1
|
Sun Y, Xu J, Kong D, Zhang Y, Wu Q, Wei L, Zhu Z, Li C, Feng S. Development and validation of a preoperative magnetic resonance imaging-based and machine learning model for the noninvasive differentiation of intracranial glioblastoma, primary central nervous system lymphoma and brain metastases: a retrospective analysis. Front Oncol 2025; 15:1541350. [PMID: 40330833 PMCID: PMC12052887 DOI: 10.3389/fonc.2025.1541350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/03/2025] [Indexed: 05/08/2025] Open
Abstract
Background Accurate preoperative identification of intracranial glioblastoma (GB), primary central nervous system lymphoma (PCNSL), and brain metastases (BM) is crucial for determining the appropriate treatment strategy. Purpose We aimed to develop and validate the utility of preoperative magnetic resonance imaging-based radiomics and machine learning models for the noninvasive identification them. STUDY TYPE: Retrospective. POPULATION: We included 202 patients, including 71 GB, 59 PCNSL, and 72 BM, randomly divided into a training cohort (n =141) and a validation cohort (n = 61).FIELD STRENGTH/SEQUENCE: Axial T2-weighted fast spin-echo sequence (T2WI) and contrast-enhanced T1-weighted spin-echo sequence (CE-T1WI) using 1.5-T and 3.0-T scanners. ASSESSMENT: We extracted radiomics features from the T2 sequence and CE-T1 sequence separately. Then, we applied the F-test and recursive feature elimination (RFE) to reduce the dimensionality for both individual sequences and the combined sequence CE-T1 combined with T2.The support vector machine (SVM), k-nearest neighbor (KNN), and naive Bayes classifier (NBC) were used in model development. STATISTICAL TESTS: Chi-square test, one-way analysis of variance, and Kruskal-Wallis test were performed. The P values <0.05 were considered statistically significant. Performance was evaluated using AUC, sensitivity, specificity, and accuracy metrics. Result The SVM model exhibited superior diagnostic performance with macro-average AUC values of 0.91 for CE-T1 alone, 0.86 for T2 alone, and 0.93 for combined CE-T1 and T2 sequences. And the combined sequence model demonstrated the best overall accuracy, sensitivity, and F1 score, with an accuracy of 0.77, outperforming both KNN and NBC models. Conclusion The SVM-based MRI radiomics model effectively distinguishes between GB, PCNSL, and BM. Combining CE-T1 and T2 sequences significantly enhances classification performance, providing a robust, noninvasive diagnostic tool that could assist in treatment planning and improve patient outcomes.
Collapse
Affiliation(s)
- Yuxiang Sun
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Junpeng Xu
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Dongsheng Kong
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yu Zhang
- Department of Neurosurgery, Xuanwu Hospital, Xiongan, China
| | - Qijia Wu
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Liqin Wei
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zihao Zhu
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Chunhui Li
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Shiyu Feng
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Contreras K, Velez-Varela PE, Casanova-Carvajal O, Alvarez AL, Urbano-Bojorge AL. A Review of Artificial Intelligence-Based Systems for Non-Invasive Glioblastoma Diagnosis. Life (Basel) 2025; 15:643. [PMID: 40283197 PMCID: PMC12028570 DOI: 10.3390/life15040643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is an aggressive brain tumor with a poor prognosis. Traditional diagnosis relies on invasive biopsies, which pose surgical risks. Advances in artificial intelligence (AI) and machine learning (ML) have improved non-invasive GBM diagnosis using magnetic resonance imaging (MRI), offering potential advantages in accuracy and efficiency. OBJECTIVE This review aims to identify the methodologies and technologies employed in AI-based GBM diagnostics. It further evaluates the performance of AI models using standard metrics, highlighting both their strengths and limitations. METHODOLOGY In accordance with the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines, a systematic review was conducted across major academic databases. A total of 104 articles were identified in the initial search, and 15 studies were selected for final analysis after applying inclusion and exclusion criteria. OUTCOMES The included studies indicated that the signal T1-weighted imaging (T1WI) is the most frequently used MRI modality in AI-based GBM diagnostics. Multimodal approaches integrating T1WI with diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) have demonstrated improved classification performance. Additionally, AI models have shown potential in surpassing conventional diagnostic methods, enabling automated tumor classification and enhancing prognostic predictions.
Collapse
Affiliation(s)
- Kebin Contreras
- Departamento de Biología, Facultad de Ciencias Naturales, Exactas y de la Educación FACNED, Universidad del Cauca, Popayán 190002, Colombia
| | - Patricia E. Velez-Varela
- Departamento de Biología, Facultad de Ciencias Naturales, Exactas y de la Educación FACNED, Universidad del Cauca, Popayán 190002, Colombia
| | - Oscar Casanova-Carvajal
- Centro de Tecnología Biomédica, Campus de Montegancedo, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Departamento de Eléctrica, Electrónica, Automática y Física Aplicada, Escuela Técnica Superior de Ingeniería y Diseño Industrial ETSIDI, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Angel Luis Alvarez
- Escuela de Ingeniería de Fuenlabrada, Universidad Rey Juan Carlos, 28922 Madrid, Spain
| | - Ana Lorena Urbano-Bojorge
- Departamento de Biología, Facultad de Ciencias Naturales, Exactas y de la Educación FACNED, Universidad del Cauca, Popayán 190002, Colombia
| |
Collapse
|
3
|
Zhao K, Deng Y, Su X, Hu W, Yin T, Yang X, Zhang D, Sun J, Li Y, Xu J, Zhang H, Yue Q. Differential Diagnosis of Early-Stage Atypical Primary Central Nervous System Lymphoma and Low-Grade Glioma Using Magnetic Resonance Imaging-Based Radiomics. World Neurosurg 2025; 196:123740. [PMID: 39929267 DOI: 10.1016/j.wneu.2025.123740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 03/11/2025]
Abstract
BACKGROUND Different from typical primary central nervous system lymphoma (PCNSL), early-stage atypical PCNSL usually presents as patchy signal abnormalities without evident mass effect or significant contrast enhancement and is prone to confusion with low-grade glioma (LGG). This study aims to develop a magnetic resonance imaging (MRI)-based radiomics model to differentiate early-stage atypical PCNSL from LGG. METHODS Two cohorts consisting of early-stage atypical PCNSL patients, as well as LGG patients with similar radiological manifestations, were retrospectively recruited from West China Hospital of Sichuan University (PCNSL = 75; LGG = 138) and Chengdu Shangjin Nanfu Hospital (PCNSL = 35; LGG = 72) to serve as the training set and external validation set, respectively. Within the training set, there were additional early-stage atypical lesions from 19 typical or advanced-stage PCNSL patients included as a supplement. MRI-based radiomics models were developed and validated based on these 2 cohorts. RESULTS Nine radiomic features were selected as significant features, most of which are wavelet radiomic features. The best radiomics model achieved an area under the curve of 0.929 (0.901-0.957) and an accuracy of 91.6% on the independent external validation set. The inclusion of 19 additional PCNSL patients improved the model's performance. CONCLUSIONS The MRI-based radiomics model can accurately differentiate early-stage atypical PCNSL from LGG with similar radiological manifestations, allowing early-stage atypical PCNSL patients to receive timely and appropriate radiotherapy or chemotherapy while avoiding unnecessary surgical resection.
Collapse
Affiliation(s)
- Kaiyang Zhao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yujiao Deng
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaorui Su
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Huaxi Glioma Center, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Wei Hu
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Teng Yin
- Machine Intelligence Laboratory, College of Computer Science, Sichuan University, Chengdu, P. R. China
| | - Xibiao Yang
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Dian Zhang
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Jiachen Sun
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yanfei Li
- Machine Intelligence Laboratory, College of Computer Science, Sichuan University, Chengdu, P. R. China
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
| | - Haixian Zhang
- Machine Intelligence Laboratory, College of Computer Science, Sichuan University, Chengdu, P. R. China
| | - Qiang Yue
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Huaxi Glioma Center, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Wang M, Liu G, Zhang N, Li Y, Sun S, Tan Y, Ma L. Detecting B-cell lymphoma-6 overexpression status in primary central nervous system lymphoma using multiparametric MRI-based machine learning. Neuroradiology 2025; 67:563-573. [PMID: 39853344 PMCID: PMC12003451 DOI: 10.1007/s00234-025-03551-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/13/2025] [Indexed: 01/26/2025]
Abstract
PURPOSE In primary central nervous system lymphoma (PCNSL), B-cell lymphoma-6 (BCL-6) is an unfavorable prognostic biomarker. We aim to non-invasively detect BCL-6 overexpression in PCNSL patients using multiparametric MRI and machine learning techniques. METHODS 65 patients (101 lesions) with primary central nervous system lymphoma (PCNSL) diagnosed from January 2013 to July 2023, and all patients were randomly divided into a training set and a validation set according to a ratio of 8 to 2. ADC map derived from DWI (b = 0/1000 s/mm2), fast spin echo T2WI, T2FLAIR, were collected at 3.0 T. A total of 2234 radiomics features from the tumor segmentation area were extracted and LASSO were used to select features. Logistic regression (LR), Naive bayes (NB), Support vector machine (SVM), K-nearest Neighbor, (KNN) and Multilayer Perceptron (MLP), were used for machine learning, and sensitivity, specificity, accuracy F1-score, and area under the curve (AUC) was used to evaluate the detection performance of five classifiers, 6 groups with combinations of different sequences were fitted to 5 classifiers, and optimal classifier was obtained. RESULTS BCL-6 status could be identified to varying degrees with 30 models based on radiomics, and model performance could be improved by combining different sequences and classifiers. Support vector machine (SVM) combined with three sequence group had the largest AUC (0.95) in training set and satisfactory AUC (0.87) in validation set. CONCLUSION Multiparametric MRI based machine learning is promising in detecting BCL-6 overexpression.
