1
|
Duranti L, Tavecchio L, Rolli L, Solli P. New Perspectives on Lung Cancer Screening and Artificial Intelligence. Life (Basel) 2025; 15:498. [PMID: 40141842 PMCID: PMC11943706 DOI: 10.3390/life15030498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide, with 1.8 million deaths annually. Early detection is vital for improving patient outcomes; however, survival rates remain low due to late-stage diagnoses. Accumulating data supports the idea that screening methods are useful for improving early diagnosis in high-risk patients. However, several barriers limit the application of lung cancer screening in real-world settings. The widespread diffusion of artificial intelligence (AI), radiomics, and machine learning has dramatically changed the current diagnostic landscape. This review explores the potential of AI and biomarker-driven methods, particularly liquid biopsy, in enhancing early lung cancer detection. We report the findings of major randomized controlled trials, cohort studies, and research on AI algorithms that use multi-modal imaging (e.g., CT and PET scans) and liquid biopsy to identify early molecular alterations. AI algorithms enhance diagnostic accuracy by automating image analysis and reducing inter-reader variability. Biomarker-driven methods identify molecular alterations in patients before imaging signs of cancer are evident. Both AI and liquid biopsy show the potential to improve sensitivity and specificity, enabling the detection of early-stage cancers that traditional methods, like low-dose CT (LDCT) scans, might miss. Integrating AI and biomarker-driven methods offers significant promise for transforming lung cancer screening. These technologies could enable earlier, more accurate detection, ultimately improving survival outcomes. AI-driven lung cancer screening can achieve over 90% sensitivity, compared to 70-80% with traditional methods, and can reduce false positives by up to 30%. AI also boosts specificity to 85-90%, with faster processing times (a few minutes vs. 30-60 min for radiologists). However, challenges remain in standardizing these approaches and integrating them into clinical practice. Ongoing research is essential to fully realize their clinical benefits and enhance timely interventions.
Collapse
Affiliation(s)
- Leonardo Duranti
- Thoracic Surgery Unit, Fondazione IRCCS Istituto Nazionale Tumori, 20131 Milan, Italy; (L.T.); (L.R.); (P.S.)
| | | | | | | |
Collapse
|
2
|
Liu Y, Wang J, Du B, Li Y, Li X. Predicting malignant risk of ground-glass nodules using convolutional neural networks based on dual-time-point 18F-FDG PET/CT. Cancer Imaging 2025; 25:17. [PMID: 39966960 PMCID: PMC11837479 DOI: 10.1186/s40644-025-00834-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Accurately predicting the malignant risk of ground-glass nodules (GGOs) is crucial for precise treatment planning. This study aims to utilize convolutional neural networks based on dual-time-point 18F-FDG PET/CT to predict the malignant risk of GGOs. METHODS Retrospectively analyzing 311 patients with 397 GGOs, this study identified 118 low-risk GGOs and 279 high-risk GGOs through pathology and follow-up according to the new WHO classification. The dataset was randomly divided into a training set comprising 239 patients (318 lesions) and a testing set comprising 72 patients (79 lesions), we employed a self-configuring 3D nnU-net convolutional neural network with majority voting method to segment GGOs and predict malignant risk of GGOs. Three independent segmentation prediction models were developed based on thin-section lung CT, early-phase 18F-FDG PET/CT, and dual-time-point 18F-FDG PET/CT, respectively. Simultaneously, the results of the dual-time-point 18F-FDG PET/CT model on the testing set were compared with the diagnostic of nuclear medicine physicians. RESULTS The dual-time-point 18F-FDG PET/CT model achieving a Dice coefficient of 0.84 ± 0.02 for GGOs segmentation and demonstrating high accuracy (84.81%), specificity (84.62%), sensitivity (84.91%), and AUC (0.85) in predicting malignant risk. The accuracy of the thin-section CT model is 73.42%, and the accuracy of the early-phase 18F-FDG PET/CT model is 78.48%, both of which are lower than the accuracy of the dual-time-point 18F-FDG PET/CT model. The diagnostic accuracy for resident, junior and expert physicians were 67.09%, 74.68%, and 78.48%, respectively. The accuracy (84.81%) of the dual-time-point 18F-FDG PET/CT model was significantly higher than that of nuclear medicine physicians. CONCLUSIONS Based on dual-time-point 18F-FDG PET/CT images, the 3D nnU-net with a majority voting method, demonstrates excellent performance in predicting the malignant risk of GGOs. This methodology serves as a valuable adjunct for physicians in the risk prediction and assessment of GGOs.
Collapse
Affiliation(s)
- Yuhang Liu
- Department of Nuclear Medicine, The First Hospital of China Medical University, No. 155 Nanjing St, Shenyang, 110001, China
| | - Jian Wang
- Department of Nuclear Medicine, The First Hospital of China Medical University, No. 155 Nanjing St, Shenyang, 110001, China
| | - Bulin Du
- Department of Nuclear Medicine, The First Hospital of China Medical University, No. 155 Nanjing St, Shenyang, 110001, China
| | - Yaming Li
- Department of Nuclear Medicine, The First Hospital of China Medical University, No. 155 Nanjing St, Shenyang, 110001, China.
| | - Xuena Li
- Department of Nuclear Medicine, The First Hospital of China Medical University, No. 155 Nanjing St, Shenyang, 110001, China.
