel imaging biomarkers to improve clinical decision-making process, but it is an inherently complex analysis and often lacks reproducibility and generalizability. • The Radiomics Quality Score serves a necessary role as the de facto reference tool for assessing radiomics studies. • External auditing of radiomics studies, in addition to the standard peer-review process, is valuable to highlight common limitations and provide insights to improve future study designs and practical applicability of the radiomics models.
Collapse
Affiliation(s)
- Gaia Spadarella
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy.
| | - Tugba Akinci D'Antonoli
- Institute of Radiology and Nuclear Medicine, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Anna Andreychenko
- Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Healthcare Department, Moscow, Russia
| | | | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Elmar Kotter
- Department of Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Renato Cuocolo
- Department of Medicine, Surgery, and Dentistry, University of Salerno, Baronissi, Italy
- Augmented Reality for Health Monitoring Laboratory (ARHeMLab), Department of Electrical Engineering and Information Technology, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
28
|
Zhong J, Hu Y, Ge X, Xing Y, Ding D, Zhang G, Zhang H, Yang Q, Yao W. A systematic review of radiomics in chondrosarcoma: assessment of study quality and clinical value needs handy tools. Eur Radiol 2023; 33:1433-1444. [PMID: 36018355 DOI: 10.1007/s00330-022-09060-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/24/2022] [Accepted: 07/24/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To evaluate the study quality and clinical value of radiomics studies on chondrosarcoma. METHODS PubMed, Embase, Web of Science, China National Knowledge Infrastructure, and Wanfang Data were searched for articles on radiomics for evaluating chondrosarcoma as of January 31, 2022. The study quality was assessed according to Radiomics Quality Score (RQS), Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) checklist, Image Biomarker Standardization Initiative (IBSI) guideline, and modified Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. The level of evidence supporting clinical use of radiomics on chondrosarcoma differential diagnosis was determined based on meta-analyses. RESULTS Twelve articles were included. The median RQS was 10.5 (range, -3 to 15), with an adherence rate of 36%. The adherence rate was extremely low in domains of high-level evidence (0%), open science and data (17%), and imaging and segmentation (35%). The adherence rate of the TRIPOD checklist was 61%, and low for section of title and abstract (13%), introduction (42%), and results (56%). The reporting rate of pre-processing steps according to the IBSI guideline was 60%. The risk of bias and concern of application were mainly related to the index test. The meta-analysis on differential diagnosis of enchondromas vs. chondrosarcomas showed a diagnostic odds ratio of 43.90 (95% confidential interval, 25.33-76.10), which was rated as weak evidence. CONCLUSIONS The current scientific and reporting quality of radiomics studies on chondrosarcoma was insufficient. Radiomics has potential in facilitating the optimization of operation decision-making in chondrosarcoma. KEY POINTS • Among radiomics studies on chondrosarcoma, although differential diagnostic models showed promising performance, only pieces of weak level of evidence were reached with insufficient study quality. • Since the RQS rating, the TRIPOD checklist, and the IBSI guideline have largely overlapped with each other, it is necessary to establish one widely acceptable methodological and reporting guideline for radiomics research. • The TRIPOD model typing, the phase classification of image mining studies, and the level of evidence category are useful tools to assess the gap between academic research and clinical application, although their modifications for radiomics studies are needed.
Collapse
Affiliation(s)
- Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111 Xianxia Road, Shanghai, 200336, China
| | - Yangfan Hu
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111 Xianxia Road, Shanghai, 200336, China
| | - Xiang Ge
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111 Xianxia Road, Shanghai, 200336, China
| | - Yue Xing
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111 Xianxia Road, Shanghai, 200336, China
| | - Defang Ding
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111 Xianxia Road, Shanghai, 200336, China
| | - Guangcheng Zhang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Qingcheng Yang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China.
| | - Weiwu Yao
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111 Xianxia Road, Shanghai, 200336, China.
| |
Collapse
|
29
|
Martinez-Millana A, Saez-Saez A, Tornero-Costa R, Azzopardi-Muscat N, Traver V, Novillo-Ortiz D. Artificial intelligence and its impact on the domains of universal health coverage, health emergencies and health promotion: An overview of systematic reviews. Int J Med Inform 2022; 166:104855. [PMID: 35998421 PMCID: PMC9551134 DOI: 10.1016/j.ijmedinf.2022.104855] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/01/2022] [Accepted: 08/11/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND Artificial intelligence is fueling a new revolution in medicine and in the healthcare sector. Despite the growing evidence on the benefits of artificial intelligence there are several aspects that limit the measure of its impact in people's health. It is necessary to assess the current status on the application of AI towards the improvement of people's health in the domains defined by WHO's Thirteenth General Programme of Work (GPW13) and the European Programme of Work (EPW), to inform about trends, gaps, opportunities, and challenges. OBJECTIVE To perform a systematic overview of systematic reviews on the application of artificial intelligence in the people's health domains as defined in the GPW13 and provide a comprehensive and updated map on the application specialties of artificial intelligence in terms of methodologies, algorithms, data sources, outcomes, predictors, performance, and methodological quality. METHODS A systematic search in MEDLINE, EMBASE, Cochrane and IEEEXplore was conducted between January 2015 and June 2021 to collect systematic reviews using a combination of keywords related to the domains of universal health coverage, health emergencies protection, and better health and wellbeing as defined by the WHO's PGW13 and EPW. Eligibility criteria was based on methodological quality and the inclusion of practical implementation of artificial intelligence. Records were classified and labeled using ICD-11 categories into the domains of the GPW13. Descriptors related to the area of implementation, type of modeling, data entities, outcomes and implementation on care delivery were extracted using a structured form and methodological aspects of the included reviews studies was assessed using the AMSTAR checklist. RESULTS The search strategy resulted in the screening of 815 systematic reviews from which 203 were assessed for eligibility and 129 were included in the review. The most predominant domain for artificial intelligence applications was Universal Health Coverage (N = 98) followed by Health Emergencies (N = 16) and Better Health and Wellbeing (N = 15). Neoplasms area on Universal Health Coverage was the disease area featuring most of the applications (21.7 %, N = 28). The reviews featured analytics primarily over both public and private data sources (67.44 %, N = 87). The most used type of data was medical imaging (31.8 %, N = 41) and predictors based on regions of interest and clinical data. The most prominent subdomain of Artificial Intelligence was Machine Learning (43.4 %, N = 56), in which Support Vector Machine method was predominant (20.9 %, N = 27). Regarding the purpose, the application of Artificial Intelligence I is focused on the prediction of the diseases (36.4 %, N = 47). With respect to the validation, more than a half of the reviews (54.3 %, N = 70) did not report a validation procedure and, whenever available, the main performance indicator was the accuracy (28.7 %, N = 37). According to the methodological quality assessment, a third of the reviews (34.9 %, N = 45) implemented methods for analysis the risk of bias and the overall AMSTAR score below was 5 (4.01 ± 1.93) on all the included systematic reviews. CONCLUSION Artificial intelligence is being used for disease modelling, diagnose, classification and prediction in the three domains of GPW13. However, the evidence is often limited to laboratory and the level of adoption is largely unbalanced between ICD-11 categoriesand diseases. Data availability is a determinant factor on the developmental stage of artificial intelligence applications. Most of the reviewed studies show a poor methodological quality and are at high risk of bias, which limits the reproducibility of the results and the reliability of translating these applications to real clinical scenarios. The analyzed papers show results only in laboratory and testing scenarios and not in clinical trials nor case studies, limiting the supporting evidence to transfer artificial intelligence to actual care delivery.