Collapse
Affiliation(s)
- Mingxiao Wang
- Medical School of Chinese PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Radiology, First Medical Center, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Guoli Liu
- Department of Radiology, First Medical Center, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Nan Zhang
- Department of Radiology, 982 Hospital of Joint Logistic Support Force of Chinese PLA, No.24 Guofang Road, Lunan District, Tangshan, 063000, China
| | - Yanhua Li
- Department of Radiology, First Medical Center, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- Nankai University School of Medicine, 94 Xuefu Road, Nankai District, Tianjin, 300071, China
| | - Shuo Sun
- Medical School of Chinese PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Radiology, First Medical Center, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yahong Tan
- Medical School of Chinese PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Radiology, First Medical Center, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Lin Ma
- Medical School of Chinese PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
- Department of Radiology, First Medical Center, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
5
|
Liu J, Tu J, Hu B, Li C, Piao S, Lu Y, Li A, Ding T, Xiong J, Zhu F, Li Y. Prognostic Assessment in Patients With Primary Diffuse Large B-Cell Lymphoma of the Central Nervous System Using MRI-Based Radiomics. J Magn Reson Imaging 2025; 61:1142-1152. [PMID: 38970331 DOI: 10.1002/jmri.29533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Primary central nervous system lymphoma (PCNSL) carries a poor prognosis. Radiomics may hold potential value in prognostic assessment. PURPOSE To develop and validate an MRI-based radiomics model and combine it with clinical factors to assess progression-free survival (PFS) and overall survival (OS) of patients with PCNSL. STUDY TYPE Retrospective and prospective. POPULATION Three hundred seventy-nine patients (179 female, 53 ± 7 years) from 2014 to 2022. FIELD STRENGTH/SEQUENCE T2/fluid-attenuated inversion recovery, contrast-enhanced T1WI and diffusion-weighted echo-planar imaging sequences on 3.0 T. ASSESSMENT Radiomics features were extracted from enhanced tumor regions on preoperative multi-sequence MRI. Using a least absolute shrinkage and selection operator (LASSO) Cox regression model to select radiomic signatures in training cohort (N = 169). Cox proportional hazards models were constructed for clinical, radiomics, and combined models, with internal (N = 72) and external (N = 32) cohorts validating model performance. STATISTICAL TESTS Chi-squared, Mann-Whitney, Kaplan-Meier, log-rank, LASSO, Cox, decision curve analysis, time-dependent Receiver Operating Characteristic, area under the curve (AUC), and likelihood ratio test. P-value <0.05 was considered significant. RESULTS Follow-up duration was 28.79 ± 22.59 months (median: 25). High-risk patients, determined by the median radiomics score, showed significantly lower survival rates than low-risk patients. Compared with NCCN-IPI, conventional imaging and clinical models, the combined model achieved the highest C-index for both PFS (0.660 internal, 0.802 external) and OS (0.733 internal, 0.781 external) in validation. Net benefit was greater with radiomics than with clinical alone. The combined model exhibited performance with AUCs of 0.680, 0.752, and 0.830 for predicting 1-year, 3-year, and 5-year PFS, and 0.770, 0.789, and 0.863 for OS in internal validation, with PFS AUCs of 0.860 and 0.826 and OS AUCs of 0.859 and 0.748 for 1-year and 3-year survival in external validation. DATA CONCLUSION Incorporating a multi-sequence MR-based radiomics model into clinical models enhances the assess accuracy for the prognosis of PCNSL. EVIDENCE LEVEL 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Jianpeng Liu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiaqi Tu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Bin Hu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chao Li
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK
| | - Sirong Piao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yucheng Lu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Anning Li
- Department of Radiology, Qilu Hospital, Shandong University, Jinan, China
| | - Tianling Ding
- Department of Haematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ji Xiong
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Fengping Zhu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxin Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Shen Y, Wu S, Wu Y, Cui C, Li H, Yang S, Liu X, Chen X, Huang C, Wang X. Radiomics model building from multiparametric MRI to predict Ki-67 expression in patients with primary central nervous system lymphomas: a multicenter study. BMC Med Imaging 2025; 25:54. [PMID: 39962371 PMCID: PMC11834475 DOI: 10.1186/s12880-025-01585-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
OBJECTIVES To examine the correlation of apparent diffusion coefficient (ADC), diffusion weighted imaging (DWI), and T1 contrast enhanced (T1-CE) with Ki-67 in primary central nervous system lymphomas (PCNSL). And to assess the diagnostic performance of MRI radiomics-based machine-learning algorithms in differentiating the high proliferation and low proliferation groups of PCNSL. METHODS 83 patients with PCNSL were included in this retrospective study. ADC, DWI and T1-CE sequences were collected and their correlation with Ki-67 was examined using Spearman's correlation analysis. The Kaplan-Meier method and log-rank test were used to compare the survival rates of the high proliferation and low proliferation groups. The radiomics features were extracted respectively, and the features were screened by machine learning algorithm and statistical method. Radiomics models of seven different sequence permutations were constructed. The area under the receiver operating characteristic curve (ROC AUC) was used to evaluate the predictive performance of all models. DeLong test was utilized to compare the differences of models. RESULTS Relative mean apparent diffusion coefficient (rADCmean) (ρ=-0.354, p = 0.019), relative mean diffusion weighted imaging (rDWImean) (b = 1000) (ρ = 0.273, p = 0.013) and relative mean T1 contrast enhancement (rT1-CEmean) (ρ = 0.385, p = 0.001) was significantly correlated with Ki-67. Interobserver agreements between the two radiologists were almost perfect for all parameters (rADCmean ICC = 0.978, 95%CI 0.966-0.986; rDWImean (b = 1000) ICC = 0.931, 95% CI 0.895-0.955; rT1-CEmean ICC = 0.969, 95% CI 0.953-0.980). The differences in PFS (p = 0.016) and OS (p = 0.014) between the low and high proliferation groups were statistically significant. The best prediction model in our study used a combination of ADC, DWI, and T1-CE achieving the highest AUC of 0.869, while the second ranked model used ADC and DWI, achieving an AUC of 0.828. CONCLUSION rDWImean, rADCmean and rT1-CEmean were correlated with Ki-67. The radiomics model based on MRI sequences combined is promising to distinguish low proliferation PCNSL from high proliferation PCNSL.
Collapse
Affiliation(s)
- Yelong Shen
- Department of Radiology, Shandong Provincial Hospital, No. 324, Jingwu Road, Jinan, 250021, Shandong, China
- Department of Radiology, Shandong University, No. 44, West Wenhua Road, Jinan, 250021, Shandong, China
| | - Siyu Wu
- Department of Radiology, Shandong Provincial Hospital, No. 324, Jingwu Road, Jinan, 250021, Shandong, China
- Department of Radiology, Shandong University, No. 44, West Wenhua Road, Jinan, 250021, Shandong, China
| | - Yanan Wu
- Department of Radiology, Shandong Provincial Hospital, No. 324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Chao Cui
- Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, 253000, Shandong, China
| | - Haiou Li
- Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Shuang Yang
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University& Shandong Provincial Qianfoshan Hospital, Jinan, 250021, Shandong, China
| | - Xuejun Liu
- Department of Radiology, the Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Xingzhi Chen
- Department of Research Collaboration, R&D center, Beijing Deepwise & League of PHD Technology Co., Ltd, 100080, Beijing, China
| | - Chencui Huang
- Department of Research Collaboration, R&D center, Beijing Deepwise & League of PHD Technology Co., Ltd, 100080, Beijing, China
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital, No. 324, Jingwu Road, Jinan, 250021, Shandong, China.
- Department of Radiology, Shandong University, No. 44, West Wenhua Road, Jinan, 250021, Shandong, China.
| |
Collapse
|
7
|
Zeng Q, Jia F, Tang S, He H, Fu Y, Wang X, Zhang J, Tan Z, Tang H, Wang J, Yi X, Chen BT. Ensemble learning-based radiomics model for discriminating brain metastasis from glioblastoma. Eur J Radiol 2025; 183:111900. [PMID: 39733718 DOI: 10.1016/j.ejrad.2024.111900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/24/2024] [Accepted: 12/21/2024] [Indexed: 12/31/2024]
Abstract
OBJECTIVE Differentiating between brain metastasis (BM) and glioblastoma (GBM) preoperatively is challenging due to their similar imaging features on conventional brain MRI. This study aimed to enhance diagnostic accuracy through a machine learning model based on MRI radiomics data. METHODS This retrospective study included 235 patients with confirmed solitary BM and 273 patients with GBM. Patients were randomly assigned to the training (n = 356) or the validation (n = 152) cohort. Conventional brain MRI sequences including T1-weighted imaging (T1WI), contrast-enhanced_T1WI, and T2-weighted imaging (T2WI) were acquired. Brain tumors were delineated on all three sequences and segmented. Features were selected from demographic, clinical, and radiomic data. An integrated ensemble machine learning model, i.e., the elastic regression-SVM-SVM model (ERSS) and a multivariable logistic regression (LR) model combining demographic, clinical, and radiomic data were built for predictive modeling. Model efficiency was evaluated using discrimination, calibration, and decision curve analyses. Additionally, external validation was performed using an independent cohort consisting of 47 patients with GBM and 43 patients with isolated BM to assess the ERSS model generalizability. RESULTS The ERSS model demonstrated more optimal classification performance (AUC: 0.9548, 95% CI: 0.9337-0.9734 in training cohort; AUC: 0.9716, 95% CI: 0.9485-0.9895 in validation cohort) as compared to the LR model according to the receiver operating characteristic (ROC) curve and decision curve for the internal cohort. The external validation cohort had less optimal but still robust performance (AUC: 0.7174, 95% CI: 0.6172-0.8024). The ERSS model with integration of multiple classifiers, including elastic net, random forest and support vector machine, produced robust predictive performance and outperformed the LR method. CONCLUSION The results suggested that the integrated machine learning model, i.e., the ERSS model, had the potential for efficient and accurate preoperative differentiation of BM from GBM, which may improve clinical decision-making and outcomes of patients with brain tumors.
Collapse
Affiliation(s)
- Qi Zeng
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Fangxu Jia
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Shengming Tang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Haoling He
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Yan Fu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China; National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, Hunan, PR China
| | - Xueying Wang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Jinfan Zhang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Zeming Tan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Haiyun Tang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China.
| | - Jing Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China.
| | - Xiaoping Yi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China; Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, PR China.
| | - Bihong T Chen
- Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
8
|
Yang YF, Zhao E, Shi Y, Zhang H, Yang YY. Multicenter investigation of preoperative distinction between primary central nervous system lymphomas and glioblastomas through interpretable artificial intelligence models. Neuroradiology 2024; 66:1893-1906. [PMID: 39225815 DOI: 10.1007/s00234-024-03451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE Research into the effectiveness and applicability of deep learning, radiomics, and their integrated models based on Magnetic Resonance Imaging (MRI) for preoperative differentiation between Primary Central Nervous System Lymphoma (PCNSL) and Glioblastoma (GBM), along with an exploration of the interpretability of these models. MATERIALS AND METHODS A retrospective analysis was performed on MRI images and clinical data from 261 patients across two medical centers. The data were split into a training set (n = 153, medical center 1) and an external test set (n = 108, medical center 2). Radiomic features were extracted using Pyradiomics to build the Radiomics Model. Deep learning networks, including the transformer-based MobileVIT Model and Convolutional Neural Networks (CNN) based ConvNeXt Model, were trained separately. By applying the "late fusion" theory, the radiomics model and deep learning model were fused to produce the optimal Max-Fusion Model. Additionally, Shapley Additive exPlanations (SHAP) and Grad-CAM were employed for interpretability analysis. RESULTS In the external test set, the Radiomics Model achieved an Area under the receiver operating characteristic curve (AUC) of 0.86, the MobileVIT Model had an AUC of 0.91, the ConvNeXt Model demonstrated an AUC of 0.89, and the Max-Fusion Model showed an AUC of 0.92. The Delong test revealed a significant difference in AUC between the Max-Fusion Model and the Radiomics Model (P = 0.02). CONCLUSION The Max-Fusion Model, combining different models, presents superior performance in distinguishing PCNSL and GBM, highlighting the effectiveness of model fusion for enhanced decision-making in medical applications. CLINICAL RELEVANCE STATEMENT The preoperative non-invasive differentiation between PCNSL and GBM assists clinicians in selecting appropriate treatment regimens and clinical management strategies.
Collapse
Affiliation(s)
- Yun-Feng Yang
- Laboratory for Medical Imaging Informatics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- Laboratory for Medical Imaging Informatics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Endong Zhao
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Yutong Shi
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
| | - Hao Zhang
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yuan-Yuan Yang
- Laboratory for Medical Imaging Informatics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China.
- Laboratory for Medical Imaging Informatics, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Bathla G, Soni N, Mark IT, Liu Y, Larson NB, Kassmeyer BA, Mohan S, Benson JC, Rathore S, Agarwal AK. Impact of SUSAN Denoising and ComBat Harmonization on Machine Learning Model Performance for Malignant Brain Neoplasms. AJNR Am J Neuroradiol 2024; 45:1291-1298. [PMID: 38604733 PMCID: PMC11392381 DOI: 10.3174/ajnr.a8280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND AND PURPOSE Feature variability in radiomics studies due to technical and magnet strength parameters is well-known and may be addressed through various preprocessing methods. However, very few studies have evaluated the downstream impact of variable preprocessing on model classification performance in a multiclass setting. We sought to evaluate the impact of Smallest Univalue Segment Assimilating Nucleus (SUSAN) denoising and Combining Batches harmonization on model classification performance. MATERIALS AND METHODS A total of 493 cases (410 internal and 83 external data sets) of glioblastoma, intracranial metastatic disease, and primary CNS lymphoma underwent semiautomated 3D-segmentation post-baseline image processing (BIP) consisting of resampling, realignment, coregistration, skull-stripping, and image normalization. Post-BIP, 2 sets were generated, one with and another without SUSAN denoising. Radiomics features were extracted from both data sets and batch-corrected to produce 4 data sets: (a) BIP, (b) BIP with SUSAN denoising, (c) BIP with Combining Batches, and (d) BIP with both SUSAN denoising and Combining Batches harmonization. Performance was then summarized for models using a combination of 6 feature-selection techniques and 6 machine learning models across 4 mask-sequence combinations with features derived from 1 to 3 (multiparametric) MRI sequences. RESULTS Most top-performing models on the external test set used BIP+SUSAN denoising-derived features. Overall, the use of SUSAN denoising and Combining Batches harmonization led to a slight but generally consistent improvement in model performance on the external test set. CONCLUSIONS The use of image-preprocessing steps such as SUSAN denoising and Combining Batches harmonization may be more useful in a multi-institutional setting to improve model generalizability. Models derived from only T1 contrast-enhanced images showed comparable performance to models derived from multiparametric MRI.