| |
Collapse
|
3
|
Yu Y, Yang T, Ma P, Zeng Y, Dai Y, Fu Y, Liu A, Zhang Y, Zhuang G, Zhou Y, Wu H. Determining the status of tertiary lymphoid structures in invasive pulmonary adenocarcinoma based on chest CT radiomic features. Insights Imaging 2025; 16:28. [PMID: 39881024 PMCID: PMC11780022 DOI: 10.1186/s13244-025-01906-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/11/2025] [Indexed: 01/31/2025] Open
Abstract
OBJECTIVES The aim of this study was to determine the status of tertiary lymphoid structures (TLSs) using radiomic features in patients with invasive pulmonary adenocarcinoma (IA). METHODS In this retrospective study, patients with IA from November 2015 to March 2024 were recruited from two independent centers (center 1, training and internal test data set; center 2, external test data set). TLS was divided into two groups according to hematoxylin-eosin staining. Radiomic features were extracted, and support vector machine (SVM) were implemented to predict the status of TLSs. Receiver operating characteristic (ROC) curves were used to analyze diagnostic performance. Furthermore, visual assessments of the test set were also conducted by two thoracic radiologists and compared with the radiomics results. RESULTS A total of 456 patients were included (training data set, n = 278; internal test data set, n = 115; external test data set, n = 63). The area under the curve (AUC) of the radiomics model on the validation set, the internal test set, and the external test set were 0.781 (95% confidence interval (CI): 0.659-0.905;), 0.804 (95% CI: 0.723-0.884;) and 0.747 (95% CI: 0.621-0.874;), respectively. In the visual assessments, the mean CT value and air bronchogram were important indicators of TLS, the AUC was 0.683. In the external test set, the AUC of the clinical model was 0.632. CONCLUSIONS The radiomics model has a higher AUC than the clinical model and effectively discriminates TLSs in patients with IA. CRITICAL RELEVANCE STATEMENT This study demonstrates that the radiomics-based model can differentiate TLSs in patients with IA. As a non-invasive biomarker, it enhances our understanding of tumor prognosis and management. KEY POINTS TLSs are closely related to favorable clinical outcomes in non-small cell lung cancer. Radiomics from Chest CT predicted TLSs in patients with IA. This study supports individualized clinical decision-making for patients with IA.
Collapse
Affiliation(s)
- Ye Yu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tianshu Yang
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Pengfei Ma
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Zeng
- Department of Research Center, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Yongming Dai
- School of Biomedical Engineering, Shanghai Tech University, Shanghai, China
| | - Yicheng Fu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Aie Liu
- Department of Research Center, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Ying Zhang
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guanglei Zhuang
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Zhou
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Huawei Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Su Y, Xia X, Sun R, Yuan J, Hua Q, Han B, Gong J, Nie S. Res-TransNet: A Hybrid deep Learning Network for Predicting Pathological Subtypes of lung Adenocarcinoma in CT Images. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:2883-2894. [PMID: 38861071 PMCID: PMC11612082 DOI: 10.1007/s10278-024-01149-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/30/2024] [Accepted: 05/22/2024] [Indexed: 06/12/2024]
Abstract
This study aims to develop a CT-based hybrid deep learning network to predict pathological subtypes of early-stage lung adenocarcinoma by integrating residual network (ResNet) with Vision Transformer (ViT). A total of 1411 pathologically confirmed ground-glass nodules (GGNs) retrospectively collected from two centers were used as internal and external validation sets for model development. 3D ResNet and ViT were applied to investigate two deep learning frameworks to classify three subtypes of lung adenocarcinoma namely invasive adenocarcinoma (IAC), minimally invasive adenocarcinoma and adenocarcinoma in situ, respectively. To further improve the model performance, four Res-TransNet based models were proposed by integrating ResNet and ViT with different ensemble learning strategies. Two classification tasks involving predicting IAC from Non-IAC (Task1) and classifying three subtypes (Task2) were designed and conducted in this study. For Task 1, the optimal Res-TransNet model yielded area under the receiver operating characteristic curve (AUC) values of 0.986 and 0.933 on internal and external validation sets, which were significantly higher than that of ResNet and ViT models (p < 0.05). For Task 2, the optimal fusion model generated the accuracy and weighted F1 score of 68.3% and 66.1% on the external validation set. The experimental results demonstrate that Res-TransNet can significantly increase the classification performance compared with the two basic models and have the potential to assist radiologists in precision diagnosis.