Collapse
Affiliation(s)
- Antonio Martinez-Millana
- Instituto Universitario de Investigación de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Camino de Vera S/N, Valencia 46022, Spain
| | - Aida Saez-Saez
- Instituto Universitario de Investigación de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Camino de Vera S/N, Valencia 46022, Spain
| | - Roberto Tornero-Costa
- Instituto Universitario de Investigación de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Camino de Vera S/N, Valencia 46022, Spain
| | - Natasha Azzopardi-Muscat
- Division of Country Health Policies and Systems, World Health Organization, Regional Office for Europe, Copenhagen, Denmark
| | - Vicente Traver
- Instituto Universitario de Investigación de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Camino de Vera S/N, Valencia 46022, Spain
| | - David Novillo-Ortiz
- Division of Country Health Policies and Systems, World Health Organization, Regional Office for Europe, Copenhagen, Denmark.
| |
Collapse
|
30
|
Zhong J, Hu Y, Zhang G, Xing Y, Ding D, Ge X, Pan Z, Yang Q, Yin Q, Zhang H, Zhang H, Yao W. An updated systematic review of radiomics in osteosarcoma: utilizing CLAIM to adapt the increasing trend of deep learning application in radiomics. Insights Imaging 2022; 13:138. [PMID: 35986808 PMCID: PMC9392674 DOI: 10.1186/s13244-022-01277-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/24/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Objective
To update the systematic review of radiomics in osteosarcoma.
Methods
PubMed, Embase, Web of Science, China National Knowledge Infrastructure, and Wanfang Data were searched to identify articles on osteosarcoma radiomics until May 15, 2022. The studies were assessed by Radiomics Quality Score (RQS), Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement, Checklist for Artificial Intelligence in Medical Imaging (CLAIM), and modified Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. The evidence supporting radiomics application for osteosarcoma was rated according to meta-analysis results.
Results
Twenty-nine articles were included. The average of the ideal percentage of RQS, the TRIPOD adherence rate and the CLAIM adherence rate were 29.2%, 59.2%, and 63.7%, respectively. RQS identified a radiomics-specific issue of phantom study. TRIPOD addressed deficiency in blindness of assessment. CLAIM and TRIPOD both pointed out shortness in missing data handling and sample size or power calculation. CLAIM identified extra disadvantages in data de-identification and failure analysis. External validation and open science were emphasized by all the above three tools. The risk of bias and applicability concerns were mainly related to the index test. The meta-analysis of radiomics predicting neoadjuvant chemotherapy response by MRI presented a diagnostic odds ratio (95% confidence interval) of 28.83 (10.27–80.95) on testing datasets and was rated as weak evidence.
Conclusions
The quality of osteosarcoma radiomics studies is insufficient. More investigation is needed before using radiomics to optimize osteosarcoma treatment. CLAIM is recommended to guide the design and reporting of radiomics research.
Collapse
|
31
|
A systematic review of radiomics in pancreatitis: applying the evidence level rating tool for promoting clinical transferability. Insights Imaging 2022; 13:139. [PMID: 35986798 PMCID: PMC9391628 DOI: 10.1186/s13244-022-01279-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/26/2022] [Indexed: 12/16/2022] Open
Abstract
Background Multiple tools have been applied to radiomics evaluation, while evidence rating tools for this field are still lacking. This study aims to assess the quality of pancreatitis radiomics research and test the feasibility of the evidence level rating tool. Results Thirty studies were included after a systematic search of pancreatitis radiomics studies until February 28, 2022, via five databases. Twenty-four studies employed radiomics for diagnostic purposes. The mean ± standard deviation of the adherence rate was 38.3 ± 13.3%, 61.3 ± 11.9%, and 37.1 ± 27.2% for the Radiomics Quality Score (RQS), the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) checklist, and the Image Biomarker Standardization Initiative (IBSI) guideline for preprocessing steps, respectively. The median (range) of RQS was 7.0 (− 3.0 to 18.0). The risk of bias and application concerns were mainly related to the index test according to the modified Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. The meta-analysis on differential diagnosis of autoimmune pancreatitis versus pancreatic cancer by CT and mass-forming pancreatitis versus pancreatic cancer by MRI showed diagnostic odds ratios (95% confidence intervals) of, respectively, 189.63 (79.65–451.48) and 135.70 (36.17–509.13), both rated as weak evidence mainly due to the insufficient sample size. Conclusions More research on prognosis of acute pancreatitis is encouraged. The current pancreatitis radiomics studies have insufficient quality and share common scientific disadvantages. The evidence level rating is feasible and necessary for bringing the field of radiomics from preclinical research area to clinical stage. Supplementary Information The online version contains supplementary material available at 10.1186/s13244-022-01279-4.
Collapse
|
32
|
A systematic review of prognosis predictive role of radiomics in pancreatic cancer: heterogeneity markers or statistical tricks? Eur Radiol 2022; 32:8443-8452. [PMID: 35904618 DOI: 10.1007/s00330-022-08922-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/07/2022] [Accepted: 05/30/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVES We aimed to systematically evaluate the prognostic prediction accuracy of radiomics features extracted from pre-treatment imaging in patients with pancreatic ductal adenocarcinoma (PDAC). METHODS Radiomics literature on overall survival (OS) prediction of PDAC were all included in this systematic review. A further meta-analysis was performed on the effect size of first-order entropy. Methodological quality and risk of bias of the included studies were assessed by the radiomics quality score (RQS) and prediction model risk of bias assessment tool (PROBAST). RESULTS Twenty-three studies were finally identified in this review. Two (8.7%) studies compared prognosis prediction ability between radiomics model and TNM staging model by C-index, and both showed a better performance of the radiomics. Twenty-one (91.3%) studies reported significant predictive values of radiomics features. Nine (39.1%) studies were included in the meta-analysis, and it showed a significant correlation between first-order entropy and OS (HR 1.66, 95%CI 1.18-2.34). RQS assessment revealed validation was only performed in 5 (21.7%) studies on internal datasets and 2 (8.7%) studies on external datasets. PROBAST showed that 22 (95.7%) studies have a high risk of bias in participants because of the retrospective study design. CONCLUSION First-order entropy was significantly associated with OS and might improve the accuracy of PDAC prognosis prediction. Existing studies were poorly validated, and it should be noted in future studies. Modification of PROBAST for radiomics studies is necessary since the strict requirements of prospective study design may not be applicable to the demand for a large sample size in the model construction stage. KEY POINTS • Radiomics based on the primary lesion holds great potential for prognosis prediction. First-order entropy was significantly associated with the overall survival of PDAC and might improve the accuracy of current PDAC prognosis prediction. • We strongly recommend that at least an internal validation should be conducted in any radiomics study. Attention should be paid to the complex relationships between radiomics features. • Due to the close relationship between radiomics and big data, the strict requirement of prospective study design in PROABST may not be appropriate for radiomics studies. A balance between study types and sample sizes for radiomics studies needs to be found in the model construction stage.