Collapse
Affiliation(s)
- Girish Bathla
- From the Department of Radiology (G.B., N.S.), University of Iowa Hospitals and Clinics, Iowa City, Iowa
- Department of Radiology (G.B., I.T.M., J.C.B.), Mayo Clinic, Rochester, Minnesota
| | - Neetu Soni
- From the Department of Radiology (G.B., N.S.), University of Iowa Hospitals and Clinics, Iowa City, Iowa
- Department of Radiology (N.S., A.K.A.), Mayo Clinic, Jacksonville, Florida
| | - Ian T Mark
- Department of Radiology (G.B., I.T.M., J.C.B.), Mayo Clinic, Rochester, Minnesota
| | - Yanan Liu
- Advanced Pulmonary Physiomic Imaging Laboratory (Y.L.), University of Iowa, Iowa City, Iowa
| | - Nicholas B Larson
- Division of Clinical Trials and Biostatistics (N.B.L., B.A.K.), Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Rochester, Minnesota
| | - Blake A Kassmeyer
- Division of Clinical Trials and Biostatistics (N.B.L., B.A.K.), Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Rochester, Minnesota
| | - Suyash Mohan
- Department of Radiology (S.M.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John C Benson
- Department of Radiology (G.B., I.T.M., J.C.B.), Mayo Clinic, Rochester, Minnesota
| | - Saima Rathore
- Avid Radiopharmaceuticals (S.R.), Philadelphia, Pennsylvania
| | - Amit K Agarwal
- Department of Radiology (N.S., A.K.A.), Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
10
|
Müller SJ, Khadhraoui E, Henkes H, Ernst M, Rohde V, Schatlo B, Malinova V. Differentiation between multifocal CNS lymphoma and glioblastoma based on MRI criteria. Discov Oncol 2024; 15:397. [PMID: 39217585 PMCID: PMC11366735 DOI: 10.1007/s12672-024-01266-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
PURPOSE Differentiating between glioblastoma (GB) with multiple foci (mGB) and multifocal central nervous system lymphoma (mCNSL) can be challenging because these cancers share several features at first appearance on magnetic resonance imaging (MRI). The aim of this study was to explore morphological differences in MRI findings for mGB versus mCNSL and to develop an interpretation algorithm with high diagnostic accuracy. METHODS In this retrospective study, MRI characteristics were compared between 50 patients with mGB and 50 patients with mCNSL treated between 2015 and 2020. The following parameters were evaluated: size, morphology, lesion location and distribution, connections between the lesions on the fluid-attenuated inversion recovery sequence, patterns of contrast enhancement, and apparent diffusion coefficient (ADC) values within the tumor and the surrounding edema, as well as MR perfusion and susceptibility weighted imaging (SWI) whenever available. RESULTS A total of 187 mCNSL lesions and 181 mGB lesions were analyzed. The mCNSL lesions demonstrated frequently a solid morphology compared to mGB lesions, which showed more often a cystic, mixed cystic/solid morphology and a cortical infiltration. The mean measured diameter was significantly smaller for mCNSL than mGB lesions (p < 0.001). Tumor ADC ratios were significantly smaller in mCNSL than in mGB (0.89 ± 0.36 vs. 1.05 ± 0.35, p < 0.001). The ADC ratio of perilesional edema was significantly higher (p < 0.001) in mCNSL than in mGB. In SWI / T2*-weighted imaging, tumor-associated susceptibility artifacts were more often found in mCNSL than in mGB (p < 0.001). CONCLUSION The lesion size, ADC ratios of the lesions and the adjacent tissue as well as the vascularization of the lesions in the MR-perfusion were found to be significant distinctive patterns of mCNSL and mGB allowing a radiological differentiation of these two entities on initial MRI. A diagnostic algorithm based on these parameters merits a prospective validation.
Collapse
Affiliation(s)
- Sebastian Johannes Müller
- Institute of Neuroradiology, University Medical Center, Göttingen, Germany
- Clinic for Neuroradiology, Katharinen-Hospital Stuttgart, Stuttgart, Germany
| | - Eya Khadhraoui
- Institute of Neuroradiology, University Medical Center, Göttingen, Germany
- Clinic for Neuroradiology, Katharinen-Hospital Stuttgart, Stuttgart, Germany
| | - Hans Henkes
- Clinic for Neuroradiology, Katharinen-Hospital Stuttgart, Stuttgart, Germany
| | - Marielle Ernst
- Institute of Neuroradiology, University Medical Center, Göttingen, Germany
| | - Veit Rohde
- Department of Neurosurgery, University Medical Center, Georg-August-University, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Bawarjan Schatlo
- Department of Neurosurgery, University Medical Center, Georg-August-University, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Vesna Malinova
- Department of Neurosurgery, University Medical Center, Georg-August-University, Robert-Koch-Straße 40, 37075, Göttingen, Germany.
| |
Collapse
|
11
|
Nayak L, Bettegowda C, Scherer F, Galldiks N, Ahluwalia M, Baraniskin A, von Baumgarten L, Bromberg JEC, Ferreri AJM, Grommes C, Hoang-Xuan K, Kühn J, Rubenstein JL, Rudà R, Weller M, Chang SM, van den Bent MJ, Wen PY, Soffietti R. Liquid biopsy for improving diagnosis and monitoring of CNS lymphomas: A RANO review. Neuro Oncol 2024; 26:993-1011. [PMID: 38598668 PMCID: PMC11145457 DOI: 10.1093/neuonc/noae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND The utility of liquid biopsies is well documented in several extracranial and intracranial (brain/leptomeningeal metastases, gliomas) tumors. METHODS The RANO (Response Assessment in Neuro-Oncology) group has set up a multidisciplinary Task Force to critically review the role of blood and cerebrospinal fluid (CSF)-liquid biopsy in CNS lymphomas, with a main focus on primary central nervous system lymphomas (PCNSL). RESULTS Several clinical applications are suggested: diagnosis of PCNSL in critical settings (elderly or frail patients, deep locations, and steroid responsiveness), definition of minimal residual disease, early indication of tumor response or relapse following treatments, and prediction of outcome. CONCLUSIONS Thus far, no clinically validated circulating biomarkers for managing both primary and secondary CNS lymphomas exist. There is need of standardization of biofluid collection, choice of analytes, and type of technique to perform the molecular analysis. The various assays should be evaluated through well-organized central testing within clinical trials.
Collapse
Affiliation(s)
- Lakshmi Nayak
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Florian Scherer
- Department of Medicine I, Faculty of Medicine, Medical Center—University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Norbert Galldiks
- Department of Neurology, University of Cologne, Medical Faculty and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), and Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Juelich, Germany
| | - Manmeet Ahluwalia
- Rose and Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland OH and Miami Cancer Institute, Baptist Health South Florida, International University, Miami, Florida, USA
| | - Alexander Baraniskin
- Department of Hematology, Oncology and Palliative Care, Evangelisches Krankenhaus Hamm, Hamm, Germany
| | - Louisa von Baumgarten
- Department of Neurosurgery, Ludwig-Maximilians—University of Munich, Munich, Germany
- German Cancer Consortium, Partner Site Munich, Munich, Germany
| | | | - Andrés J M Ferreri
- Università Vita-Salute San Raffaele and IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Christian Grommes
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Neurology, Weill Cornell Medical College, New York, New York, USA
| | - Khê Hoang-Xuan
- APHP, Department of Neuro-oncology, Groupe Hospitalier Pitié-Salpêtrière; Sorbonne Université, Paris Brain Institute ICM, Paris, France
| | - Julia Kühn
- Department of Medicine I, Faculty of Medicine, Medical Center University of Freiburg, University of Freiburg, Freiburg, Germany
| | - James L Rubenstein
- UCSF Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Susan M Chang
- Department of Neurosurgery and Division of Neuro-Oncology, University of California, San Francisco, California, USA
| | | | - Patrick Y Wen
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Riccardo Soffietti
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| |
Collapse
|
12
|
Bathla G, Dhruba DD, Soni N, Liu Y, Larson NB, Kassmeyer BA, Mohan S, Roberts-Wolfe D, Rathore S, Le NH, Zhang H, Sonka M, Priya S. AI-based classification of three common malignant tumors in neuro-oncology: A multi-institutional comparison of machine learning and deep learning methods. J Neuroradiol 2024; 51:258-264. [PMID: 37652263 DOI: 10.1016/j.neurad.2023.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023]
Abstract
PURPOSE To determine if machine learning (ML) or deep learning (DL) pipelines perform better in AI-based three-class classification of glioblastoma (GBM), intracranial metastatic disease (IMD) and primary CNS lymphoma (PCNSL). METHODOLOGY Retrospective analysis included 502 cases for training (208 GBM, 67 PCNSL and 227 IMD), with external validation on 86 cases (27:27:32). Multiparametric MRI images (T1W, T2W, FLAIR, DWI and T1-CE) were co-registered, resampled, denoised and intensity normalized, followed by semiautomatic 3D segmentation of the enhancing tumor (ET) and peritumoral region (PTR). Model performance was assessed using several ML pipelines and 3D-convolutional neural networks (3D-CNN) using sequence specific masks, as well as combination of masks. All pipelines were trained and evaluated with 5-fold nested cross-validation on internal data followed by external validation using multi-class AUC. RESULTS Two ML models achieved similar performance on test set, one using T2-ET and T2-PTR masks (AUC: 0.885, 95% CI: [0.816, 0.935] and another using T1-CE-ET and FLAIR-PTR mask (AUC: 0.878, CI: [0.804, 0.930]). The best performing DL models achieved an AUC of 0.854, (CI [0.774, 0.914]) on external data using T1-CE-ET and T2-PTR masks, followed by model derived from T1-CE-ET, ADC-ET and FLAIR-PTR masks (AUC: 0.851, CI [0.772, 0.909]). CONCLUSION Both ML and DL derived pipelines achieved similar performance. T1-CE mask was used in three of the top four overall models. Additionally, all four models had some mask derived from PTR, either T2WI or FLAIR.
Collapse
Affiliation(s)
- Girish Bathla
- Department of Radiology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA 52242, USA; Department of Radiology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55902, USA.
| | - Durjoy Deb Dhruba
- Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center for the Engineering Arts and Sciences, Iowa City, IA 52242 USA
| | - Neetu Soni
- Department of Radiology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA 52242, USA; Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave, Box 648, Rochester, NY 14642, USA
| | - Yanan Liu
- Advanced Pulmonary Physiomic Imaging Laboratory (APPIL), University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242 USA
| | - Nicholas B Larson
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, 200 1st Street SW, Rochester, MN 55902, USA
| | - Blake A Kassmeyer
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, 200 1st Street SW, Rochester, MN 55902, USA
| | - Suyash Mohan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104 USA
| | - Douglas Roberts-Wolfe
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104 USA
| | - Saima Rathore
- Senior research scientist, Avid Radiopharmaceuticals, 3711 Market Street, Philadelphia, PA 19104, USA
| | - Nam H Le
- Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center for the Engineering Arts and Sciences, Iowa City, IA 52242 USA
| | - Honghai Zhang
- Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center for the Engineering Arts and Sciences, Iowa City, IA 52242 USA
| | - Milan Sonka
- Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center for the Engineering Arts and Sciences, Iowa City, IA 52242 USA
| | - Sarv Priya
- Department of Radiology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA 52242, USA
| |
Collapse
|
13
|
Garaba A, Aslam N, Ponzio F, Panciani PP, Brinjikji W, Fontanella M, De Maria L. Radiomics for differentiation of gliomas from primary central nervous system lymphomas: a systematic review and meta-analysis. Front Oncol 2024; 14:1291861. [PMID: 38420015 PMCID: PMC10899458 DOI: 10.3389/fonc.2024.1291861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Background and objective Numerous radiomics-based models have been proposed to discriminate between central nervous system (CNS) gliomas and primary central nervous system lymphomas (PCNSLs). Given the heterogeneity of the existing models, we aimed to define their overall performance and identify the most critical variables to pilot future algorithms. Methods A systematic review of the literature and a meta-analysis were conducted, encompassing 12 studies and a total of 1779 patients, focusing on radiomics to differentiate gliomas from PCNSLs. A comprehensive literature search was performed through PubMed, Ovid MEDLINE, Ovid EMBASE, Web of Science, and Scopus databases. Overall sensitivity (SEN) and specificity (SPE) were estimated. Event rates were pooled using a random-effects meta-analysis, and the heterogeneity was assessed using the χ2 test. Results The overall SEN and SPE for differentiation between CNS gliomas and PCNSLs were 88% (95% CI = 0.83 - 0.91) and 87% (95% CI = 0.83 - 0.91), respectively. The best-performing features were the ones extracted from the Gray Level Run Length Matrix (GLRLM; ACC 97%), followed by those obtained from the Neighboring Gray Tone Difference Matrix (NGTDM; ACC 93%), and shape-based features (ACC 91%). The 18F-FDG-PET/CT was the best-performing imaging modality (ACC 97%), followed by the MRI CE-T1W (ACC 87% - 95%). Most studies applied a cross-validation analysis (92%). Conclusion The current SEN and SPE of radiomics to discriminate CNS gliomas from PCNSLs are high, making radiomics a helpful method to differentiate these tumor types. The best-performing features are the GLRLM, NGTDM, and shape-based features. The 18F-FDG-PET/CT imaging modality is the best-performing, while the MRI CE-T1W is the most used.