Collapse
Affiliation(s)
- Yue Su
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xianwu Xia
- Department of Oncology Intervention, Municipal Hospital Affiliated of Taizhou University, Zhejiang, Taizhou, 318000, China
| | - Rong Sun
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jianjun Yuan
- Department of Oncology Intervention, Municipal Hospital Affiliated of Taizhou University, Zhejiang, Taizhou, 318000, China
| | - Qianjin Hua
- Department of Oncology Intervention, Municipal Hospital Affiliated of Taizhou University, Zhejiang, Taizhou, 318000, China
| | - Baosan Han
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
- Department of Breast Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Jing Gong
- Department of Radiology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Shengdong Nie
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
5
|
Yang D, Yang Y, Zhao M, Ji H, Niu Z, Hong B, Shi H, He L, Shao M, Wang J. Evaluation of the invasiveness of pure ground-glass nodules based on dual-head ResNet technique. BMC Cancer 2024; 24:1080. [PMID: 39223592 PMCID: PMC11367849 DOI: 10.1186/s12885-024-12823-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE To intelligently evaluate the invasiveness of pure ground-glass nodules with multiple classifications using deep learning. METHODS pGGNs in 1136 patients were pathologically confirmed as lung precursor lesions [atypical adenomatous hyperplasia (AAH) and adenocarcinoma in situ (AIS)], minimally invasive adenocarcinoma (MIA), or invasive adenocarcinoma (IAC). Four different models [EfficientNet-b0 2D, dual-head ResNet_3D, a 3D model combining three features (3D_3F), and a 3D model combining 19 features (3D_19F)] were constructed to evaluate the invasiveness of pGGNs using the EfficientNet and ResNet networks. The Obuchowski index was used to evaluate the differences in diagnostic efficiency among the four models. RESULTS The patients with pGGNs (360 men, 776 women; mean age, 54.63 ± 12.36 years) included 235 cases of AAH + AIS, 332 cases of MIA, and 569 cases of IAC. In the validation group, the areas under the curve in detecting the invasiveness of pGGNs as a three-category classification (AAH + AIS, MIA, IAC) were 0.8008, 0.8090, 0.8165, and 0.8158 for EfficientNet-b0 2D, dual-head ResNet_3D, 3D_3F, and 3D_19F, respectively, whereas the accuracies were 0.6422, 0.6158, 0.651, and 0.6364, respectively. The Obuchowski index revealed no significant differences in the diagnostic performance of the four models. CONCLUSIONS The dual-head ResNet_3D_3F model had the highest diagnostic efficiency for evaluating the invasiveness of pGGNs in the four models.
Collapse
Affiliation(s)
- Dengfa Yang
- Department of Radiology, Taizhou Municipal Hospital, Taizhou, 318000, China
| | - Yang Yang
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China
| | - MinYi Zhao
- Department of Radiology, Taizhou Municipal Hospital, Taizhou, 318000, China
| | - Hongli Ji
- Jianpei Technology, Hangzhou, 311202, China
| | - Zhongfeng Niu
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Bo Hong
- Jianpei Technology, Hangzhou, 311202, China
| | - Hengfeng Shi
- Department of Radiology, Anqing Municipal Hospital, Anqing, 246004, China
| | - Linyang He
- Jianpei Technology, Hangzhou, 311202, China
| | - Meihua Shao
- Department of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Jian Wang
- Department of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China.
| |
Collapse
|
6
|
Pan Z, Hu G, Zhu Z, Tan W, Han W, Zhou Z, Song W, Yu Y, Song L, Jin Z. Predicting Invasiveness of Lung Adenocarcinoma at Chest CT with Deep Learning Ternary Classification Models. Radiology 2024; 311:e232057. [PMID: 38591974 DOI: 10.1148/radiol.232057] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Background Preoperative discrimination of preinvasive, minimally invasive, and invasive adenocarcinoma at CT informs clinical management decisions but may be challenging for classifying pure ground-glass nodules (pGGNs). Deep learning (DL) may improve ternary classification. Purpose To determine whether a strategy that includes an adjudication approach can enhance the performance of DL ternary classification models in predicting the invasiveness of adenocarcinoma at chest CT and maintain performance in classifying pGGNs. Materials and Methods In this retrospective study, six ternary models for classifying preinvasive, minimally invasive, and invasive adenocarcinoma were developed using a multicenter data set of lung nodules. The DL-based models were progressively modified through framework optimization, joint learning, and an adjudication strategy (simulating a multireader approach to resolving discordant nodule classifications), integrating two binary classification models with a ternary classification model to resolve discordant classifications sequentially. The six ternary models were then tested on an external data set of pGGNs imaged between December 2019 and January 2021. Diagnostic performance including accuracy, specificity, and sensitivity was assessed. The χ2 test was used to compare model performance in different subgroups stratified by clinical confounders. Results A total of 4929 nodules from 4483 patients (mean age, 50.1 years ± 9.5 [SD]; 2806 female) were divided into training (n = 3384), validation (n = 579), and internal (n = 966) test sets. A total of 361 pGGNs from 281 patients (mean age, 55.2 years ± 11.1 [SD]; 186 female) formed the external test set. The proposed strategy improved DL model performance in external testing (P < .001). For classifying minimally invasive adenocarcinoma, the accuracy was 85% and 79%, sensitivity was 75% and 63%, and specificity was 89% and 85% for the model with adjudication (model 6) and the model without (model 3), respectively. Model 6 showed a relatively narrow range (maximum minus minimum) across diagnostic indexes (accuracy, 1.7%; sensitivity, 7.3%; specificity, 0.9%) compared with the other models (accuracy, 0.6%-10.8%; sensitivity, 14%-39.1%; specificity, 5.5%-17.9%). Conclusion Combining framework optimization, joint learning, and an adjudication approach improved DL classification of adenocarcinoma invasiveness at chest CT. Published under a CC BY 4.0 license. Supplemental material is available for this article. See also the editorial by Sohn and Fields in this issue.