Collapse
|
33
|
Zhong X, Long H, Su L, Zheng R, Wang W, Duan Y, Hu H, Lin M, Xie X. Radiomics models for preoperative prediction of microvascular invasion in hepatocellular carcinoma: a systematic review and meta-analysis. Abdom Radiol (NY) 2022; 47:2071-2088. [PMID: 35364684 DOI: 10.1007/s00261-022-03496-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 12/17/2022]
Abstract
PURPOSE To assess the methodological quality and to evaluate the predictive performance of radiomics studies for preoperative prediction of microvascular invasion (MVI) in hepatocellular carcinoma (HCC). METHODS Publications between 2017 and 2021 on radiomic MVI prediction in HCC based on CT, MR, ultrasound, and PET/CT were included. The risk of bias was assessed using the prediction model risk of bias assessment tool (PROBAST). Methodological quality was assessed through the radiomics quality score (RQS). Fourteen studies classified as TRIPOD Type 2a or above were used for meta-analysis using random-effects model. Further analyses were performed to investigate the technical factors influencing the predictive performance of radiomics models. RESULTS Twenty-three studies including 4947 patients were included. The risk of bias was mainly related to analysis domain. The RQS reached an average of (37.7 ± 11.4)% with main methodological insufficiencies of scientific study design, external validation, and open science. The pooled areas under the receiver operating curve (AUC) were 0.85 (95% CI 0.82-0.89), 0.87 (95% CI 0.83-0.92), and 0.74 (95% CI 0.67-0.80), respectively, for CT, MR, and ultrasound radiomics models. The pooled AUC of ultrasound radiomics model was significantly lower than that of CT (p = 0.002) and MR (p < 0.001). Portal venous phase for CT and hepatobiliary phase for MR were superior to other imaging sequences for radiomic MVI prediction. Segmentation of both tumor and peritumor regions showed better performance than tumor region. CONCLUSION Radiomics models show promising prediction performance for predicting MVI in HCC. However, improvements in standardization of methodology are required for feasibility confirmation and clinical translation.
Collapse
Affiliation(s)
- Xian Zhong
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Haiyi Long
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Liya Su
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ruiying Zheng
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wei Wang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yu Duan
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Hangtong Hu
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Manxia Lin
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Xiaoyan Xie
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
34
|
Tozzi AE, Fabozzi F, Eckley M, Croci I, Dell’Anna VA, Colantonio E, Mastronuzzi A. Gaps and Opportunities of Artificial Intelligence Applications for Pediatric Oncology in European Research: A Systematic Review of Reviews and a Bibliometric Analysis. Front Oncol 2022; 12:905770. [PMID: 35712463 PMCID: PMC9194810 DOI: 10.3389/fonc.2022.905770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/04/2022] [Indexed: 12/23/2022] Open
Abstract
The application of artificial intelligence (AI) systems is emerging in many fields in recent years, due to the increased computing power available at lower cost. Although its applications in various branches of medicine, such as pediatric oncology, are many and promising, its use is still in an embryonic stage. The aim of this paper is to provide an overview of the state of the art regarding the AI application in pediatric oncology, through a systematic review of systematic reviews, and to analyze current trends in Europe, through a bibliometric analysis of publications written by European authors. Among 330 records found, 25 were included in the systematic review. All papers have been published since 2017, demonstrating only recent attention to this field. The total number of studies included in the selected reviews was 674, with a third including an author with a European affiliation. In bibliometric analysis, 304 out of the 978 records found were included. Similarly, the number of publications began to dramatically increase from 2017. Most explored AI applications regard the use of diagnostic images, particularly radiomics, as well as the group of neoplasms most involved are the central nervous system tumors. No evidence was found regarding the use of AI for process mining, clinical pathway modeling, or computer interpreted guidelines to improve the healthcare process. No robust evidence is yet available in any of the domains investigated by systematic reviews. However, the scientific production in Europe is significant and consistent with the topics covered in systematic reviews at the global level. The use of AI in pediatric oncology is developing rapidly with promising results, but numerous gaps and challenges persist to validate its utilization in clinical practice. An important limitation is the need for large datasets for training algorithms, calling for international collaborative studies.
Collapse
Affiliation(s)
- Alberto Eugenio Tozzi
- Multifactorial and Complex Diseases Research Area, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Francesco Fabozzi
- Department of Onco Hematology and Cell and Gene Therapy, Bambino Gesù Pediatric Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Department of Pediatrics, University of Rome Tor Vergata, Rome, Italy
| | - Megan Eckley
- Department of Onco Hematology and Cell and Gene Therapy, Bambino Gesù Pediatric Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Ileana Croci
- Multifactorial and Complex Diseases Research Area, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Vito Andrea Dell’Anna
- Department of Onco Hematology and Cell and Gene Therapy, Bambino Gesù Pediatric Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Erica Colantonio
- Department of Onco Hematology and Cell and Gene Therapy, Bambino Gesù Pediatric Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Angela Mastronuzzi
- Department of Onco Hematology and Cell and Gene Therapy, Bambino Gesù Pediatric Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- *Correspondence: Angela Mastronuzzi,
| |
Collapse
|
35
|
Lee S, Han K, Suh YJ. Quality assessment of radiomics research in cardiac CT: a systematic review. Eur Radiol 2022; 32:3458-3468. [PMID: 34981135 DOI: 10.1007/s00330-021-08429-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/13/2021] [Accepted: 10/22/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVES To assess the quality of current radiomics research on cardiac CT using radiomics quality score (RQS) and Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) systems. METHODS Systematic searches of PubMed and EMBASE were performed to identify all potentially relevant original research articles about cardiac CT radiomics. Fifteen original research articles were selected. Two cardiac radiologists assessed the quality of the methodology adopted in those studies according to the RQS and TRIPOD guidelines. Basic adherence rates for the following six key domains were evaluated: image protocol and reproducibility, feature reduction and validation, biologic/clinical utility, performance index, high level of evidence, and open science. RESULTS Among the 15 included articles, six (40%) were about coronary artery disease and six (40%) were about myocardial infarction. The mean RQS was 9.9 ± 7.3 (27.4% of the ideal score of 36), and the basic adherence rate was 44.6%. Fourteen (93.3%) and nine (60%) studies performed feature selection and validation, but only two (13.3%) of them performed external validation. Two studies (13.3%) were prospective, and only one study (6.7%) conducted calibration analysis and stated the potential clinical utility. None of the studies conducted phantom study and cost-effective analysis. The overall adherence rate for TRIPOD was 63%. CONCLUSION The quality of radiomics studies in cardiac CT is currently insufficient. A higher level of evidence is required, and analysis of clinical utility and calibration of model performance need to be improved. KEY POINTS • The quality of science of radiomics studies in cardiac CT is currently insufficient. • No study conducted a phantom study or cost-effective analysis, with further limitations being demonstrated in a high level of evidence for radiomics studies. • Analysis of clinical utility and calibration of model performance need to be improved, and a higher level of evidence is required.