Collapse
Affiliation(s)
- Alexandru Garaba
- Department of Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Nummra Aslam
- Department of Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Francesco Ponzio
- Interuniversity Department of Regional and Urban Studies and Planning, Politecnico di Torino, Torino, Italy
| | - Pier Paolo Panciani
- Department of Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Waleed Brinjikji
- Department of Neurosurgery and Interventional Neuroradiology, Mayo Clinic, Rochester, MN, United States
| | - Marco Fontanella
- Department of Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Lucio De Maria
- Department of Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
- Department of Clinical Neuroscience, Geneva University Hospitals (HUG), Geneva, Switzerland
| |
Collapse
|
14
|
Liu X, Liu J. Aided Diagnosis Model Based on Deep Learning for Glioblastoma, Solitary Brain Metastases, and Primary Central Nervous System Lymphoma with Multi-Modal MRI. BIOLOGY 2024; 13:99. [PMID: 38392317 PMCID: PMC10887006 DOI: 10.3390/biology13020099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/24/2024]
Abstract
(1) Background: Diagnosis of glioblastoma (GBM), solitary brain metastases (SBM), and primary central nervous system lymphoma (PCNSL) plays a decisive role in the development of personalized treatment plans. Constructing a deep learning classification network to diagnose GBM, SBM, and PCNSL with multi-modal MRI is important and necessary. (2) Subjects: GBM, SBM, and PCNSL were confirmed by histopathology with the multi-modal MRI examination (study from 1225 subjects, average age 53 years, 671 males), 3.0 T T2 fluid-attenuated inversion recovery (T2-Flair), and Contrast-enhanced T1-weighted imaging (CE-T1WI). (3) Methods: This paper introduces MFFC-Net, a classification model based on the fusion of multi-modal MRIs, for the classification of GBM, SBM, and PCNSL. The network architecture consists of parallel encoders using DenseBlocks to extract features from different modalities of MRI images. Subsequently, an L1-norm feature fusion module is applied to enhance the interrelationships among tumor tissues. Then, a spatial-channel self-attention weighting operation is performed after the feature fusion. Finally, the classification results are obtained using the full convolutional layer (FC) and Soft-max. (4) Results: The ACC of MFFC-Net based on feature fusion was 0.920, better than the radiomics model (ACC of 0.829). There was no significant difference in the ACC compared to the expert radiologist (0.920 vs. 0.924, p = 0.774). (5) Conclusions: Our MFFC-Net model could distinguish GBM, SBM, and PCNSL preoperatively based on multi-modal MRI, with a higher performance than the radiomics model and was comparable to radiologists.
Collapse
Affiliation(s)
- Xiao Liu
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Jie Liu
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
15
|
Zhao Z, Song Z, Wang Z, Zhang F, Ding Z, Fan T. Advances in Molecular Pathology, Diagnosis and Treatment of Spinal Cord Astrocytomas. Technol Cancer Res Treat 2024; 23:15330338241262483. [PMID: 39043042 PMCID: PMC11271101 DOI: 10.1177/15330338241262483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 07/25/2024] Open
Abstract
Spinal cord astrocytoma (SCA) is a rare subtype of astrocytoma, posing challenges in diagnosis and treatment. Low-grade SCA can achieve long-term survival solely through surgery, while high-grade has a disappointing prognosis even with comprehensive treatment. Diagnostic criteria and standard treatment of intracranial astrocytoma have shown obvious limitations in SCA. Research on the molecular mechanism in SCA is lagging far behind that on intracranial astrocytoma. In recent years, huge breakthroughs have been made in molecular pathology of astrocytoma, and novel techniques have emerged, including DNA methylation analysis and radiomics. These advances are now making it possible to provide a precise diagnosis and develop corresponding treatment strategies in SCA. Our aim is to review the current status of diagnosis and treatment of SCA, and summarize the latest research advancement, including tumor subtype, molecular characteristics, diagnostic technology, and potential therapy strategies, thus deepening our understanding of this uncommon tumor type and providing guidance for accurate diagnosis and treatment.
Collapse
Affiliation(s)
- Zijun Zhao
- Spine Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Zihan Song
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zairan Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fan Zhang
- Spine Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Ze Ding
- Spine Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Tao Fan
- Spine Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Liu G, Zhang X, Zhang N, Xiao H, Chen X, Ma L. Detecting Double Expression Status in Primary Central Nervous System Lymphoma Using Multiparametric MRI Based Machine Learning. J Magn Reson Imaging 2024; 59:231-239. [PMID: 37199225 DOI: 10.1002/jmri.28782] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/01/2023] [Accepted: 05/01/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Double expression lymphoma (DEL) is a subtype of primary central nervous system lymphoma (PCNSL) that often has a poor prognosis. Currently, there are limited noninvasive ways to detect protein expression. PURPOSE To detect DEL in PCNSL using multiparametric MRI-based machine learning. STUDY TYPE Retrospective. POPULATION Forty PCNSL patients were enrolled in the study among whom 17 were DEL (9 males and 8 females, 61.29 ± 14.14 years) and 23 were non-DEL (14 males and 9 females, 55.57 ± 14.16 years) with 59 lesions (28 DEL and 31 non-DEL). FIELD STRENGTH/SEQUENCE ADC map derived from DWI (b = 0/1000 s/mm2 ), fast spin echo T2WI, T2FLAIR, and contrast-enhanced T1 weighted imaging (T1CE) were collected at 3.0 T. ASSESSMENT Two raters manually segmented lesions by ITK-SNAP on ADC, T2WI, T2FLAIR and T1CE. A total of 2234 radiomics features from the tumor segmentation area were extracted. The t-test was conducted to filter the features, and elastic net regression algorithm combined with recursive feature elimination was used to calculate the essential features. Finally, 12 groups with combinations of different sequences were fitted to 6 classifiers, and the optimal models were selected. STATISTICAL TESTS Continuous variables were assessed by the t-test, while categorical variables were assessed by the non-parametric test. Interclass correlation coefficient tested variables' consistency. Sensitivity, specificity, accuracy F1-score, and area under the curve (AUC) were used to evaluate model performance. RESULTS DEL status could be identified to varying degrees with 72 models based on radiomics, and model performance could be improved by combining different sequences and classifiers. Both SVMlinear and logistic regression (LR) combined with four sequence group had similar largest AUCmean (0.92 ± 0.09 vs. 0.92 ± 0.05), and SVMlinear was considered as the optimal model in this study since the F1-score of SVMlinear (0.88) was higher than that of LR (0.83). DATA CONCLUSION Multiparametric MRI-based machine learning is promising in DEL detection. EVIDENCE LEVEL 4 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Guoli Liu
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Xinyue Zhang
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Nan Zhang
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Huafeng Xiao
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Xinjing Chen
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Lin Ma
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
17
|
Yuan J, Zhang Y, Wang X. Application of machine learning in the management of lymphoma: Current practice and future prospects. Digit Health 2024; 10:20552076241247963. [PMID: 38628632 PMCID: PMC11020711 DOI: 10.1177/20552076241247963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/28/2024] [Indexed: 04/19/2024] Open
Abstract
In the past decade, digitization of medical records and multiomics data analysis in lymphoma has led to the accessibility of high-dimensional records. The digitization of medical records, the visualization of extensive volume data extracted from medical images, and the integration of multiomics methods into clinical decision-making have produced many datasets. As a promising auxiliary tool, machine learning (ML) intends to extract homologous features in large-scale data sets and encode them into various patterns to complete complicated tasks. At present, artificial intelligence and digital mining have shown promising prospects in the field of lymphoma pathological image analysis. The paradigm shift from qualitative analysis to quantitative analysis makes the pathological diagnosis more intelligent and the results more accurate and objective. ML can promote accurate lymphoma diagnosis and provide patients with prognostic information and more individualized treatment options. Based on the above, this comprehensive review of the general workflow of ML highlights recent advances in ML techniques in the diagnosis, treatment, and prognosis of lymphoma, and clarifies the boundedness and future orientation of the ML technique in the clinical practice of lymphoma.
Collapse
Affiliation(s)
- Junyun Yuan
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ya Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, China
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, China
- National Clinical Research Center for Hematologic Diseases, Hospital of Soochow University, Suzhou, China
| |
Collapse
|
18
|
Chen P, Wang P, Gao B. The application value of deep learning in the background of precision medicine in glioblastoma. Sci Prog 2024; 107:368504231223353. [PMID: 38262933 PMCID: PMC10807326 DOI: 10.1177/00368504231223353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Introduction: Glioblastoma is a highly malignant central nervous system tumor, World Health Organization Ⅳ, glioblastoma is the most common primary malignancy, due to its own specificity and complexity, different patients often benefit from the current conventional treatment regimen because of different molecular subtypes, in the context of precision medicine, the application of deep learning to identify the salient features of tumors on brain imaging, prognostic predictive assessment combined with clinical data to maximize the benefits of each patient from the treatment regimen is a non-invasive and feasible regimen. Methods: We conducted a comprehensive review of the existing literature on the role of deep learning in glioblastomas, covering molecular classification and diagnosis, prognosis assessment. Results: Data based on a variety of magnetic resonance imaging sequences, genetic information, and clinical combinations enable noninvasive predictive tumor diagnosis of glioblastoma and assess overall survival and treatment response accuracy. For images, standardized image acquisition and data extraction techniques can be effectively translated into learning models for clinical practice. However, it must be recognized that interventions in the treatment of glioblastoma using deep learning are still in their infancy, and the robustness of the model is challenged, as the current total number of glioblastoma samples is insufficient for large-scale experimental methods, which is directly related to the difficulty of application of the model. Conclusion: Compared to radiomics and shallow machine learning, deep learning can be a more robust, non-invasive, and effective approach, providing more valuable information as clinicians develop personalized medical protocols for glioblastoma patients.