Collapse
Affiliation(s)
- Zhengsong Pan
- From the Department of Radiology (Z.P., Z. Zhu, W.S., L.S., Z.J.), Medical Research Center (G.H.), State Key Laboratory of Complex Severe and Rare Disease (G.H.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China; 4 + 4 Medical Doctor Program (Z.P., Z. Zhu), Department of Epidemiology and Health Statistics (W.H.), Institute of Basic Medicine Sciences (W.H.), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Deepwise AI Laboratory, Beijing Deepwise & League of PhD Technology, Beijing, China (W.T., Z. Zhou, Y.Y.); and Department of Computer Science, The University of Hong Kong, Hong Kong, China (Y.Y.)
| | - Ge Hu
- From the Department of Radiology (Z.P., Z. Zhu, W.S., L.S., Z.J.), Medical Research Center (G.H.), State Key Laboratory of Complex Severe and Rare Disease (G.H.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China; 4 + 4 Medical Doctor Program (Z.P., Z. Zhu), Department of Epidemiology and Health Statistics (W.H.), Institute of Basic Medicine Sciences (W.H.), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Deepwise AI Laboratory, Beijing Deepwise & League of PhD Technology, Beijing, China (W.T., Z. Zhou, Y.Y.); and Department of Computer Science, The University of Hong Kong, Hong Kong, China (Y.Y.)
| | - Zhenchen Zhu
- From the Department of Radiology (Z.P., Z. Zhu, W.S., L.S., Z.J.), Medical Research Center (G.H.), State Key Laboratory of Complex Severe and Rare Disease (G.H.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China; 4 + 4 Medical Doctor Program (Z.P., Z. Zhu), Department of Epidemiology and Health Statistics (W.H.), Institute of Basic Medicine Sciences (W.H.), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Deepwise AI Laboratory, Beijing Deepwise & League of PhD Technology, Beijing, China (W.T., Z. Zhou, Y.Y.); and Department of Computer Science, The University of Hong Kong, Hong Kong, China (Y.Y.)
| | - Weixiong Tan
- From the Department of Radiology (Z.P., Z. Zhu, W.S., L.S., Z.J.), Medical Research Center (G.H.), State Key Laboratory of Complex Severe and Rare Disease (G.H.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China; 4 + 4 Medical Doctor Program (Z.P., Z. Zhu), Department of Epidemiology and Health Statistics (W.H.), Institute of Basic Medicine Sciences (W.H.), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Deepwise AI Laboratory, Beijing Deepwise & League of PhD Technology, Beijing, China (W.T., Z. Zhou, Y.Y.); and Department of Computer Science, The University of Hong Kong, Hong Kong, China (Y.Y.)
| | - Wei Han
- From the Department of Radiology (Z.P., Z. Zhu, W.S., L.S., Z.J.), Medical Research Center (G.H.), State Key Laboratory of Complex Severe and Rare Disease (G.H.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China; 4 + 4 Medical Doctor Program (Z.P., Z. Zhu), Department of Epidemiology and Health Statistics (W.H.), Institute of Basic Medicine Sciences (W.H.), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Deepwise AI Laboratory, Beijing Deepwise & League of PhD Technology, Beijing, China (W.T., Z. Zhou, Y.Y.); and Department of Computer Science, The University of Hong Kong, Hong Kong, China (Y.Y.)
| | - Zhen Zhou
- From the Department of Radiology (Z.P., Z. Zhu, W.S., L.S., Z.J.), Medical Research Center (G.H.), State Key Laboratory of Complex Severe and Rare Disease (G.H.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China; 4 + 4 Medical Doctor Program (Z.P., Z. Zhu), Department of Epidemiology and Health Statistics (W.H.), Institute of Basic Medicine Sciences (W.H.), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Deepwise AI Laboratory, Beijing Deepwise & League of PhD Technology, Beijing, China (W.T., Z. Zhou, Y.Y.); and Department of Computer Science, The University of Hong Kong, Hong Kong, China (Y.Y.)
| | - Wei Song
- From the Department of Radiology (Z.P., Z. Zhu, W.S., L.S., Z.J.), Medical Research Center (G.H.), State Key Laboratory of Complex Severe and Rare Disease (G.H.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China; 4 + 4 Medical Doctor Program (Z.P., Z. Zhu), Department of Epidemiology and Health Statistics (W.H.), Institute of Basic Medicine Sciences (W.H.), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Deepwise AI Laboratory, Beijing Deepwise & League of PhD Technology, Beijing, China (W.T., Z. Zhou, Y.Y.); and Department of Computer Science, The University of Hong Kong, Hong Kong, China (Y.Y.)
| | - Yizhou Yu
- From the Department of Radiology (Z.P., Z. Zhu, W.S., L.S., Z.J.), Medical Research Center (G.H.), State Key Laboratory of Complex Severe and Rare Disease (G.H.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China; 4 + 4 Medical Doctor Program (Z.P., Z. Zhu), Department of Epidemiology and Health Statistics (W.H.), Institute of Basic Medicine Sciences (W.H.), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Deepwise AI Laboratory, Beijing Deepwise & League of PhD Technology, Beijing, China (W.T., Z. Zhou, Y.Y.); and Department of Computer Science, The University of Hong Kong, Hong Kong, China (Y.Y.)
| | - Lan Song
- From the Department of Radiology (Z.P., Z. Zhu, W.S., L.S., Z.J.), Medical Research Center (G.H.), State Key Laboratory of Complex Severe and Rare Disease (G.H.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China; 4 + 4 Medical Doctor Program (Z.P., Z. Zhu), Department of Epidemiology and Health Statistics (W.H.), Institute of Basic Medicine Sciences (W.H.), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Deepwise AI Laboratory, Beijing Deepwise & League of PhD Technology, Beijing, China (W.T., Z. Zhou, Y.Y.); and Department of Computer Science, The University of Hong Kong, Hong Kong, China (Y.Y.)
| | - Zhengyu Jin
- From the Department of Radiology (Z.P., Z. Zhu, W.S., L.S., Z.J.), Medical Research Center (G.H.), State Key Laboratory of Complex Severe and Rare Disease (G.H.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China; 4 + 4 Medical Doctor Program (Z.P., Z. Zhu), Department of Epidemiology and Health Statistics (W.H.), Institute of Basic Medicine Sciences (W.H.), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Deepwise AI Laboratory, Beijing Deepwise & League of PhD Technology, Beijing, China (W.T., Z. Zhou, Y.Y.); and Department of Computer Science, The University of Hong Kong, Hong Kong, China (Y.Y.)