Collapse
Affiliation(s)
- Suji Lee
- Department of Radiology, Center for Clinical Imaging Data Science, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Kyunghwa Han
- Department of Radiology, Center for Clinical Imaging Data Science, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Young Joo Suh
- Department of Radiology, Center for Clinical Imaging Data Science, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.
| |
Collapse
|
36
|
The impact of radiomics for human papillomavirus status prediction in oropharyngeal cancer: systematic review and radiomics quality score assessment. Neuroradiology 2022; 64:1639-1647. [PMID: 35459957 PMCID: PMC9271107 DOI: 10.1007/s00234-022-02959-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/07/2022] [Indexed: 11/19/2022]
Abstract
Purpose
Human papillomavirus (HPV) status assessment is crucial for decision making in oropharyngeal cancer patients. In last years, several articles have been published investigating the possible role of radiomics in distinguishing HPV-positive from HPV-negative neoplasms. Aim of this review was to perform a systematic quality assessment of radiomic studies published on this topic. Methods Radiomics studies on HPV status prediction in oropharyngeal cancer patients were selected. The Radiomic Quality Score (RQS) was assessed by three readers to evaluate their methodological quality. In addition, possible correlations between RQS% and journal type, year of publication, impact factor, and journal rank were investigated. Results After the literature search, 19 articles were selected whose RQS median was 33% (range 0–42%). Overall, 16/19 studies included a well-documented imaging protocol, 13/19 demonstrated phenotypic differences, and all were compared with the current gold standard. No study included a public protocol, phantom study, or imaging at multiple time points. More than half (13/19) included feature selection and only 2 were comprehensive of non-radiomic features. Mean RQS was significantly higher in clinical journals. Conclusion Radiomics has been proposed for oropharyngeal cancer HPV status assessment, with promising results. However, these are supported by low methodological quality investigations. Further studies with higher methodological quality, appropriate standardization, and greater attention to validation are necessary prior to clinical adoption. Supplementary Information The online version contains supplementary material available at 10.1007/s00234-022-02959-0.
Collapse
|
37
|
Automated prediction of the neoadjuvant chemotherapy response in osteosarcoma with deep learning and an MRI-based radiomics nomogram. Eur Radiol 2022; 32:6196-6206. [PMID: 35364712 DOI: 10.1007/s00330-022-08735-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/22/2022] [Accepted: 03/05/2022] [Indexed: 01/06/2023]
Abstract
OBJECTIVES To implement a pipeline to automatically segment the ROI and to use a nomogram integrating the MRI-based radiomics score and clinical variables to predict responses to neoadjuvant chemotherapy (NAC) in osteosarcoma patients. METHODS A total of 144 osteosarcoma patients treated with NAC were separated into training (n = 101) and test (n = 43) groups. After normalisation, ROIs for the preoperative MRI were segmented by a deep learning segmentation model trained with nnU-Net by using two independent manual segmentations as labels. Radiomics features were extracted using automatically segmented ROIs. Feature selection was performed in the training dataset by five-fold cross-validation. The clinical, radiomics, and clinical-radiomics models were built using multiple machine learning methods with the same training dataset and validated with the same test dataset. The segmentation model was evaluated by the Dice coefficient. AUC and decision curve analysis (DCA) were employed to illustrate the model performance and clinical utility. RESULTS 36/144 (25.0%) patients were pathological good responders (pGRs) to NAC, while 108/144 (75.0%) were non-pGRs. The segmentation model achieved a Dice coefficient of 0.869 on the test dataset. The clinical and radiomics models reached AUCs of 0.636 with a 95% confidence interval (CI) of 0.427-0.860 and 0.759 (95% CI, 0.589-0.937), respectively, in the test dataset. The clinical-radiomics nomogram demonstrated good discrimination, with an AUC of 0.793 (95% CI, 0.610-0.975), and accuracy of 79.1%. The DCA suggested the clinical utility of the nomogram. CONCLUSION The automatic nomogram could be applied to aid radiologists in identifying pGRs to NAC. KEY POINTS • The nnU-Net trained by manual labels enables the use of an automatic segmentation tool for ROI delineation of osteosarcoma. • A pipeline using automatic lesion segmentation and followed by a radiomics classifier could aid the evaluation of NAC response of osteosarcoma. • A predictive nomogram composed of clinical variables and MRI-based radiomics score provides support for individualised treatment planning.
Collapse
|
38
|
Ponsiglione A, Stanzione A, Cuocolo R, Ascione R, Gambardella M, De Giorgi M, Nappi C, Cuocolo A, Imbriaco M. Cardiac CT and MRI radiomics: systematic review of the literature and radiomics quality score assessment. Eur Radiol 2022; 32:2629-2638. [PMID: 34812912 DOI: 10.1007/s00330-021-08375-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/06/2021] [Accepted: 09/30/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To systematically review and evaluate the methodological quality of studies using magnetic resonance imaging (MRI) and computed tomography (CT) radiomics for cardiac applications. METHODS Multiple medical literature archives (PubMed, Web of Science, and EMBASE) were systematically searched to retrieve original studies focused on cardiac MRI and CT radiomics applications. Two researchers in consensus assessed each investigation using the radiomics quality score (RQS). Subgroup analyses were performed to assess whether the total RQS varied according to study aim, journal quartile, imaging modality, and first author category. RESULTS From a total of 1961 items, 53 articles were finally included in the analysis. Overall, the studies reached a median total RQS of 7 (IQR, 4-12), corresponding to a percentage score of 19.4% (IQR, 11.1-33.3%). Item scores were particularly low due to lack of prospective design, cost-effectiveness analysis, and open science. Median RQS percentage score was significantly higher in papers where the first author was a medical doctor and in those published on first quartile journals. CONCLUSIONS The overall methodological quality of radiomics studies in cardiac MRI and CT is still lacking. A higher degree of standardization of the radiomics workflow and higher publication standards for studies are required to allow its translation into clinical practice. KEY POINTS • RQS has been recently proposed for the overall assessment of the methodological quality of radiomics-based studies. • The 53 included studies on cardiac MRI and CT radiomics applications reached a median total RQS of 7 (IQR, 4-12), corresponding to a percentage of 19.4% (IQR, 11.1-33.3%). • A more standardized methodology in the radiomics workflow is needed, especially in terms of study design, validation, and open science, in order to translate the results to clinical applications.