Collapse
Affiliation(s)
- Pengyu Chen
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Ping Wang
- Key Laboratory of Brain Imaging, Guizhou Medical University, Guiyang, China
| | - Bo Gao
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| |
Collapse
|
19
|
Li T, Chen X, Jing Y, Wang H, Zhang T, Zhang L, Ding H, Xie M, He L. Diagnostic Value of Multiparameter MRI-Based Radiomics in Pediatric Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disorders. AJNR Am J Neuroradiol 2023; 44:1425-1431. [PMID: 37973182 PMCID: PMC10714848 DOI: 10.3174/ajnr.a8045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/28/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND AND PURPOSE Myelin oligodendrocyte glycoprotein antibody-associated disorders (MOGAD) have a higher prevalence among children. For children undergoing the initial manifestation of MOGAD, prompt diagnosis has paramount importance. This study assessed the performance of multiparameter MRI-based radiomics in distinguishing patients with and without MOGAD with idiopathic inflammatory demyelinating diseases. MATERIALS AND METHODS We enrolled a cohort of 121 patients diagnosed with idiopathic inflammatory demyelinating diseases, including 68 children with MOGAD and 53 children without MOGAD. Radiomics models (T1WI, T2WI, FLAIR, and compound model) using features extracted from demyelinating lesions within the brain parenchyma were developed in the training set. The performance of these models underwent validation within the internal testing set. Additionally, we gathered clinical factors and MRI features of brain parenchymal lesions at their initial presentation. Subsequently, these variables were used in the construction of a clinical prediction model through multivariate logistic regression analysis. RESULTS The areas under the curve for the radiomics models (T1WI, T2WI, FLAIR, and the compound model) in the training set were 0.781 (95% CI, 0.689-0.864), 0.959 (95% CI, 0.924-0.987), 0.939 (95% CI, 0.898-0.979), and 0.989 (95% CI, 0.976-0.999), respectively. The areas under the curve for the radiomics models (T1WI, T2WI, FLAIR, and the compound model) in the testing set were 0.500 (95% CI, 0.304-0.652), 0.833 (95% CI, 0.697-0.944), 0.804 (95% CI, 0.664-0.918), and 0.905 (95% CI, 0.803-0.979), respectively. The areas under the curve of the clinical prediction model in the training set and testing set were 0.700 and 0.289, respectively. CONCLUSIONS Multiparameter MRI-based radiomics helps distinguish MOGAD from non-MOGAD in patients with idiopathic inflammatory demyelinating diseases.
Collapse
Affiliation(s)
- Ting Li
- From the Department of Radiology (T.L., X.C., H.W., T.Z., L.Z., H.D., M.X., L.H.), Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xin Chen
- From the Department of Radiology (T.L., X.C., H.W., T.Z., L.Z., H.D., M.X., L.H.), Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yang Jing
- Huiying Medical Technology Co (Y.J.), Dongsheng Science and Technology Park, Beijing, China
| | - Haoru Wang
- From the Department of Radiology (T.L., X.C., H.W., T.Z., L.Z., H.D., M.X., L.H.), Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Ting Zhang
- From the Department of Radiology (T.L., X.C., H.W., T.Z., L.Z., H.D., M.X., L.H.), Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Li Zhang
- From the Department of Radiology (T.L., X.C., H.W., T.Z., L.Z., H.D., M.X., L.H.), Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Hao Ding
- From the Department of Radiology (T.L., X.C., H.W., T.Z., L.Z., H.D., M.X., L.H.), Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Mingye Xie
- From the Department of Radiology (T.L., X.C., H.W., T.Z., L.Z., H.D., M.X., L.H.), Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Ling He
- From the Department of Radiology (T.L., X.C., H.W., T.Z., L.Z., H.D., M.X., L.H.), Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
20
|
Yimit Y, Yasin P, Tuersun A, Abulizi A, Jia W, Wang Y, Nijiati M. Differentiation between cerebral alveolar echinococcosis and brain metastases with radiomics combined machine learning approach. Eur J Med Res 2023; 28:577. [PMID: 38071384 PMCID: PMC10709961 DOI: 10.1186/s40001-023-01550-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Cerebral alveolar echinococcosis (CAE) and brain metastases (BM) share similar in locations and imaging appearance. However, they require distinct treatment approaches, with CAE typically treated with chemotherapy and surgery, while BM is managed with radiotherapy and targeted therapy for the primary malignancy. Accurate diagnosis is crucial due to the divergent treatment strategies. PURPOSE This study aims to evaluate the effectiveness of radiomics and machine learning techniques based on magnetic resonance imaging (MRI) to differentiate between CAE and BM. METHODS We retrospectively analyzed MRI images of 130 patients (30 CAE and 100 BM) from Xinjiang Medical University First Affiliated Hospital and The First People's Hospital of Kashi Prefecture, between January 2014 and December 2022. The dataset was divided into training (91 cases) and testing (39 cases) sets. Three dimensional tumors were segmented by radiologists from contrast-enhanced T1WI images on open resources software 3D Slicer. Features were extracted on Pyradiomics, further feature reduction was carried out using univariate analysis, correlation analysis, and least absolute shrinkage and selection operator (LASSO). Finally, we built five machine learning models, support vector machine, logistic regression, linear discrimination analysis, k-nearest neighbors classifier, and Gaussian naïve bias and evaluated their performance via several metrics including sensitivity (recall), specificity, positive predictive value (precision), negative predictive value, accuracy and the area under the curve (AUC). RESULTS The area under curve (AUC) of support vector classifier (SVC), linear discrimination analysis (LDA), k-nearest neighbors (KNN), and gaussian naïve bias (NB) algorithms in training (testing) sets are 0.99 (0.94), 1.00 (0.87), 0.98 (0.92), 0.97 (0.97), and 0.98 (0.93), respectively. Nested cross-validation demonstrated the robustness and generalizability of the models. Additionally, the calibration plot and decision curve analysis demonstrated the practical usefulness of these models in clinical practice, with lower bias toward different subgroups during decision-making. CONCLUSION The combination of radiomics and machine learning approach based on contrast enhanced T1WI images could well distinguish CAE and BM. This approach holds promise in assisting doctors with accurate diagnosis and clinical decision-making.
Collapse
Affiliation(s)
- Yasen Yimit
- Medical Imaging Center, The First People's Hospital of Kashi (Kashgar) Prefecture, Kashi, 844000, People's Republic of China
| | - Parhat Yasin
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Abuduresuli Tuersun
- Medical Imaging Center, The First People's Hospital of Kashi (Kashgar) Prefecture, Kashi, 844000, People's Republic of China
| | - Abudoukeyoumujiang Abulizi
- Medical Imaging Center, The First People's Hospital of Kashi (Kashgar) Prefecture, Kashi, 844000, People's Republic of China
| | - Wenxiao Jia
- Medical Imaging Center, Xinjiang Medical University Affiliated First Hospital, Urumqi, 830054, People's Republic of China
| | - Yunling Wang
- Medical Imaging Center, Xinjiang Medical University Affiliated First Hospital, Urumqi, 830054, People's Republic of China
| | - Mayidili Nijiati
- Medical Imaging Center, The First People's Hospital of Kashi (Kashgar) Prefecture, Kashi, 844000, People's Republic of China.
| |
Collapse
|
21
|
Zhang D, Luan J, Liu B, Yang A, Lv K, Hu P, Han X, Yu H, Shmuel A, Ma G, Zhang C. Comparison of MRI radiomics-based machine learning survival models in predicting prognosis of glioblastoma multiforme. Front Med (Lausanne) 2023; 10:1271687. [PMID: 38098850 PMCID: PMC10720716 DOI: 10.3389/fmed.2023.1271687] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023] Open
Abstract
OBJECTIVE To compare the performance of radiomics-based machine learning survival models in predicting the prognosis of glioblastoma multiforme (GBM) patients. METHODS 131 GBM patients were included in our study. The traditional Cox proportional-hazards (CoxPH) model and four machine learning models (SurvivalTree, Random survival forest (RSF), DeepSurv, DeepHit) were constructed, and the performance of the five models was evaluated using the C-index. RESULTS After the screening, 1792 radiomics features were obtained. Seven radiomics features with the strongest relationship with prognosis were obtained following the application of the least absolute shrinkage and selection operator (LASSO) regression. The CoxPH model demonstrated that age (HR = 1.576, p = 0.037), Karnofsky performance status (KPS) score (HR = 1.890, p = 0.006), radiomics risk score (HR = 3.497, p = 0.001), and radiomics risk level (HR = 1.572, p = 0.043) were associated with poorer prognosis. The DeepSurv model performed the best among the five models, obtaining C-index of 0.882 and 0.732 for the training and test set, respectively. The performances of the other four models were lower: CoxPH (0.663 training set / 0.635 test set), SurvivalTree (0.702/0.655), RSF (0.735/0.667), DeepHit (0.608/0.560). CONCLUSION This study confirmed the superior performance of deep learning algorithms based on radiomics relative to the traditional method in predicting the overall survival of GBM patients; specifically, the DeepSurv model showed the best predictive ability.
Collapse
Affiliation(s)
- Di Zhang
- Department of Radiology, Liaocheng People’s Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Liaocheng, Shandong, China
| | - Jixin Luan
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Bing Liu
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Aocai Yang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Kuan Lv
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Pianpian Hu
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Xiaowei Han
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Hongwei Yu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Amir Shmuel
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Chuanchen Zhang
- Department of Radiology, Liaocheng People’s Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Liaocheng, Shandong, China
| |
Collapse
|
22
|
Chen C, Du X, Yang L, Liu H, Li Z, Gou Z, Qi J. Research on application of radiomics in glioma: a bibliometric and visual analysis. Front Oncol 2023; 13:1083080. [PMID: 37771434 PMCID: PMC10523166 DOI: 10.3389/fonc.2023.1083080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 08/16/2023] [Indexed: 09/30/2023] Open
Abstract
Background With the continuous development of medical imaging informatics technology, radiomics has become a new and evolving field in medical applications. Radiomics aims to be an aid to support clinical decision making by extracting quantitative features from medical images and has a very wide range of applications. The purpose of this study was to perform a bibliometric and visual analysis of scientific results and research trends in the research application of radiomics in glioma. Methods We searched the Web of Science Core Collection (WOScc) for publications related to glioma radiomics. A bibliometric and visual analysis of online publications in this field related to countries/regions, authors, journals, references and keywords was performed using CiteSpace and R software. Results A total of 587 relevant literature published from 2012 to September 2022 were retrieved in WOScc, and finally a total of 484 publications were obtained according to the filtering criteria, including 393 (81.20%) articles and 91 (18.80%) reviews. The number of relevant publications increases year by year. The highest number of publications was from the USA (171 articles, 35.33%) and China (170 articles, 35.12%). The research institution with the highest number of publications was Chinese Acad Sci (24), followed by Univ Penn (22) and Fudan Univ (21). WANG Y (27) had the most publications, followed by LI Y (22), and WANG J (20). Among the 555 co-cited authors, LOUIS DN (207) and KICKINGEREDER P (207) were the most cited authors. FRONTIERS IN ONCOLOGY (42) was the most published journal and NEURO-ONCOLOGY (412) was the most co-cited journal. The most frequent keywords in all publications included glioblastoma (187), survival (136), classification (131), magnetic resonance imaging (113), machine learning (100), tumor (82), and feature (79), central nervous system (66), IDH (57), and radiomics (55). Cluster analysis was performed on the basis of keyword co-occurrence, and a total of 16 clusters were formed, indicating that these directions are the current hotspots of radiomics research applications in glioma and may be the future directions of continuous development. Conclusion In the past decade, radiomics has received much attention in the medical field and has been widely used in clinical research applications. Cooperation and communication between countries/regions need to be enhanced in future research to promote the development of radiomics in the field of medicine. In addition, the application of radiomics has improved the accuracy of pre-treatment diagnosis, efficacy prediction and prognosis assessment of glioma and helped to promote the development into precision medicine, the future still faces many challenges.