| |
Collapse
|
7
|
Zhou J, Hu B, Feng W, Zhang Z, Fu X, Shao H, Wang H, Jin L, Ai S, Ji Y. An ensemble deep learning model for risk stratification of invasive lung adenocarcinoma using thin-slice CT. NPJ Digit Med 2023; 6:119. [PMID: 37407729 DOI: 10.1038/s41746-023-00866-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 06/26/2023] [Indexed: 07/07/2023] Open
Abstract
Lung cancer screening using computed tomography (CT) has increased the detection rate of small pulmonary nodules and early-stage lung adenocarcinoma. It would be clinically meaningful to accurate assessment of the nodule histology by CT scans with advanced deep learning algorithms. However, recent studies mainly focus on predicting benign and malignant nodules, lacking of model for the risk stratification of invasive adenocarcinoma. We propose an ensemble multi-view 3D convolutional neural network (EMV-3D-CNN) model to study the risk stratification of lung adenocarcinoma. We include 1075 lung nodules (≤30 mm and ≥4 mm) with preoperative thin-section CT scans and definite pathology confirmed by surgery. Our model achieves a state-of-art performance of 91.3% and 92.9% AUC for diagnosis of benign/malignant and pre-invasive/invasive nodules, respectively. Importantly, our model outperforms senior doctors in risk stratification of invasive adenocarcinoma with 77.6% accuracy [i.e., Grades 1, 2, 3]). It provides detailed predictive histological information for the surgical management of pulmonary nodules. Finally, for user-friendly access, the proposed model is implemented as a web-based system ( https://seeyourlung.com.cn ).
Collapse
Affiliation(s)
- Jing Zhou
- Center for Applied Statistics, School of Statistics, Renmin University of China, Beijing, China
| | - Bin Hu
- Department of Thoracic Surgery, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wei Feng
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhang Zhang
- Department of Thoracic Surgery, Changsha Central Hospital, Changsha, China
| | - Xiaotong Fu
- Center for Applied Statistics, School of Statistics, Renmin University of China, Beijing, China
| | - Handie Shao
- Center for Applied Statistics, School of Statistics, Renmin University of China, Beijing, China
| | - Hansheng Wang
- Guanghua School of Management, Peking University, Beijing, China
| | - Longyu Jin
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Siyuan Ai
- Department of Thoracic Surgery, Beijing LIANGXIANG Hospital, Beijing, China
| | - Ying Ji
- Department of Thoracic Surgery, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
8
|
Zhao Y, Wang X, Che T, Bao G, Li S. Multi-task deep learning for medical image computing and analysis: A review. Comput Biol Med 2023; 153:106496. [PMID: 36634599 DOI: 10.1016/j.compbiomed.2022.106496] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/06/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
The renaissance of deep learning has provided promising solutions to various tasks. While conventional deep learning models are constructed for a single specific task, multi-task deep learning (MTDL) that is capable to simultaneously accomplish at least two tasks has attracted research attention. MTDL is a joint learning paradigm that harnesses the inherent correlation of multiple related tasks to achieve reciprocal benefits in improving performance, enhancing generalizability, and reducing the overall computational cost. This review focuses on the advanced applications of MTDL for medical image computing and analysis. We first summarize four popular MTDL network architectures (i.e., cascaded, parallel, interacted, and hybrid). Then, we review the representative MTDL-based networks for eight application areas, including the brain, eye, chest, cardiac, abdomen, musculoskeletal, pathology, and other human body regions. While MTDL-based medical image processing has been flourishing and demonstrating outstanding performance in many tasks, in the meanwhile, there are performance gaps in some tasks, and accordingly we perceive the open challenges and the perspective trends. For instance, in the 2018 Ischemic Stroke Lesion Segmentation challenge, the reported top dice score of 0.51 and top recall of 0.55 achieved by the cascaded MTDL model indicate further research efforts in high demand to escalate the performance of current models.
Collapse
Affiliation(s)
- Yan Zhao
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xiuying Wang
- School of Computer Science, The University of Sydney, Sydney, NSW, 2008, Australia.
