1
|
Jacome MA, Wu Q, Piña Y, Etame AB. Evolution of Molecular Biomarkers and Precision Molecular Therapeutic Strategies in Glioblastoma. Cancers (Basel) 2024; 16:3635. [PMID: 39518074 PMCID: PMC11544870 DOI: 10.3390/cancers16213635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Glioblastoma is the most commonly occurring malignant brain tumor, with a high mortality rate despite current treatments. Its classification has evolved over the years to include not only histopathological features but also molecular findings. Given the heterogeneity of glioblastoma, molecular biomarkers for diagnosis have become essential for initiating treatment with current therapies, while new technologies for detecting specific variations using computational tools are being rapidly developed. Advances in molecular genetics have made possible the creation of tailored therapies based on specific molecular targets, with various degrees of success. This review provides an overview of the latest advances in the fields of histopathology and radiogenomics and the use of molecular markers for management of glioblastoma, as well as the development of new therapies targeting the most common molecular markers. Furthermore, we offer a summary of the results of recent preclinical and clinical trials to recognize the current trends of investigation and understand the possible future directions of molecular targeted therapies in glioblastoma.
Collapse
Affiliation(s)
- Maria A. Jacome
- Departamento de Ciencias Morfológicas Microscópicas, Universidad de Carabobo, Valencia 02001, Venezuela
| | - Qiong Wu
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA; (Q.W.); (Y.P.)
| | - Yolanda Piña
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA; (Q.W.); (Y.P.)
| | - Arnold B. Etame
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA; (Q.W.); (Y.P.)
| |
Collapse
|
2
|
Advanced Magnetic Resonance Imaging (MRI) Techniques: Technical Principles and Applications in Nanomedicine. Cancers (Basel) 2022; 14:cancers14071626. [PMID: 35406399 PMCID: PMC8997011 DOI: 10.3390/cancers14071626] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Magnetic Resonance Imaging (MRI) is a consolidated imaging tool for the multiparametric assessment of tissues in various pathologies from degenerative and inflammatory diseases to cancer. In recent years, the continuous technological evolution of the equipment has led to the development of sequences that provide not only anatomical but also functional and metabolic information. In addition, there is a growing and emerging field of research in clinical applications using MRI to exploit the diagnostic and therapeutic capabilities of nanocompounds. This review illustrates the application of the most advanced magnetic resonance techniques in the field of nanomedicine. Abstract In the last decades, nanotechnology has been used in a wide range of biomedical applications, both diagnostic and therapeutic. In this scenario, imaging techniques represent a fundamental tool to obtain information about the properties of nanoconstructs and their interactions with the biological environment in preclinical and clinical settings. This paper reviews the state of the art of the application of magnetic resonance imaging in the field of nanomedicine, as well as the use of nanoparticles as diagnostic and therapeutic tools, especially in cancer, including the characteristics that hinder the use of nanoparticles in clinical practice.
Collapse
|
3
|
Zhou Q, Xue C, Ke X, Zhou J. Treatment Response and Prognosis Evaluation in High-Grade Glioma: An Imaging Review Based on MRI. J Magn Reson Imaging 2022; 56:325-340. [PMID: 35129845 DOI: 10.1002/jmri.28103] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/19/2022] Open
Abstract
In recent years, the development of advanced magnetic resonance imaging (MRI) technology and machine learning (ML) have created new tools for evaluating treatment response and prognosis of patients with high-grade gliomas (HGG); however, patient prognosis has not improved significantly. This is mainly due to the heterogeneity between and within HGG tumors, resulting in standard treatment methods not benefitting all patients. Moreover, the survival of patients with HGG is not only related to tumor cells, but also to noncancer cells in the tumor microenvironment (TME). Therefore, during preoperative diagnosis and follow-up treatment of patients with HGG, noninvasive imaging markers are needed to characterize intratumoral heterogeneity, and then to evaluate treatment response and predict prognosis, timeously adjust treatment strategies, and achieve individualized diagnosis and treatment. In this review, we summarize the research progress of conventional MRI, advanced MRI technology, and ML in evaluation of treatment response and prognosis of patients with HGG. We further discuss the significance of the TME in the prognosis of HGG patients, associate imaging features with the TME, indirectly reflecting the heterogeneity within the tumor, and shifting treatment strategies from tumor cells alone to systemic therapy of the TME, which may be a major development direction in the future. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 4.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China.,Second Clinical School, Lanzhou University, Lanzhou, Gansu, China.,Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, Gansu, China.,Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Caiqiang Xue
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China.,Second Clinical School, Lanzhou University, Lanzhou, Gansu, China.,Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, Gansu, China.,Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Xiaoai Ke
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China.,Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, Gansu, China.,Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China.,Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, Gansu, China.,Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Advanced Imaging and Computational Techniques for the Diagnostic and Prognostic Assessment of Malignant Gliomas. Cancer J 2021; 27:344-352. [PMID: 34570448 DOI: 10.1097/ppo.0000000000000545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ABSTRACT Advanced imaging techniques provide a powerful tool to assess the intratumoral and intertumoral heterogeneity of gliomas. Advances in the molecular understanding of glioma subgroups may allow improved diagnostic assessment combining imaging and molecular tumor features, with enhanced prognostic utility and implications for patient treatment. In this article, a comprehensive overview of the physiologic basis for conventional and advanced imaging techniques is presented, and clinical applications before and after treatment are discussed. An introduction to the principles of radiomics and the advanced integration of imaging, clinical outcomes, and genomic data highlights the future potential for this field of research to better stratify and select patients for standard as well as investigational therapies.
Collapse
|