Collapse
Affiliation(s)
- Chunbao Chen
- Department of Neurosurgery, Afiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xue Du
- Department of Oncology, The People's Hospital of Hechuan, Chongqing, China
- Department of Oncology, North Sichuan Medical College, Nanchong, China
| | - Lu Yang
- Department of Oncology, Suining Central Hospital, Suining, China
| | - Hongjun Liu
- Department of Neurosurgery, Afiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Zhou Li
- Department of Neurosurgery, Nanchong Central Hospital, The Afiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong, China
| | - Zhangyang Gou
- Department of Neurosurgery, Afiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jian Qi
- Department of Neurosurgery, Afiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
23
|
Vallée R, Vallée JN, Guillevin C, Lallouette A, Thomas C, Rittano G, Wager M, Guillevin R, Vallée A. Machine learning decision tree models for multiclass classification of common malignant brain tumors using perfusion and spectroscopy MRI data. Front Oncol 2023; 13:1089998. [PMID: 37614505 PMCID: PMC10442801 DOI: 10.3389/fonc.2023.1089998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 07/17/2023] [Indexed: 08/25/2023] Open
Abstract
Background To investigate the contribution of machine learning decision tree models applied to perfusion and spectroscopy MRI for multiclass classification of lymphomas, glioblastomas, and metastases, and then to bring out the underlying key pathophysiological processes involved in the hierarchization of the decision-making algorithms of the models. Methods From 2013 to 2020, 180 consecutive patients with histopathologically proved lymphomas (n = 77), glioblastomas (n = 45), and metastases (n = 58) were included in machine learning analysis after undergoing MRI. The perfusion parameters (rCBVmax, PSRmax) and spectroscopic concentration ratios (lac/Cr, Cho/NAA, Cho/Cr, and lip/Cr) were applied to construct Classification and Regression Tree (CART) models for multiclass classification of these brain tumors. A 5-fold random cross validation was performed on the dataset. Results The decision tree model thus constructed successfully classified all 3 tumor types with a performance (AUC) of 0.98 for PCNSLs, 0.98 for GBM and 1.00 for METs. The model accuracy was 0.96 with a RSquare of 0.887. Five rules of classifier combinations were extracted with a predicted probability from 0.907 to 0.989 for that end nodes of the decision tree for tumor multiclass classification. In hierarchical order of importance, the root node (Cho/NAA) in the decision tree algorithm was primarily based on the proliferative, infiltrative, and neuronal destructive characteristics of the tumor, the internal node (PSRmax), on tumor tissue capillary permeability characteristics, and the end node (Lac/Cr or Cho/Cr), on tumor energy glycolytic (Warburg effect), or on membrane lipid tumor metabolism. Conclusion Our study shows potential implementation of machine learning decision tree model algorithms based on a hierarchical, convenient, and personalized use of perfusion and spectroscopy MRI data for multiclass classification of these brain tumors.
Collapse
Affiliation(s)
- Rodolphe Vallée
- Interdisciplinary Laboratory in Neurosciences, Physiology and Psychology (LINP2), Université Paris Lumière (UPL), Paris Nanterre University, Nanterre, France
- Laboratory of Mathematics and Applications (LMA) Centre National de la Recherche Scientifique - Unité Mixte de Recherche (CNRS UMR)7348, i3M-DACTIM-MIH (Data Analysis and Computations Through Imaging Modeling - Mathematics, Image, Health), Poitiers University, Poitiers, France
- Glaucoma Research Center, Swiss Visio Network, Lausanne, Switzerland
| | - Jean-Noël Vallée
- Laboratory of Mathematics and Applications (LMA) Centre National de la Recherche Scientifique - Unité Mixte de Recherche (CNRS UMR)7348, i3M-DACTIM-MIH (Data Analysis and Computations Through Imaging Modeling - Mathematics, Image, Health), Poitiers University, Poitiers, France
- Diagnostic and Functional Neuroradiology and Brain stimulation Department, 15-20 National Vision Hospital of Paris - Paris University Hospital Center, University of PARIS-SACLAY - UVSQ, Paris, France
| | - Carole Guillevin
- Laboratory of Mathematics and Applications (LMA) Centre National de la Recherche Scientifique - Unité Mixte de Recherche (CNRS UMR)7348, i3M-DACTIM-MIH (Data Analysis and Computations Through Imaging Modeling - Mathematics, Image, Health), Poitiers University, Poitiers, France
- Radiology Department, Poitiers University Hospital, Poitiers University, Poitiers, France
| | | | - Clément Thomas
- Laboratory of Mathematics and Applications (LMA) Centre National de la Recherche Scientifique - Unité Mixte de Recherche (CNRS UMR)7348, i3M-DACTIM-MIH (Data Analysis and Computations Through Imaging Modeling - Mathematics, Image, Health), Poitiers University, Poitiers, France
- Diagnostic and Functional Neuroradiology and Brain stimulation Department, 15-20 National Vision Hospital of Paris - Paris University Hospital Center, University of PARIS-SACLAY - UVSQ, Paris, France
| | | | - Michel Wager
- Neurosurgery Department, Poitiers University Hospital, Poitiers University, Poitiers, France
| | - Rémy Guillevin
- Laboratory of Mathematics and Applications (LMA) Centre National de la Recherche Scientifique - Unité Mixte de Recherche (CNRS UMR)7348, i3M-DACTIM-MIH (Data Analysis and Computations Through Imaging Modeling - Mathematics, Image, Health), Poitiers University, Poitiers, France
- Radiology Department, Poitiers University Hospital, Poitiers University, Poitiers, France
| | - Alexandre Vallée
- Department of Epidemiology and Public Health, Foch Hospital, Suresnes, France
| |
Collapse
|
24
|
Priya S, Ward C, Bathla G. Letter to editor regarding article "fully automated radiomics-based machine learning models for multiclass classification of single brain tumors: Glioblastoma, lymphoma, and metastasis". J Neuroradiol 2023; 50:40-41. [PMID: 36610935 DOI: 10.1016/j.neurad.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/25/2022] [Indexed: 01/07/2023]
Affiliation(s)
- Sarv Priya
- Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA.
| | - Caitlin Ward
- Division of Biostatistics, School of Public Health, University of Minnesota, USA
| | - Girish Bathla
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
25
|
An integrative non-invasive malignant brain tumors classification and Ki-67 labeling index prediction pipeline with radiomics approach. Eur J Radiol 2023; 158:110639. [PMID: 36463703 DOI: 10.1016/j.ejrad.2022.110639] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/05/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND The histological sub-classes of brain tumors and the Ki-67 labeling index (LI) of tumor cells are major factors in the diagnosis, prognosis, and treatment management of patients. Many existing studies primarily focused on the classification of two classes of brain tumors and the Ki-67LI of gliomas. This study aimed to develop a preoperative non-invasive radiomics pipeline based on multiparametric-MRI to classify-three types of brain tumors, glioblastoma (GBM), metastasis (MET) and primary central nervous system lymphoma (PCNSL), and to predict their corresponding Ki-67LI. METHODS In this retrospective study, 153 patients with malignant brain tumors were involved. The radiomics features were extracted from three types of MRI (T1-weighted imaging (T1WI), fluid-attenuated inversion recovery (FLAIR), and contrast-enhanced T1-weighted imaging (CE-T1WI)) with three masks (tumor core, edema, and whole tumor masks) and selected by a combination of Pearson correlation coefficient (CORR), LASSO, and Max-Relevance and Min-Redundancy (mRMR) filters. The performance of six classifiers was compared and the top three performing classifiers were used to construct the ensemble learning model (ELM). The proposed ELM was evaluated in the training dataset (108 patients) by 5-fold cross-validation and in the test dataset (45 patients) by hold-out. The accuracy (ACC), sensitivity (SEN), specificity (SPE), F1-Score, and the area under the receiver operating characteristic curve (AUC) indicators evaluated the performance of the models. RESULTS The best feature sets and ELM with the optimal performance were selected to construct the tri-categorized brain tumor aided diagnosis model (training dataset AUC: 0.96 (95% CI: 0.93, 0.99); test dataset AUC: 0.93) and Ki-67LI prediction model (training dataset AUC: 0.96 (95% CI: 0.94, 0.98); test dataset AUC: 0.91). The CE-T1WI was the best single modality for all classifiers. Meanwhile, the whole tumor was the most vital mask for the tumor classification and the tumor core was the most vital mask for the Ki-67LI prediction. CONCLUSION The developed radiomics models led to the precise preoperative classification of GBM, MET, and PCNSL and the prediction of Ki-67LI, which could be utilized in clinical practice for the treatment planning for brain tumors.
Collapse
|
26
|
Cao L, Zhang M, Zhang Y, Ji B, Wang X, Wang X. Progress of radiological‑pathological workflows in the differential diagnosis between primary central nervous system lymphoma and high‑grade glioma (Review). Oncol Rep 2022; 49:20. [PMID: 36484403 PMCID: PMC9773014 DOI: 10.3892/or.2022.8457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/03/2022] [Indexed: 12/13/2022] Open
Abstract
Primary central nervous system lymphoma (PCNSL) and high‑grade glioma (HGG) are distinct entities of the CNS with completely distinct treatments. The treatment of PCNSL is chemotherapy‑based, while surgery is the first choice for HGG. However, the clinical features of the two entities often overlap, and a clear pathological diagnosis is important for subsequent management, especially for the management of PCNSL. Stereotactic biopsy is recognized as one of the minimally invasive alternatives for evaluating the involvement of the CNS. However, in the case of limited tissue materials, the differential diagnosis between the two entities is still difficult. In addition, some patients are too ill to tolerate a needle biopsy. Therefore, combining imaging, histopathology and laboratory examinations is essential in order to make a clear diagnosis as soon as possible. The present study reviews the progress of comparative research on both imaging and laboratory tests based on the pathophysiological changes of the two entities, and proposes an integrative and optimized diagnostic process, with the purpose of building a better understanding for neurologists, hematologists, radiologists and pathologists.
Collapse
Affiliation(s)
- Luming Cao
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Mengchao Zhang
- Department of Radiology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Ying Zhang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Bin Ji
- Department of Nuclear Medicine, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Xuemei Wang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Xueju Wang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China,Correspondence to: Dr Xueju Wang, Department of Pathology, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun, Jilin 130033, P.R. China, E-mail:
| |
Collapse
|
27
|
Radiomics can differentiate high-grade glioma from brain metastasis: a systematic review and meta-analysis. Eur Radiol 2022; 32:8039-8051. [PMID: 35587827 DOI: 10.1007/s00330-022-08828-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/05/2022] [Accepted: 04/18/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVE (1) To evaluate the diagnostic performance of radiomics in differentiating high-grade glioma from brain metastasis and how to improve the model. (2) To assess the methodological quality of radiomics studies and explore ways of embracing the clinical application of radiomics. METHODS Studies using radiomics to differentiate high-grade glioma from brain metastasis published by 26 July 2021 were systematically reviewed. Methodological quality and risk of bias were assessed using the Radiomics Quality Score (RQS) system and Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool, respectively. Pooled sensitivity and specificity of the radiomics model were also calculated. RESULTS Seventeen studies combining 1,717 patients were included in the systematic review, of which 10 studies without data leakage suspicion were employed for the quantitative statistical analysis. The average RQS was 5.13 (14.25% of total), with substantial or almost perfect inter-rater agreements. The inclusion of clinical features in the radiomics model was only reported in one study, as was the case for publicly available algorithm code. The pooled sensitivity and specificity were 84% (95% CI, 80-88%) and 84% (95% CI, 81-87%), respectively. The performances of feature extraction from the volume of interest (VOI) or (semi) automatic segmentation in the radiomics models were superior to those of protocols employing region of interest (ROI) or manual segmentation. CONCLUSION Radiomics can accurately differentiate high-grade glioma from brain metastasis. The adoption of standardized workflow to avoid potential data leakage as well as the integration of clinical features and radiomics are advised to consider in future studies. KEY POINTS • The pooled sensitivity and specificity of radiomics for differentiating high-grade gliomas from brain metastasis were 84% and 84%, respectively. • Avoiding potential data leakage by adopting an intensive and standardized workflow is essential to improve the quality and generalizability of the radiomics model. • The application of radiomics in combination with clinical features in differentiating high-grade gliomas from brain metastasis needs further validation.
Collapse
|
28
|
Guha A, Goda JS, Dasgupta A, Mahajan A, Halder S, Gawde J, Talole S. Classifying primary central nervous system lymphoma from glioblastoma using deep learning and radiomics based machine learning approach - a systematic review and meta-analysis. Front Oncol 2022; 12:884173. [PMID: 36263203 PMCID: PMC9574102 DOI: 10.3389/fonc.2022.884173] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/07/2022] [Indexed: 01/06/2023] Open
Abstract
BackgroundGlioblastoma (GBM) and primary central nervous system lymphoma (PCNSL) are common in elderly yet difficult to differentiate on MRI. Their management and prognosis are quite different. Recent surge of interest in predictive analytics, using machine learning (ML) from radiomic features and deep learning (DL) for diagnosing, predicting response and prognosticating disease has evinced interest among radiologists and clinicians. The objective of this systematic review and meta-analysis was to evaluate the deep learning & ML algorithms in classifying PCNSL from GBM.MethodsThe authors performed a systematic review of the literature from MEDLINE, EMBASE and the Cochrane central trials register for the search strategy in accordance with PRISMA guidelines to select and evaluate studies that included themes of ML, DL, AI, GBM, PCNSL. All studies reporting on ML algorithms or DL that for differentiating PCNSL from GBM on MR imaging were included. These studies were further narrowed down to focus on works published between 2018 and 2021. Two researchers independently conducted the literature screening, database extraction and risk bias assessment. The extracted data was synthesised and analysed by forest plots. Outcomes assessed were test characteristics such as accuracy, sensitivity, specificity and balanced accuracy.ResultsTen articles meeting the eligibility criteria were identified addressing use of ML and DL in training and validation classifiers to distinguish PCNSL from GBM on MR imaging. The total sample size was 1311 in the included studies. ML approach was used in 6 studies while DL in 4 studies. The lowest reported sensitivity was 80%, while the highest reported sensitivity was 99% in studies in which ML and DL was directly compared with the gold standard histopathology. The lowest reported specificity was 87% while the highest reported specificity was 100%. The highest reported balanced accuracy was 100% and the lowest was 84%.ConclusionsExtensive search of the database revealed a limited number of studies that have applied ML or DL to differentiate PCNSL from GBM. Of the currently published studies, Both DL & ML algorithms have demonstrated encouraging results and certainly have the potential to aid neurooncologists in taking preoperative decisions in the future leading to not only reduction in morbidities but also be cost effective.