Collapse
Affiliation(s)
- Andrea Ponsiglione
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Renato Cuocolo
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy.
- Interdepartmental Research Center on Management and Innovation in Healthcare - CIRMIS, University of Naples Federico II, Naples, Italy.
| | - Raffaele Ascione
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Michele Gambardella
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Marco De Giorgi
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Carmela Nappi
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Alberto Cuocolo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Massimo Imbriaco
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
39
|
Luo Z, Li J, Liao Y, Liu R, Shen X, Chen W. Radiomics Analysis of Multiparametric MRI for Prediction of Synchronous Lung Metastases in Osteosarcoma. Front Oncol 2022; 12:802234. [PMID: 35273911 PMCID: PMC8901998 DOI: 10.3389/fonc.2022.802234] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/31/2022] [Indexed: 12/22/2022] Open
Abstract
Purpose To establish and verify a predictive model involving multiparameter MRI and clinical manifestations for predicting synchronous lung metastases (SLM) in osteosarcoma. Materials and Methods Seventy-eight consecutive patients with osteosarcoma (training dataset, n = 54; validation dataset, n = 24) were enrolled in our study. MRI features were extracted from the T1‐weighted image (T1WI), T2‐weighted image (T2WI), and contrast-enhanced T1-weighted image (CE-T1WI) of each patient. Least absolute shrinkage and selection operator (LASSO) regression and multifactor logistic regression were performed to select key features and build radiomics models in conjunction with logistic regression (LR) and support vector machine (SVM) classifiers. Eight individual models based on T1WI, T2WI, CE-T1WI, T1WI+T2WI, T1WI+CE-T1WI, T2WI+CE-T1WI, T1WI+T2WI+CE-T1WI, and clinical features, as well as two combined models, were built. The area under the receiver operating characteristic curve (AUC), sensitivity and specificity were employed to assess the different models. Results Tumor size was the most significant univariate clinical indicator (1). The AUC values of the LR predictive model based on T1WI, T2WI, CE-T1WI, T1WI+T2WI, T1WI+CE-T1WI, T2WI+CE-T1WI, and T1WI+T2WI+CE-T1WI were 0.686, 0.85, 0.87, 0.879, 0.736, 0.85, and 0.914, respectively (2). The AUC values of the SVM predictive model based on T1WI, T2WI, CE-T1WI, T1WI+T2WI, T1WI +CE-T1WI, T2WI +CE-T1WI, and T1WI+T2WI+CE-T1WI were 0.629, 0.829, 0.771, 0.879, 0.643, 0.829, and 0.929, respectively (3). The AUC values of the clinical, combined 1 (clinical and LR-radiomics) and combined 2 (clinical and SVM-radiomics) predictive models were 0.779, 0.957, and 0.943, respectively. Conclusion The combined model exhibited good performance in predicting osteosarcoma SLM and may be helpful in clinical decision-making.
Collapse
Affiliation(s)
- Zhendong Luo
- Department of Radiology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Jing Li
- Department of Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - YuTing Liao
- Department of Pharmaceuticals Diagnosis, GE Healthcare, Shanghai, China
| | - RengYi Liu
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinping Shen
- Department of Radiology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Weiguo Chen
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
40
|
Chang S, Han K, Suh YJ, Choi BW. Quality of science and reporting for radiomics in cardiac magnetic resonance imaging studies: a systematic review. Eur Radiol 2022; 32:4361-4373. [PMID: 35230519 DOI: 10.1007/s00330-022-08587-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/31/2021] [Accepted: 01/19/2022] [Indexed: 01/06/2023]
Abstract
OBJECTIVES To evaluate the quality of radiomics studies using cardiac magnetic resonance imaging (CMR) according to the radiomics quality score (RQS), Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) guidelines, and the standards defined by the Image Biomarker Standardization Initiative (IBSI) and identify areas needing improvement. MATERIALS AND METHODS PubMed and Embase were searched to identify radiomics studies using CMR until March 10, 2021. Of the 259 identified articles, 32 relevant original research articles were included. Studies were scored according to the RQS, TRIPOD guidelines, and IBSI standards by two cardiac radiologists. RESULTS The mean RQS was 14.3% of the maximum (5.16 out of 36). RQS were low for the demonstration of validation (-60.6%), calibration statistics (1.6%), potential clinical utility (3.1%), and open science (3.1%) items. No study conducted a phantom study or cost-effectiveness analysis. The adherence to TRIPOD guidelines was 55.9%. Studies were deficient in reporting title (3.1%), stating objective in abstract and introduction (6.3% and 9.4%), missing data (0%), discrimination/calibration (3.1%), and how to use the prediction model (3.1%). According to the IBSI standards, non-uniformity correction, image interpolation, grey-level discretization, and signal intensity normalization were performed in two (6.3%), four (12.5%), six (18.8%), and twelve (37.5%) studies, respectively. CONCLUSION The quality of radiomics studies using CMR is suboptimal. Improvements are needed in the areas of validation, calibration, clinical utility, and open science. Complete reporting of study objectives, missing data, discrimination/calibration, how to use the prediction model, and preprocessing steps are necessary. KEY POINTS • The quality of science in radiomics studies using CMR is currently inadequate. • RQS were low for validation, calibration, clinical utility, and open science; no study conducted a phantom study or cost-effectiveness analysis. • In stating the study objective, missing data, discrimination/calibration, how to use the prediction model, and preprocessing steps, improvements are needed.