| | - Tongtong Che
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Guoqing Bao
- School of Computer Science, The University of Sydney, Sydney, NSW, 2008, Australia
| | - Shuyu Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
9
|
Qu C, Yang H, Wang C, Wang C, Ying M, Chen Z, Yang K, Zhang J, Li K, Dimitriou D, Tsai TY, Liu X. A deep learning approach for anterior cruciate ligament rupture localization on knee MR images. Front Bioeng Biotechnol 2022; 10:1024527. [PMID: 36246358 PMCID: PMC9561886 DOI: 10.3389/fbioe.2022.1024527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: To develop and evaluate a deep learning-based method to localize and classify anterior cruciate ligament (ACL) ruptures on knee MR images by using arthroscopy as the reference standard. Methods: We proposed a fully automated ACL rupture localization system to localize and classify ACL ruptures. The classification of ACL ruptures was based on the projection coordinates of the ACL rupture point on the line connecting the center coordinates of the femoral and tibial footprints. The line was divided into three equal parts and the position of the projection coordinates indicated the classification of the ACL ruptures (femoral side, middle and tibial side). In total, 85 patients (mean age: 27; male: 56) who underwent ACL reconstruction surgery under arthroscopy were included. Three clinical readers evaluated the datasets separately and their diagnostic performances were compared with those of the model. The performance metrics included the accuracy, error rate, sensitivity, specificity, precision, and F1-score. A one-way ANOVA was used to evaluate the performance of the convolutional neural networks (CNNs) and clinical readers. Intraclass correlation coefficients (ICC) were used to assess interobserver agreement between the clinical readers. Results: The accuracy of ACL localization was 3.77 ± 2.74 and 4.68 ± 3.92 (mm) for three-dimensional (3D) and two-dimensional (2D) CNNs, respectively. There was no significant difference in the ACL rupture location performance between the 3D and 2D CNNs or among the clinical readers (Accuracy, p < 0.01). The 3D CNNs performed best among the five evaluators in classifying the femoral side (sensitivity of 0.86 and specificity of 0.79), middle side (sensitivity of 0.71 and specificity of 0.84) and tibial side ACL rupture (sensitivity of 0.71 and specificity of 0.99), and the overall accuracy for sides classifying of ACL rupture achieved 0.79. Conclusion: The proposed deep learning-based model achieved high diagnostic performances in locating and classifying ACL fractures on knee MR images.
Collapse
Affiliation(s)
- Cheng Qu
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Heng Yang
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Cong Wang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Chongyang Wang
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengjie Ying
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheyi Chen
- Department of Radiology, Shanghai Municipal Eighth People’s Hospital, Shanghai, China
| | - Kai Yang
- Department of Radiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Zhang
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Kang Li
- West China Hospital, Sichuan University, Chengdu, China
| | - Dimitris Dimitriou
- Department of Orthopedics, Balgrist University Hospital, University of Zürich, Zurich, Switzerland
| | - Tsung-Yuan Tsai
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Tsung-Yuan Tsai, ; Xudong Liu,
| | - Xudong Liu
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Tsung-Yuan Tsai, ; Xudong Liu,
| |
Collapse
|
10
|
Chen K, Lai YC, Vanniarajan B, Wang PH, Wang SC, Lin YC, Ng SH, Tran P, Lin G. Clinical impact of a deep learning system for automated detection of missed pulmonary nodules on routine body computed tomography including the chest region. Eur Radiol 2022; 32:2891-2900. [PMID: 34999920 DOI: 10.1007/s00330-021-08412-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/29/2021] [Accepted: 10/13/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To evaluate the clinical impact of a deep learning system (DLS) for automated detection of pulmonary nodules on computed tomography (CT) images as a second reader. METHODS This single-centre retrospective study screened 21,150 consecutive body CT studies from September 2018 to February 2019. Pulmonary nodules detected by the DLS on axial CT images but not mentioned in initial radiology reports were flagged. Flagged images were scored by four board-certificated radiologists each with at least 5 years of experience. Nodules with scores of 2 (understandable miss) or 3 (should not be missed) were then categorised as unlikely to be clinically significant (2a or 3a) or likely to be clinically significant (2b or 3b) according to the 2017 Fleischner guidelines for pulmonary nodules. The miss rate was defined as the total number of studies receiving scores of 2 or 3 divided by total screened studies. RESULTS Among 172 nodules flagged by the DLS, 60 (35%) missed nodules were confirmed by the radiologists. The nodules were further categorised as 2a, 2b, 3a, and 3b in 24, 14, 10, and 12 studies, respectively, with an overall positive predictive value of 35%. Missed pulmonary nodules were identified in 0.3% of all CT images, and one-third of these lesions were considered clinically significant. CONCLUSIONS Use of DLS-assisted automated detection as a second reader can identify missed pulmonary nodules, some of which may be clinically significant. CLINICAL RELEVANCE/APPLICATION Use of DLS to help radiologists detect pulmonary lesions may improve patient care. KEY POINTS • DLS-assisted automated detection as a second reader is feasible in a large consecutive cohort. • Performance of combined radiologists and DLS was better than DLS or radiologists alone. • Pulmonary nodules were missed more frequently in abdomino-pelvis CT than the thoracic CT.
Collapse
Affiliation(s)
- Kueian Chen
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, 5 Fuhsing St., Taoyuan, 33382, Guishan, Taiwan
- Imaging Core Laboratory, Institute for Radiological Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, 5 Fuhsing St., Taoyuan, 33382, Guishan, Taiwan
| | - Ying-Chieh Lai
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, 5 Fuhsing St., Taoyuan, 33382, Guishan, Taiwan
- Imaging Core Laboratory, Institute for Radiological Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, 5 Fuhsing St., Taoyuan, 33382, Guishan, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Fuhsing St., Taoyuan, 33382, Guishan, Taiwan
| | | | - Pieh-Hsu Wang
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, 5 Fuhsing St., Taoyuan, 33382, Guishan, Taiwan
| | - Shao-Chung Wang
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, 5 Fuhsing St., Taoyuan, 33382, Guishan, Taiwan
| | - Yu-Chun Lin
- Imaging Core Laboratory, Institute for Radiological Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, 5 Fuhsing St., Taoyuan, 33382, Guishan, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Fuhsing St., Taoyuan, 33382, Guishan, Taiwan
| | - Shu-Hang Ng
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, 5 Fuhsing St., Taoyuan, 33382, Guishan, Taiwan
| | - Pelu Tran
- FerrumFerrum Health, Santa Clara, CA, USA
| | - Gigin Lin
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, 5 Fuhsing St., Taoyuan, 33382, Guishan, Taiwan.