Collapse
Affiliation(s)
- Amrita Guha
- Department of Radio Diagnosis, Tata Memorial Centre, Homi Bhaba National Institute, Mumbai, India
- *Correspondence: Amrita Guha, ; Jayant S. Goda,
| | - Jayant S. Goda
- Department of Radio Diagnosis, Tata Memorial Centre, Homi Bhaba National Institute, Mumbai, India
- *Correspondence: Amrita Guha, ; Jayant S. Goda,
| | - Archya Dasgupta
- Department of Radiation Oncology, Tata Memorial Centre, Homi Bhaba National Institute, Mumbai, India
| | - Abhishek Mahajan
- Department of Radio Diagnosis, Tata Memorial Centre, Homi Bhaba National Institute, Mumbai, India
| | - Soutik Halder
- Department of Biostatistics, Tata Memorial Centre, Homi Bhaba National Institute, Mumbai, India
| | - Jeetendra Gawde
- Department of Biostatistics, Tata Memorial Centre, Homi Bhaba National Institute, Mumbai, India
| | - Sanjay Talole
- Department of Biostatistics, Tata Memorial Centre, Homi Bhaba National Institute, Mumbai, India
| |
Collapse
|
29
|
Differentiating Glioblastoma Multiforme from Brain Metastases Using Multidimensional Radiomics Features Derived from MRI and Multiple Machine Learning Models. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2016006. [PMID: 36212721 PMCID: PMC9534611 DOI: 10.1155/2022/2016006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/06/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022]
Abstract
Due to different treatment strategies, it is extremely important to differentiate between glioblastoma multiforme (GBM) and brain metastases (MET). It often proves difficult to distinguish between GBM and MET using MRI due to their similar appearance on the imaging modalities. Surgical methods are still necessary for definitive diagnosis, despite the importance of magnetic resonance imaging in detecting, characterizing, and monitoring brain tumors. We introduced an accurate, convenient, and user-friendly method to differentiate between GBM and MET through routine MRI sequence and radiomics analyses. We collected 91 patients from one institution, including 50 with GBM and 41 with MET, which were proven pathologically. The tumors separately were segmented on all MRI images (T1-weighted imaging (T1WI), contrast-enhanced T1-weighted imaging (T1C), T2-weighted imaging (T2WI), and fluid-attenuated inversion recovery (FLAIR)) to form the volume of interest (VOI). Eight ML models and feature reduction strategies were evaluated using routine MRI sequences (T1W, T2W, T1-CE, and FLAIR) in two methods with (second model) and without wavelet transform (first model) radiomics. The optimal model was selected based on each model’s accuracy, AUC-roc, and F1-score values. In this study, we have achieved the result of 0.98, 0.99, and 0.98 percent for accuracy, AUC-roc, and F1-score, respectively, which have yielded a better result than the first model. In most investigated models, there were significant improvements in the multidimensional wavelets model compared to the non-multidimensional wavelets model. Multidimensional discrete wavelet transform can analyze hidden features of the MRI from a different perspective and generate accurate features which are highly correlated with the model accuracy.
Collapse
|
30
|
Huang Y, Huang S, Liu Z. Multi-task learning-based feature selection and classification models for glioblastoma and solitary brain metastases. Front Oncol 2022; 12:1000471. [PMID: 36212457 PMCID: PMC9533336 DOI: 10.3389/fonc.2022.1000471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose To investigate the diagnostic performance of feature selection via a multi-task learning model in distinguishing primary glioblastoma from solitary brain metastases. Method The study involved 187 patients diagnosed at Xiangya Hospital, Yunnan Provincial Cancer Hospital, and Southern Cancer Hospital between January 2010 and December 2018. Radiomic features were extracted from conventional magnetic resonance imaging including T1-weighted, T2-weighted, and contrast-enhanced T1-weighted sequences. We proposed a new multi-task learning model using these three sequences as three tasks. Multi-series fusion was performed to complement the information from different dimensions in order to enhance model robustness. Logical loss was used in the model as the data-fitting item, and the feature weights were expressed in the logical loss space as the sum of shared weights and private weights to select the common features of each task and the characteristics having an essential impact on a single task. A diagnostic model was constructed as a feature selection method as well as a classification method. We calculated accuracy, recall, precision, and area under the curve (AUC) and compared the performance of our new multi-task model with traditional diagnostic model performance. Results A diagnostic model combining the support vector machine algorithm as a classification algorithm and our model as a feature selection method had an average AUC of 0.993 in the training set, with AUC, accuracy, precision, and recall rates respectively of 0.992, 0.920, 0.969, and 0.871 in the test set. The diagnostic model built on our multi-task model alone, in the training set, had an average AUC of 0.987, and in the test set, the AUC, accuracy, precision, and recall rates were 0.984, 0.895, 0.954, and 0.838. Conclusion It is feasible to implement the multi-task learning model developed in our study using logistic regression to differentiate between glioblastoma and solitary brain metastases.
Collapse
Affiliation(s)
- Ya Huang
- Key Laboratory of Computing and Stochastic Mathematics, School of Mathematics and Statistics, Hunan Normal University, Changsha, China
| | - Shan Huang
- Key Laboratory of Computing and Stochastic Mathematics, School of Mathematics and Statistics, Hunan Normal University, Changsha, China
| | - Zhiyong Liu
- Department of Intensive Care, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhiyong Liu,
| |
Collapse
|
31
|
Lu G, Zhang Y, Wang W, Miao L, Mou W. Machine Learning and Deep Learning CT-Based Models for Predicting the Primary Central Nervous System Lymphoma and Glioma Types: A Multicenter Retrospective Study. Front Neurol 2022; 13:905227. [PMID: 36110392 PMCID: PMC9469735 DOI: 10.3389/fneur.2022.905227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose and BackgroundDistinguishing primary central nervous system lymphoma (PCNSL) and glioma on computed tomography (CT) is an important task since treatment options differ vastly from the two diseases. This study aims to explore various machine learning and deep learning methods based on radiomic features extracted from CT scans and end-to-end convolutional neural network (CNN) model to predict PCNSL and glioma types and compare the performance of different models.MethodsA total of 101 patients from five Chinese medical centers with pathologically confirmed PCNSL and glioma were analyzed retrospectively, including 50 PCNSL and 51 glioma. After manual segmentation of the region of interest (ROI) on CT scans, 293 radiomic features of each patient were extracted. The radiomic features were used as input, and then, we established six machine learning models and one deep learning model and three readers to identify the two types of tumors. We also established a 2D CNN model using raw CT scans as input. The area under the receiver operating characteristic curve (AUC) and accuracy (ACC) were used to evaluate different models.ResultsThe cohort was split into a training (70, 70% patients) and validation cohort (31,30% patients) according to the stratified sampling strategy. Among all models, the MLP performed best, with an accuracy of 0.886 and 0.903, sensitivity of 0.914 and 0.867, specificity of 0.857 and 0.937, and AUC of 0.957 and 0.908 in the training and validation cohorts, respectively, which was significantly higher than the three primary physician's diagnoses (ACCs ranged from 0.710 to 0.742, p < 0.001 for all) and comparable with the senior radiologist (ACC 0.839, p = 0.988). Among all the machine learning models, the AUC ranged from 0.605 to 0.821 in the validation cohort. The end-to-end CNN model achieved an AUC of 0.839 and an ACC of 0.840 in the validation cohort, which had no significant difference in accuracy compared to the MLP model (p = 0.472) and the senior radiologist (p = 0.470).ConclusionThe established PCNSL and glioma prediction model based on deep neural network methods from CT scans or radiomic features are feasible and provided high performance, which shows the potential to assist clinical decision-making.
Collapse
Affiliation(s)
- Guang Lu
- Department of Hematology, Shengli Oilfield Central Hospital, Dongying, China
| | - Yuxin Zhang
- Department of Neurosurgery, Guangrao County People's Hospital, Dongying, China
| | | | - Lixin Miao
- Department of Medical Imaging Center, Shengli Oilfield Central Hospital, Dongying, China
- *Correspondence: Lixin Miao
| | - Weiwei Mou
- Department of Pediatrics, Shengli Oilfield Central Hospital, Dongying, China
- Weiwei Mou
| |
Collapse
|
32
|
A Survey of Radiomics in Precision Diagnosis and Treatment of Adult Gliomas. J Clin Med 2022; 11:jcm11133802. [PMID: 35807084 PMCID: PMC9267404 DOI: 10.3390/jcm11133802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/18/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Glioma is the most common primary malignant tumor of the adult central nervous system (CNS), which mostly shows invasive growth. In most cases, surgery is often difficult to completely remove, and the recurrence rate and mortality of patients are high. With the continuous development of molecular genetics and the great progress of molecular biology technology, more and more molecular biomarkers have been proved to have important guiding significance in the individualized diagnosis, treatment, and prognosis evaluation of glioma. With the updates of the World Health Organization (WHO) classification of tumors of the CNS in 2021, the diagnosis and treatment of glioma has entered the era of precision medicine in the true sense. Due to its ability to non-invasively achieve accurate identification of glioma from other intracranial tumors, and to predict the grade, genotyping, treatment response, and prognosis of glioma, which provides a scientific basis for the clinical application of individualized diagnosis and treatment model of glioma, radiomics has become a research hotspot in the field of precision medicine. This paper reviewed the research related to radiomics of adult gliomas published in recent years and summarized the research proceedings of radiomics in differential diagnosis, preoperative grading and genotyping, treatment and efficacy evaluation, and survival prediction of adult gliomas.
Collapse
|
33
|
Yu Q, Wang A, Gu J, Li Q, Ning Y, Peng J, Lv F, Zhang X. Multiphasic CT-Based Radiomics Analysis for the Differentiation of Benign and Malignant Parotid Tumors. Front Oncol 2022; 12:913898. [PMID: 35847942 PMCID: PMC9280642 DOI: 10.3389/fonc.2022.913898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Objective This study aims to investigate the value of machine learning models based on clinical-radiological features and multiphasic CT radiomics features in the differentiation of benign parotid tumors (BPTs) and malignant parotid tumors (MPTs). Methods This retrospective study included 312 patients (205 cases of BPTs and 107 cases of MPTs) who underwent multiphasic enhanced CT examinations, which were randomly divided into training (N = 218) and test (N = 94) sets. The radiomics features were extracted from the plain, arterial, and venous phases. The synthetic minority oversampling technique was used to balance minority class samples in the training set. Feature selection methods were done using the least absolute shrinkage and selection operator (LASSO), mutual information (MI), and recursive feature extraction (RFE). Two machine learning classifiers, support vector machine (SVM), and logistic regression (LR), were then combined in pairs with three feature selection methods to build different radiomics models. Meanwhile, the prediction performances of different radiomics models based on single phase (plain, arterial, and venous phase) and multiphase (three-phase combination) were compared to determine which model construction method and phase were more discriminative. In addition, clinical models based on clinical-radiological features and combined models integrating radiomics features and clinical-radiological features were established. The prediction performances of the different models were evaluated by the area under the receiver operating characteristic (ROC) curve (AUC) and the drawing of calibration curves. Results Among the 24 established radiomics models composed of four different phases, three feature selection methods, and two machine learning classifiers, the LASSO-SVM model based on a three-phase combination had the optimal prediction performance with AUC (0.936 [95% CI = 0.866, 0.976]), sensitivity (0.78), specificity (0.90), and accuracy (0.86) in the test set, and its prediction performance was significantly better than with the clinical model based on LR (AUC = 0.781, p = 0.012). In the test set, the combined model based on LR had a lower AUC than the optimal radiomics model (AUC = 0.933 vs. 0.936), but no statistically significant difference (p = 0.888). Conclusion Multiphasic CT-based radiomics analysis showed a machine learning model based on clinical-radiological features and radiomics features has the potential to provide a valuable tool for discriminating benign from malignant parotid tumors.