Collapse
Affiliation(s)
- Suyon Chang
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Kyunghwa Han
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Young Joo Suh
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.
| | - Byoung Wook Choi
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| |
Collapse
|
41
|
Stanzione A, Galatola R, Cuocolo R, Romeo V, Verde F, Mainenti PP, Brunetti A, Maurea S. Radiomics in Cross-Sectional Adrenal Imaging: A Systematic Review and Quality Assessment Study. Diagnostics (Basel) 2022; 12:578. [PMID: 35328133 PMCID: PMC8947112 DOI: 10.3390/diagnostics12030578] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 12/22/2022] Open
Abstract
In this study, we aimed to systematically review the current literature on radiomics applied to cross-sectional adrenal imaging and assess its methodological quality. Scopus, PubMed and Web of Science were searched to identify original research articles investigating radiomics applications on cross-sectional adrenal imaging (search end date February 2021). For qualitative synthesis, details regarding study design, aim, sample size and imaging modality were recorded as well as those regarding the radiomics pipeline (e.g., segmentation and feature extraction strategy). The methodological quality of each study was evaluated using the radiomics quality score (RQS). After duplicate removal and selection criteria application, 25 full-text articles were included and evaluated. All were retrospective studies, mostly based on CT images (17/25, 68%), with manual (19/25, 76%) and two-dimensional segmentation (13/25, 52%) being preferred. Machine learning was paired to radiomics in about half of the studies (12/25, 48%). The median total and percentage RQS scores were 2 (interquartile range, IQR = -5-8) and 6% (IQR = 0-22%), respectively. The highest and lowest scores registered were 12/36 (33%) and -5/36 (0%). The most critical issues were the absence of proper feature selection, the lack of appropriate model validation and poor data openness. The methodological quality of radiomics studies on adrenal cross-sectional imaging is heterogeneous and lower than desirable. Efforts toward building higher quality evidence are essential to facilitate the future translation into clinical practice.
Collapse
Affiliation(s)
- Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (A.S.); (R.G.); (V.R.); (F.V.); (A.B.); (S.M.)
| | - Roberta Galatola
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (A.S.); (R.G.); (V.R.); (F.V.); (A.B.); (S.M.)
| | - Renato Cuocolo
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy
- Interdepartmental Research Center on Management and Innovation in Healthcare-CIRMIS, University of Naples “Federico II”, 80100 Naples, Italy
- Laboratory of Augmented Reality for Health Monitoring (ARHeMLab), Department of Electrical Engineering and Information Technology, University of Naples “Federico II”, 80100 Naples, Italy
| | - Valeria Romeo
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (A.S.); (R.G.); (V.R.); (F.V.); (A.B.); (S.M.)
| | - Francesco Verde
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (A.S.); (R.G.); (V.R.); (F.V.); (A.B.); (S.M.)
| | - Pier Paolo Mainenti
- Institute of Biostructures and Bioimaging of the National Research Council, 80131 Naples, Italy;
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (A.S.); (R.G.); (V.R.); (F.V.); (A.B.); (S.M.)
| | - Simone Maurea
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (A.S.); (R.G.); (V.R.); (F.V.); (A.B.); (S.M.)
| |
Collapse
|
42
|
Radiomics of Musculoskeletal Sarcomas: A Narrative Review. J Imaging 2022; 8:jimaging8020045. [PMID: 35200747 PMCID: PMC8876222 DOI: 10.3390/jimaging8020045] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/31/2022] [Accepted: 02/10/2022] [Indexed: 12/23/2022] Open
Abstract
Bone and soft-tissue primary malignant tumors or sarcomas are a large, diverse group of mesenchymal-derived malignancies. They represent a model for intra- and intertumoral heterogeneities, making them particularly suitable for radiomics analyses. Radiomic features offer information on cancer phenotype as well as the tumor microenvironment which, combined with other pertinent data such as genomics and proteomics and correlated with outcomes data, can produce accurate, robust, evidence-based, clinical-decision support systems. Our purpose in this narrative review is to offer an overview of radiomics studies dealing with Magnetic Resonance Imaging (MRI)-based radiomics models of bone and soft-tissue sarcomas that could help distinguish different histotypes, low-grade from high-grade sarcomas, predict response to multimodality therapy, and thus better tailor patients’ treatments and finally improve their survivals. Although showing promising results, interobserver segmentation variability, feature reproducibility, and model validation are three main challenges of radiomics that need to be addressed in order to translate radiomics studies to clinical applications. These efforts, together with a better knowledge and application of the “Radiomics Quality Score” and Image Biomarker Standardization Initiative reporting guidelines, could improve the quality of sarcoma radiomics studies and facilitate radiomics towards clinical translation.
Collapse
|
43
|
Magnetic Resonance Imaging-Based Radiomics for the Prediction of Progression-Free Survival in Patients with Nasopharyngeal Carcinoma: A Systematic Review and Meta-Analysis. Cancers (Basel) 2022; 14:cancers14030653. [PMID: 35158921 PMCID: PMC8833585 DOI: 10.3390/cancers14030653] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary More than 70% of patients with nasopharyngeal carcinoma (NPC) present with a locoregionally advanced state. Although the initial staging of NPC is primarily based on TNM staging, there is currently no well-established prognostic marker for NPC. Recently, radiomics has received considerable research attention as a potential prognostic biomarker for NPC. The aim of this systematic review and meta-analysis was to comprehensively evaluate the prognostic value of pretreatment magnetic resonance imaging (MRI)-based radiomics for NPC. The analyzed radiomic models demonstrated modest prognostic values, with a pooled mean estimated Harrell’s concordance index (C index) of 0.762. The prognostic models developed using more than eight radiomic features had significantly higher C-indices than those developed using fewer features. Our findings provide evidence that MRI-based radiomics may have a modest prognostic role in the treatment of NPC. However, more consistent study protocols are needed to verify the generalizability of radiomics. Abstract Advanced non-metastatic nasopharyngeal carcinoma (NPC) has variable treatment outcomes. However, there are no prognostic biomarkers for identifying high-risk patients with NPC. The aim of this systematic review and meta-analysis was to comprehensively assess the prognostic value of magnetic resonance imaging (MRI)-based radiomics for untreated NPC. The PubMed-Medline and EMBASE databases were searched for relevant articles published up to 12 August 2021. The Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) checklist was used to determine the qualities of the selected studies. Random-effects modeling was used to calculate the pooled estimates of Harrell’s concordance index (C-index) for progression-free survival (PFS). Between-study heterogeneity was evaluated using Higgins’ inconsistency index (I2). Among the studies reported in the 57 articles screened, 10 with 3458 patients were eligible for qualitative and quantitative data syntheses. The mean adherence rate to the TRIPOD checklist was 68.6 ± 7.1%. The pooled estimate of the C-index was 0.762 (95% confidence interval, 0.687–0.837). Substantial between-study heterogeneity was observed (I2 = 89.2%). Overall, MRI-based radiomics shows good prognostic performance in predicting the PFS of patients with untreated NPC. However, more consistent and robust study protocols are necessary to validate the prognostic role of radiomics for NPC.