- Imaging Core Laboratory, Institute for Radiological Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, 5 Fuhsing St., Taoyuan, 33382, Guishan, Taiwan.
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Fuhsing St., Taoyuan, 33382, Guishan, Taiwan.
| |
Collapse
|
11
|
苏 志, 毛 文, 李 斌, 郑 智, 杨 博, 任 美, 宋 铁, 冯 海, 孟 于. [Clinical Study of Artificial Intelligence-assisted Diagnosis System in Predicting the
Invasive Subtypes of Early-stage Lung Adenocarcinoma Appearing as Pulmonary Nodules]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:245-252. [PMID: 35477188 PMCID: PMC9051300 DOI: 10.3779/j.issn.1009-3419.2022.102.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Lung cancer is the cancer with the highest mortality at home and abroad at present. The detection of lung nodules is a key step to reducing the mortality of lung cancer. Artificial intelligence-assisted diagnosis system presents as the state of the art in the area of nodule detection, differentiation between benign and malignant and diagnosis of invasive subtypes, however, a validation with clinical data is necessary for further application. Therefore, the aim of this study is to evaluate the effectiveness of artificial intelligence-assisted diagnosis system in predicting the invasive subtypes of early‑stage lung adenocarcinoma appearing as pulmonary nodules. METHODS Clinical data of 223 patients with early-stage lung adenocarcinoma appearing as pulmonary nodules admitted to the Lanzhou University Second Hospital from January 1st, 2016 to December 31th, 2021 were retrospectively analyzed, which were divided into invasive adenocarcinoma group (n=170) and non-invasive adenocarcinoma group (n=53), and the non-invasive adenocarcinoma group was subdivided into minimally invasive adenocarcinoma group (n=31) and preinvasive lesions group (n=22). The malignant probability and imaging characteristics of each group were compared to analyze their predictive ability for the invasive subtypes of early-stage lung adenocarcinoma. The concordance between qualitative diagnostic results of artificial intelligence-assisted diagnosis of the invasive subtypes of early-stage lung adenocarcinoma and postoperative pathology was then analyzed. RESULTS In different invasive subtypes of early-stage lung adenocarcinoma, the mean CT value of pulmonary nodules (P<0.001), diameter (P<0.001), volume (P<0.001), malignant probability (P<0.001), pleural retraction sign (P<0.001), lobulation (P<0.001), spiculation (P<0.001) were significantly different. At the same time, it was also found that with the increased invasiveness of different invasive subtypes of early-stage lung adenocarcinoma, the proportion of dominant signs of each group gradually increased. On the issue of binary classification, the sensitivity, specificity, and area under the curve (AUC) values of the artificial intelligence-assisted diagnosis system for the qualitative diagnosis of invasive subtypes of early-stage lung adenocarcinoma were 81.76%, 92.45% and 0.871 respectively. On the issue of three classification, the accuracy, recall rate, F1 score, and AUC values of the artificial intelligence-assisted diagnosis system for the qualitative diagnosis of invasive subtypes of early-stage lung adenocarcinoma were 83.86%, 85.03%, 76.46% and 0.879 respectively. CONCLUSIONS Artificial intelligence-assisted diagnosis system could predict the invasive subtypes of early‑stage lung adenocarcinoma appearing as pulmonary nodules, and has a certain predictive value. With the optimization of algorithms and the improvement of data, it may provide guidance for individualized treatment of patients.
Collapse
Affiliation(s)
- 志鹏 苏
- />730030 兰州,兰州大学第二医院胸外科,兰州大学第二临床医学院Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou 730030, China
| | - 文杰 毛
- />730030 兰州,兰州大学第二医院胸外科,兰州大学第二临床医学院Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou 730030, China
| | - 斌 李
- />730030 兰州,兰州大学第二医院胸外科,兰州大学第二临床医学院Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou 730030, China
| | - 智中 郑
- />730030 兰州,兰州大学第二医院胸外科,兰州大学第二临床医学院Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou 730030, China
| | - 博 杨
- />730030 兰州,兰州大学第二医院胸外科,兰州大学第二临床医学院Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou 730030, China
| | - 美玉 任
- />730030 兰州,兰州大学第二医院胸外科,兰州大学第二临床医学院Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou 730030, China
| | - 铁牛 宋
- />730030 兰州,兰州大学第二医院胸外科,兰州大学第二临床医学院Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou 730030, China
| | - 海明 冯
- />730030 兰州,兰州大学第二医院胸外科,兰州大学第二临床医学院Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou 730030, China
| | - 于琪 孟
- />730030 兰州,兰州大学第二医院胸外科,兰州大学第二临床医学院Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou 730030, China
| |
Collapse
|
12
|
[Chinese Experts Consensus on Artificial Intelligence Assisted Management for
Pulmonary Nodule (2022 Version)]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:219-225. [PMID: 35340198 PMCID: PMC9051301 DOI: 10.3779/j.issn.1009-3419.2022.102.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Low-dose computed tomography (CT) for lung cancer screening has been proven to reduce lung cancer deaths in the screening group compared with the control group. The increasing number of pulmonary nodules being detected by CT scans significantly increase the workload of the radiologists for scan interpretation. Artificial intelligence (AI) has the potential to increase the efficiency of pulmonary nodule discrimination and has been tested in preliminary studies for nodule management. As more and more artificial AI products are commercialized, the consensus statement has been organized in a collaborative effort by Thoracic Surgery Committee, Department of Simulated Medicine, Wu Jieping Medical Foundation to aid clinicians in the application of AI-assisted management for pulmonary nodules.