Collapse
Affiliation(s)
- Qiang Yu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Anran Wang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinming Gu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Quanjiang Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Youquan Ning
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Peng
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Juan Peng,
| | - Fajin Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | |
Collapse
|
34
|
A Systematic Review of the Current Status and Quality of Radiomics for Glioma Differential Diagnosis. Cancers (Basel) 2022; 14:cancers14112731. [PMID: 35681711 PMCID: PMC9179305 DOI: 10.3390/cancers14112731] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Gliomas can be difficult to discern clinically and radiologically from other brain lesions (either neoplastic or non-neoplastic) since their clinical manifestations as well as preoperative imaging features often overlap and appear misleading. Radiomics could be extremely helpful for non-invasive glioma differential diagnosis (DDx). However, implementation in clinical practice is still distant and concerns have been raised regarding the methodological quality of radiomic studies. In this context, we aimed to summarize the current status and quality of radiomic studies concerning glioma DDx in a systematic review. In total, 42 studies were selected and examined in our work. Our study revealed that, despite promising and encouraging results, current studies on radiomics for glioma DDx still lack the quality required to allow its introduction into clinical practice. This work could provide new insights and help to reach a consensus on the use of the radiomic approach for glioma DDx. Abstract Radiomics is a promising tool that may increase the value of imaging in differential diagnosis (DDx) of glioma. However, implementation in clinical practice is still distant and concerns have been raised regarding the methodological quality of radiomic studies. Therefore, we aimed to systematically review the current status of radiomic studies concerning glioma DDx, also using the radiomics quality score (RQS) to assess the quality of the methodology used in each study. A systematic literature search was performed to identify original articles focused on the use of radiomics for glioma DDx from 2015. Methodological quality was assessed using the RQS tool. Spearman’s correlation (ρ) analysis was performed to explore whether RQS was correlated with journal metrics and the characteristics of the studies. Finally, 42 articles were selected for the systematic qualitative analysis. Selected articles were grouped and summarized in terms of those on DDx between glioma and primary central nervous system lymphoma, those aiming at differentiating glioma from brain metastases, and those based on DDx of glioma and other brain diseases. Median RQS was 8.71 out 36, with a mean RQS of all studies of 24.21%. Our study revealed that, despite promising and encouraging results, current studies on radiomics for glioma DDx still lack the quality required to allow its introduction into clinical practice. This work could provide new insights and help to reach a consensus on the use of the radiomic approach for glioma DDx.
Collapse
|
35
|
Guo W, She D, Xing Z, Lin X, Wang F, Song Y, Cao D. Multiparametric MRI-Based Radiomics Model for Predicting H3 K27M Mutant Status in Diffuse Midline Glioma: A Comparative Study Across Different Sequences and Machine Learning Techniques. Front Oncol 2022; 12:796583. [PMID: 35311083 PMCID: PMC8928064 DOI: 10.3389/fonc.2022.796583] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Objectives The performance of multiparametric MRI-based radiomics models for predicting H3 K27M mutant status in diffuse midline glioma (DMG) has not been thoroughly evaluated. The optimal combination of multiparametric MRI and machine learning techniques remains undetermined. We compared the performance of various radiomics models across different MRI sequences and different machine learning techniques. Methods A total of 102 patients with pathologically confirmed DMG were retrospectively enrolled (27 with H3 K27M-mutant and 75 with H3 K27M wild-type). Radiomics features were extracted from eight sequences, and 18 feature sets were conducted by independent combination. There were three feature matrix normalization algorithms, two dimensionality-reduction methods, four feature selectors, and seven classifiers, consisting of 168 machine learning pipelines. Radiomics models were established across different feature sets and machine learning pipelines. The performance of models was evaluated using receiver operating characteristic curves with area under the curve (AUC) and compared with DeLong’s test. Results The multiparametric MRI-based radiomics models could accurately predict the H3 K27M mutant status in DMG (highest AUC: 0.807–0.969, for different sequences or sequence combinations). However, the results varied significantly between different machine learning techniques. When suitable machine learning techniques were used, the conventional MRI-based radiomics models shared similar performance to advanced MRI-based models (highest AUC: 0.875–0.915 vs. 0.807–0.926; DeLong’s test, p > 0.05). Most models had a better performance when generated with a combination of MRI sequences. The optimal model in the present study used a combination of all sequences (AUC = 0.969). Conclusions The multiparametric MRI-based radiomics models could be useful for predicting H3 K27M mutant status in DMG, but the performance varied across different sequences and machine learning techniques.
Collapse
Affiliation(s)
- Wei Guo
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Dejun She
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Zhen Xing
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiang Lin
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Feng Wang
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yang Song
- MR Scientific Marketing, Siemens Healthineers Ltd., Shanghai, China
| | - Dairong Cao
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Department of Radiology, Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
36
|
Kalasauskas D, Kosterhon M, Keric N, Korczynski O, Kronfeld A, Ringel F, Othman A, Brockmann MA. Beyond Glioma: The Utility of Radiomic Analysis for Non-Glial Intracranial Tumors. Cancers (Basel) 2022; 14:cancers14030836. [PMID: 35159103 PMCID: PMC8834271 DOI: 10.3390/cancers14030836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Tumor qualities, such as growth rate, firmness, and intrusion into healthy tissue, can be very important for operation planning and further treatment. Radiomics is a promising new method that allows the determination of some of these qualities on images performed before surgery. In this article, we provide a review of the use of radiomics in various tumors of the central nervous system, such as metastases, lymphoma, meningioma, medulloblastoma, and pituitary tumors. Abstract The field of radiomics is rapidly expanding and gaining a valuable role in neuro-oncology. The possibilities related to the use of radiomic analysis, such as distinguishing types of malignancies, predicting tumor grade, determining the presence of particular molecular markers, consistency, therapy response, and prognosis, can considerably influence decision-making in medicine in the near future. Even though the main focus of radiomic analyses has been on glial CNS tumors, studies on other intracranial tumors have shown encouraging results. Therefore, as the main focus of this review, we performed an analysis of publications on PubMed and Web of Science databases, focusing on radiomics in CNS metastases, lymphoma, meningioma, medulloblastoma, and pituitary tumors.
Collapse
Affiliation(s)
- Darius Kalasauskas
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.K.); (M.K.); (N.K.); (F.R.)
| | - Michael Kosterhon
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.K.); (M.K.); (N.K.); (F.R.)
| | - Naureen Keric
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.K.); (M.K.); (N.K.); (F.R.)
| | - Oliver Korczynski
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.K.); (A.K.); (A.O.)
| | - Andrea Kronfeld
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.K.); (A.K.); (A.O.)
| | - Florian Ringel
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.K.); (M.K.); (N.K.); (F.R.)
| | - Ahmed Othman
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.K.); (A.K.); (A.O.)
| | - Marc A. Brockmann
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.K.); (A.K.); (A.O.)
- Correspondence:
| |
Collapse
|
37
|
Han Y, Wang ZJ, Li WH, Yang Y, Zhang J, Yang XB, Zuo L, Xiao G, Wang SZ, Yan LF, Cui GB. Differentiation Between Primary Central Nervous System Lymphoma and Atypical Glioblastoma Based on MRI Morphological Feature and Signal Intensity Ratio: A Retrospective Multicenter Study. Front Oncol 2022; 12:811197. [PMID: 35174088 PMCID: PMC8841723 DOI: 10.3389/fonc.2022.811197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/05/2022] [Indexed: 11/23/2022] Open
Abstract
Objectives To investigate the value of morphological feature and signal intensity ratio (SIR) derived from conventional magnetic resonance imaging (MRI) in distinguishing primary central nervous system lymphoma (PCNSL) from atypical glioblastoma (aGBM). Methods Pathology-confirmed PCNSLs (n = 93) or aGBMs (n = 48) from three institutions were retrospectively enrolled and divided into training cohort (n = 98) and test cohort (n = 43). Morphological features and SIRs were compared between PCNSL and aGBM. Using linear discriminant analysis, multiple models were constructed with SIRs and morphological features alone or jointly, and the diagnostic performances were evaluated via receiver operating characteristic (ROC) analysis. Areas under the curves (AUCs) and accuracies (ACCs) of the models were compared with the radiologists’ assessment. Results Incision sign, T2 pseudonecrosis sign, reef sign and peritumoral leukomalacia sign were associated with PCNSL (training and overall cohorts, P < 0.05). Increased T1 ratio, decreased T2 ratio and T2/T1 ratio were predictive of PCNSL (all P < 0.05). ROC analysis showed that combination of morphological features and SIRs achieved the best diagnostic performance for differentiation of PCNSL and aGBM with AUC/ACC of 0.899/0.929 for the training cohort, AUC/ACC of 0.794/0.837 for the test cohort and AUC/ACC of 0.869/0.901 for the overall cohort, respectively. Based on the overall cohort, two radiologists could distinguish PCNSL from aGBM with AUC/ACC of 0.732/0.724 for radiologist A and AUC/ACC of 0.811/0.829 for radiologist B. Conclusion MRI morphological features can help differentiate PCNSL from aGBM. When combined with SIRs, the diagnostic performance was better than that of radiologists’ assessment.
Collapse
Affiliation(s)
- Yu Han
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Zi-Jun Wang
- Battalion of the First Regiment of cadets of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Wen-Hua Li
- Battalion of the Second Regiment of cadets of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Yang Yang
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Jian Zhang
- Department of Radiology, Xi’an XD Group Hospital, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Xi-Biao Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Zuo
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Gang Xiao
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Sheng-Zhong Wang
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Lin-Feng Yan
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Guang-Bin Cui, ; Lin-Feng Yan,
| | - Guang-Bin Cui
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Guang-Bin Cui, ; Lin-Feng Yan,
| |
Collapse
|
38
|
Filtration-Histogram Based Magnetic Resonance Texture Analysis (MRTA) for the Distinction of Primary Central Nervous System Lymphoma and Glioblastoma. J Pers Med 2021; 11:jpm11090876. [PMID: 34575653 PMCID: PMC8472730 DOI: 10.3390/jpm11090876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
Primary central nervous system lymphoma (PCNSL) has variable imaging appearances, which overlap with those of glioblastoma (GBM), thereby necessitating invasive tissue diagnosis. We aimed to investigate whether a rapid filtration histogram analysis of clinical MRI data supports the distinction of PCNSL from GBM. Ninety tumours (PCNSL n = 48, GBM n = 42) were analysed using pre-treatment MRI sequences (T1-weighted contrast-enhanced (T1CE), T2-weighted (T2), and apparent diffusion coefficient maps (ADC)). The segmentations were completed with proprietary texture analysis software (TexRAD version 3.3). Filtered (five filter sizes SSF = 2-6 mm) and unfiltered (SSF = 0) histogram parameters were compared using Mann-Whitney U non-parametric testing, with receiver operating characteristic (ROC) derived area under the curve (AUC) analysis for significant results. Across all (n = 90) tumours, the optimal algorithm performance was achieved using an unfiltered ADC mean and the mean of positive pixels (MPP), with a sensitivity of 83.8%, specificity of 8.9%, and AUC of 0.88. For subgroup analysis with >1/3 necrosis masses, ADC permitted the identification of PCNSL with a sensitivity of 96.9% and specificity of 100%. For T1CE-derived regions, the distinction was less accurate, with a sensitivity of 71.4%, specificity of 77.1%, and AUC of 0.779. A role may exist for cross-sectional texture analysis without complex machine learning models to differentiate PCNSL from GBM. ADC appears the most suitable sequence, especially for necrotic lesion distinction.
Collapse
|