Collapse
|
44
|
Radiomics in Cardiovascular Disease Imaging: from Pixels to the Heart of the Problem. CURRENT CARDIOVASCULAR IMAGING REPORTS 2022. [DOI: 10.1007/s12410-022-09563-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Purpose of Review
This review of the literature aims to present potential applications of radiomics in cardiovascular radiology and, in particular, in cardiac imaging.
Recent Findings
Radiomics and machine learning represent a technological innovation which may be used to extract and analyze quantitative features from medical images. They aid in detecting hidden pattern in medical data, possibly leading to new insights in pathophysiology of different medical conditions. In the recent literature, radiomics and machine learning have been investigated for numerous potential applications in cardiovascular imaging. They have been proposed to improve image acquisition and reconstruction, for anatomical structure automated segmentation or automated characterization of cardiologic diseases.
Summary
The number of applications for radiomics and machine learning is continuing to rise, even though methodological and implementation issues still limit their use in daily practice. In the long term, they may have a positive impact in patient management.
Collapse
|
45
|
Methodological quality of machine learning-based quantitative imaging analysis studies in esophageal cancer: a systematic review of clinical outcome prediction after concurrent chemoradiotherapy. Eur J Nucl Med Mol Imaging 2021; 49:2462-2481. [PMID: 34939174 PMCID: PMC9206619 DOI: 10.1007/s00259-021-05658-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/12/2021] [Indexed: 10/24/2022]
Abstract
PURPOSE Studies based on machine learning-based quantitative imaging techniques have gained much interest in cancer research. The aim of this review is to critically appraise the existing machine learning-based quantitative imaging analysis studies predicting outcomes of esophageal cancer after concurrent chemoradiotherapy in accordance with PRISMA guidelines. METHODS A systematic review was conducted in accordance with PRISMA guidelines. The citation search was performed via PubMed and Embase Ovid databases for literature published before April 2021. From each full-text article, study characteristics and model information were summarized. We proposed an appraisal matrix with 13 items to assess the methodological quality of each study based on recommended best-practices pertaining to quality. RESULTS Out of 244 identified records, 37 studies met the inclusion criteria. Study endpoints included prognosis, treatment response, and toxicity after concurrent chemoradiotherapy with reported discrimination metrics in validation datasets between 0.6 and 0.9, with wide variation in quality. A total of 30 studies published within the last 5 years were evaluated for methodological quality and we found 11 studies with at least 6 "good" item ratings. CONCLUSION A substantial number of studies lacked prospective registration, external validation, model calibration, and support for use in clinic. To further improve the predictive power of machine learning-based models and translate into real clinical applications in cancer research, appropriate methodologies, prospective registration, and multi-institution validation are recommended.
Collapse
|
46
|
Radiomics Models for Predicting Microvascular Invasion in Hepatocellular Carcinoma: A Systematic Review and Radiomics Quality Score Assessment. Cancers (Basel) 2021. [DOI: 10.3390/cancers13225864
expr 925508420 + 988274397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Preoperative prediction of microvascular invasion (MVI) is of importance in hepatocellular carcinoma (HCC) patient treatment management. Plenty of radiomics models for MVI prediction have been proposed. This study aimed to elucidate the role of radiomics models in the prediction of MVI and to evaluate their methodological quality. The methodological quality was assessed by the Radiomics Quality Score (RQS), and the risk of bias was evaluated by the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2). Twenty-two studies using CT, MRI, or PET/CT for MVI prediction were included. All were retrospective studies, and only two had an external validation cohort. The AUC values of the prediction models ranged from 0.69 to 0.94 in the test cohort. Substantial methodological heterogeneity existed, and the methodological quality was low, with an average RQS score of 10 (28% of the total). Most studies demonstrated a low or unclear risk of bias in the domains of QUADAS-2. In conclusion, a radiomics model could be an accurate and effective tool for MVI prediction in HCC patients, although the methodological quality has so far been insufficient. Future prospective studies with an external validation cohort in accordance with a standardized radiomics workflow are expected to supply a reliable model that translates into clinical utilization.
Collapse
|
47
|
Wang Q, Li C, Zhang J, Hu X, Fan Y, Ma K, Sparrelid E, Brismar TB. Radiomics Models for Predicting Microvascular Invasion in Hepatocellular Carcinoma: A Systematic Review and Radiomics Quality Score Assessment. Cancers (Basel) 2021; 13:5864. [PMID: 34831018 PMCID: PMC8616379 DOI: 10.3390/cancers13225864] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Preoperative prediction of microvascular invasion (MVI) is of importance in hepatocellular carcinoma (HCC) patient treatment management. Plenty of radiomics models for MVI prediction have been proposed. This study aimed to elucidate the role of radiomics models in the prediction of MVI and to evaluate their methodological quality. The methodological quality was assessed by the Radiomics Quality Score (RQS), and the risk of bias was evaluated by the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2). Twenty-two studies using CT, MRI, or PET/CT for MVI prediction were included. All were retrospective studies, and only two had an external validation cohort. The AUC values of the prediction models ranged from 0.69 to 0.94 in the test cohort. Substantial methodological heterogeneity existed, and the methodological quality was low, with an average RQS score of 10 (28% of the total). Most studies demonstrated a low or unclear risk of bias in the domains of QUADAS-2. In conclusion, a radiomics model could be an accurate and effective tool for MVI prediction in HCC patients, although the methodological quality has so far been insufficient. Future prospective studies with an external validation cohort in accordance with a standardized radiomics workflow are expected to supply a reliable model that translates into clinical utilization.
Collapse
Affiliation(s)
- Qiang Wang
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 14186 Stockholm, Sweden;
- Division of Radiology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Karolinska University Hospital, 14186 Stockholm, Sweden
| | - Changfeng Li
- Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China; (C.L.); (K.M.)
| | - Jiaxing Zhang
- Department of Pharmacy, Guizhou Provincial People’s Hospital, Guiyang 550002, China;
| | - Xiaojun Hu
- Hepatobiliary Surgery, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China;
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China;
| | - Yingfang Fan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China;
- Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Kuansheng Ma
- Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China; (C.L.); (K.M.)