.
Collapse
|
13
|
Wang J, Yuan C, Han C, Wen Y, Lu H, Liu C, She Y, Deng J, Li B, Qian D, Chen C. IMAL-Net: Interpretable multi-task attention learning network for invasive lung adenocarcinoma screening in CT images. Med Phys 2021; 48:7913-7929. [PMID: 34674280 DOI: 10.1002/mp.15293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/26/2021] [Accepted: 09/29/2021] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Feature maps created from deep convolutional neural networks (DCNNs) have been widely used for visual explanation of DCNN-based classification tasks. However, many clinical applications such as benign-malignant classification of lung nodules normally require quantitative and objective interpretability, rather than just visualization. In this paper, we propose a novel interpretable multi-task attention learning network named IMAL-Net for early invasive adenocarcinoma screening in chest computed tomography images, which takes advantage of segmentation prior to assist interpretable classification. METHODS Two sub-ResNets are firstly integrated together via a prior-attention mechanism for simultaneous nodule segmentation and invasiveness classification. Then, numerous radiomic features from the segmentation results are concatenated with high-level semantic features from the classification subnetwork by FC layers to achieve superior performance. Meanwhile, an end-to-end feature selection mechanism (named FSM) is designed to quantify crucial radiomic features greatly affecting the prediction of each sample, and thus it can provide clinically applicable interpretability to the prediction result. RESULTS Nodule samples from a total of 1626 patients were collected from two grade-A hospitals for large-scale verification. Five-fold cross validation demonstrated that the proposed IMAL-Net can achieve an AUC score of 93.8% ± 1.1% and a recall score of 93.8% ± 2.8% for identification of invasive lung adenocarcinoma. CONCLUSIONS It can be concluded that fusing semantic features and radiomic features can achieve obvious improvements in the invasiveness classification task. Moreover, by learning more fine-grained semantic features and highlighting the most important radiomics features, the proposed attention and FSM mechanisms not only can further improve the performance but also can be used for both visual explanations and objective analysis of the classification results.
Collapse
Affiliation(s)
- Jun Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng Yuan
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Can Han
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yaofeng Wen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hongbing Lu
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Chen Liu
- Department of Radiology, Southwest Hospital, Third Military University (Army Medical University), Chongqing, China
| | - Yunlang She
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiajun Deng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai, China
| | - Dahong Qian
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Xu Y, Li Y, Yin H, Tang W, Fan G. Consecutive Serial Non-Contrast CT Scan-Based Deep Learning Model Facilitates the Prediction of Tumor Invasiveness of Ground-Glass Nodules. Front Oncol 2021; 11:725599. [PMID: 34568054 PMCID: PMC8461974 DOI: 10.3389/fonc.2021.725599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/19/2021] [Indexed: 01/31/2023] Open
Abstract
Introduction Tumors are continuously evolving biological systems which can be monitored by medical imaging. Previous studies only focus on single timepoint images, whether the performance could be further improved by using serial noncontrast CT imaging obtained during nodule follow-up management remains unclear. In this study, we evaluated DL model for predicting tumor invasiveness of GGNs through analyzing time series CT images. Methods A total of 168 pathologically confirmed GGN cases (48 noninvasive lesions and 120 invasive lesions) were retrospectively collected and randomly assigned to the development dataset (n = 123) and independent testing dataset (n = 45). All patients underwent consecutive noncontrast CT examinations, and the baseline CT and 3-month follow-up CT images were collected. The gross region of interest (ROI) patches containing only tumor region and the full ROI patches including both tumor and peritumor regions were cropped from CT images. A baseline model was built on the image features and demographic features. Four DL models were proposed: two single-DL model using gross ROI (model 1) or full ROI patches (model 3) from baseline CT images, and two serial-DL models using gross ROI (model 2) or full ROI patches (model 4) from consecutive CT images (baseline scan and 3-month follow-up scan). In addition, a combined model integrating serial full ROI patches and clinical information was also constructed. The performance of these predictive models was assessed with respect to discrimination and clinical usefulness. Results The area under the curve (AUC) of the baseline model, models 1, 2, 3, and 4 were 0.562 [(95% confidence interval (C)], 0.406~0.710), 0.693 (95% CI, 0.538-0.822), 0.787 (95% CI, 0.639-0.895), 0.727 (95% CI, 0.573-0.849), and 0.811 (95% CI, 0.667-0.912) in the independent testing dataset, respectively. The results indicated that the peritumor region had potential to contribute to tumor invasiveness prediction, and the model performance was further improved by integrating imaging scans at multiple timepoints. Furthermore, the combined model showed best discrimination ability, with AUC, sensitivity, specificity, and accuracy achieving 0.831 (95% CI, 0.690-0.926), 86.7%, 73.3%, and 82.2%, respectively. Conclusion The DL model integrating full ROIs from serial CT images shows improved predictive performance in differentiating noninvasive from invasive GGNs than the model using only baseline CT images, which could benefit the clinical management of GGNs.
Collapse
Affiliation(s)
- Yao Xu
- Department of Radiology, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Li
- Department of Radiology, Dushuhu Public Hospital Affiliated of Soochow University, Suzhou, China
| | - Hongkun Yin
- Department of Advanced Research, Infervision Medical Technology Co. Ltd, Beijing, China
| | - Wen Tang
- Department of Advanced Research, Infervision Medical Technology Co. Ltd, Beijing, China
| | - Guohua Fan
- Department of Radiology, Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|