| | - Ernesto Sparrelid
- Division of Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Karolinska University Hospital, 14186 Stockholm, Sweden;
| | - Torkel B. Brismar
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 14186 Stockholm, Sweden;
- Division of Radiology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Karolinska University Hospital, 14186 Stockholm, Sweden
| |
Collapse
|
48
|
Radiomics for Predicting Lung Cancer Outcomes Following Radiotherapy: A Systematic Review. Clin Oncol (R Coll Radiol) 2021; 34:e107-e122. [PMID: 34763965 DOI: 10.1016/j.clon.2021.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/24/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022]
Abstract
Lung cancer's radiomic phenotype may potentially inform clinical decision-making with respect to radical radiotherapy. At present there are no validated biomarkers available for the individualisation of radical radiotherapy in lung cancer and the mortality rate of this disease remains the highest of all other solid tumours. MEDLINE was searched using the terms 'radiomics' and 'lung cancer' according to the Preferred Reporting Items for Systematic Reviews and Met-Analyses (PRISMA) guidance. Radiomics studies were defined as those manuscripts describing the extraction and analysis of at least 10 quantifiable imaging features. Only those studies assessing disease control, survival or toxicity outcomes for patients with lung cancer following radical radiotherapy ± chemotherapy were included. Study titles and abstracts were reviewed by two independent reviewers. The Radiomics Quality Score was applied to the full text of included papers. Of 244 returned results, 44 studies met the eligibility criteria for inclusion. End points frequently reported were local (17%), regional (17%) and distant control (31%), overall survival (79%) and pulmonary toxicity (4%). Imaging features strongly associated with clinical outcomes include texture features belonging to the subclasses Gray level run length matrix, Gray level co-occurrence matrix and kurtosis. The median cohort size for model development was 100 (15-645); in the 11 studies with external validation in a separate independent population, the median cohort size was 84 (21-295). The median number of imaging features extracted was 184 (10-6538). The median Radiomics Quality Score was 11% (0-47). Patient-reported outcomes were not incorporated within any studies identified. No studies externally validated a radiomics signature in a registered prospective study. Imaging-derived indices attained through radiomic analyses could equip thoracic oncologists with biomarkers for treatment response, patterns of failure, normal tissue toxicity and survival in lung cancer. Based on routine scans, their non-invasive nature and cost-effectiveness are major advantages over conventional pathological assessment. Improved tools are required for the appraisal of radiomics studies, as significant barriers to clinical implementation remain, such as standardisation of input scan data, quality of reporting and external validation of signatures in randomised, interventional clinical trials.
Collapse
|
49
|
Si L, Zhong J, Huo J, Xuan K, Zhuang Z, Hu Y, Wang Q, Zhang H, Yao W. Deep learning in knee imaging: a systematic review utilizing a Checklist for Artificial Intelligence in Medical Imaging (CLAIM). Eur Radiol 2021; 32:1353-1361. [PMID: 34347157 DOI: 10.1007/s00330-021-08190-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/15/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE Our purposes were (1) to explore the methodologic quality of the studies on the deep learning in knee imaging with CLAIM criterion and (2) to offer our vision for the development of CLAIM to assure high-quality reports about the application of AI to medical imaging in knee joint. MATERIALS AND METHODS A Checklist for Artificial Intelligence in Medical Imaging systematic review was conducted from January 1, 2015, to June 1, 2020, using PubMed, EMBASE, and Web of Science databases. A total of 36 articles discussing deep learning applications in knee joint imaging were identified, divided by imaging modality, and characterized by imaging task, data source, algorithm type, and outcome metrics. RESULTS A total of 36 studies were identified and divided into: X-ray (44.44%) and MRI (55.56%). The mean CLAIM score of the 36 studies was 27.94 (standard deviation, 4.26), which was 66.53% of the ideal score of 42.00. The CLAIM items achieved an average good inter-rater agreement (ICC 0.815, 95% CI 0.660-0.902). In total, 32 studies performed internal cross-validation on the data set, while only 4 studies conducted external validation of the data set. CONCLUSIONS The overall scientific quality of deep learning in knee imaging is insufficient; however, deep learning remains a promising technology for diagnostic or predictive purpose. Improvements in study design, validation, and open science need to be made to demonstrate the generalizability of findings and to achieve clinical applications. Widespread application, pre-trained scoring procedure, and modification of CLAIM in response to clinical needs are necessary in the future. KEY POINTS • Limited deep learning studies were established in knee imaging with mean score of 27.94, which was 66.53% of the ideal score of 42.00, commonly due to invalidated results, retrospective study design, and absence of a clear definition of the CLAIM items in detail. • A previous trained data extraction instrument allowed reaching moderate inter-rater agreement in the application of the CLAIM, while CLAIM still needs improvement in scoring items and result reporting to become a wide adaptive tool in reviews of deep learning studies.
Collapse
Affiliation(s)
- Liping Si
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111 Xianxia Road, Changning District, Shanghai, 200336, China
| | - Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111 Xianxia Road, Changning District, Shanghai, 200336, China
| | - Jiayu Huo
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Huashan Road #1954, Shanghai, 200030, China
| | - Kai Xuan
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Huashan Road #1954, Shanghai, 200030, China
| | - Zixu Zhuang
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Huashan Road #1954, Shanghai, 200030, China
| | - Yangfan Hu
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Qian Wang
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Huashan Road #1954, Shanghai, 200030, China.
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weiwu Yao
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111 Xianxia Road, Changning District, Shanghai, 200336, China.
| |
Collapse
|
50
|
Vertebral MRI-based radiomics model to differentiate multiple myeloma from metastases: influence of features number on logistic regression model performance. Eur Radiol 2021; 32:572-581. [PMID: 34255157 DOI: 10.1007/s00330-021-08150-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/09/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES This study aimed to use the most frequent features to establish a vertebral MRI-based radiomics model that could differentiate multiple myeloma (MM) from metastases and compare the model performance with different features number. METHODS We retrospectively analyzed conventional MRI (T1WI and fat-suppression T2WI) of 103 MM patients and 138 patients with metastases. The feature selection process included four steps. The first three steps defined as conventional feature selection (CFS), carried out 50 times (ten times with 5-fold cross-validation), included variance threshold, SelectKBest, and least absolute shrinkage and selection operator. The most frequent fixed features were selected for modeling during the last step. The number of events per independent variable (EPV) is the number of patients in a smaller subgroup divided by the number of radiomics features considered in developing the prediction model. The EPV values considered were 5, 10, 15, and 20. Therefore, we constructed four models using the top 16, 8, 6, and 4 most frequent features, respectively. The models constructed with features selected by CFS were also compared. RESULTS The AUCs of 20EPV-Model, 15EPV-Model, and CSF-Model (AUC = 0.71, 0.81, and 0.78) were poor than 10EPV-Model (AUC = 0.84, p < 0.001). The AUC of 10EPV-Model was comparable with 5EPV-Model (AUC = 0.85, p = 0.480). CONCLUSIONS The radiomics model constructed with an appropriate small number of the most frequent features could well distinguish metastases from MM based on conventional vertebral MRI. Based on our results, we recommend following the 10 EPV as the rule of thumb for feature selection. KEY POINTS • The developed radiomics model could distinguish metastases from multiple myeloma based on conventional vertebral MRI. • An accurate model based on just a handful of the most frequent features could be constructed by utilizing multiple feature reduction techniques. • An event per independent variable value of 10 is recommended as a rule of thumb for modeling feature selection.
Collapse
|