1
|
Zhou C, Zhang YF, Yang ZJ, Huang YQ, Da MX. Computed tomography-based deep learning radiomics model for preoperative prediction of tumor immune microenvironment in colorectal cancer. World J Gastrointest Oncol 2025; 17:106103. [DOI: 10.4251/wjgo.v17.i5.106103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/08/2025] [Accepted: 03/31/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a leading cause of cancer-related death globally, with the tumor immune microenvironment (TIME) influencing prognosis and immunotherapy response. Current TIME evaluation relies on invasive biopsies, limiting its clinical application. This study hypothesized that computed tomography (CT)-based deep learning (DL) radiomics models can non-invasively predict key TIME biomarkers: Tumor-stroma ratio (TSR), tumor-infiltrating lymphocytes (TILs), and immune score (IS).
AIM To develop a non-invasive DL approach using preoperative CT radiomics to evaluate TIME components in CRC patients.
METHODS In this retrospective study, preoperative CT images of 315 pathologically confirmed CRC patients (220 in training cohort and 95 in validation cohort) were analyzed. Manually delineated regions of interest were used to extract DL features. Predictive models (DenseNet-121/169) for TSR, TILs, IS, and TIME classification were constructed. Performance was evaluated via receiver operating characteristic curves, calibration curves, and decision curve analysis (DCA).
RESULTS The DL-DenseNet-169 model achieved area under the curve (AUC) values of 0.892 [95% confidence interval (CI): 0.828-0.957] for TSR and 0.772 (95%CI: 0.674-0.870) for TIME score. The DenseNet-121 model yielded AUC values of 0.851 (95%CI: 0.768-0.933) for TILs and 0.852 (95%CI: 0.775-0.928) for IS. Calibration curves demonstrated strong prediction-observation agreement, and DCA confirmed clinical utility across threshold probabilities (P < 0.05 for all models).
CONCLUSION CT-based DL radiomics provides a reliable non-invasive method for preoperative TIME evaluation, enabling personalized immunotherapy strategies in CRC management.
Collapse
Affiliation(s)
- Chuan Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu Province, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Yun-Feng Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Zhi-Jun Yang
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Yu-Qian Huang
- Center of Medical Cosmetology, Chengdu Second People’s Hospital, Chengdu 610017, Sichuan Province, China
| | - Ming-Xu Da
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu Province, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
2
|
Zhou C, Zhou J, Lv Y, Batuer M, Huang J, Zhong J, Zhong H, Qin G. The impact of the novel CovBat harmonization method on enhancing radiomics feature stability and machine learning model performance: A multi-center, multi-device study. Eur J Radiol 2025; 184:111956. [PMID: 39908939 DOI: 10.1016/j.ejrad.2025.111956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/24/2024] [Accepted: 01/28/2025] [Indexed: 02/07/2025]
Abstract
PURPOSE This study aims to assess whether the novel CovBat harmonization method can further reduce radiomics feature variability from different imaging devices in multi-center studies and improve machine learning model performance compared to the ComBat method. MATERIALS Non-contrast abdominal CT scans of 1,000 healthy subjects from three medical institutions (from four manufacturers and eight different models) were retrospectively included: Hospital A (n = 513), Hospital B (n = 338), and Hospital C (n = 149). 93 radiomics features were extracted from liver and spleen tissues using PyRadiomics. Performing a binary classification task of liver and spleen tissues on the pooled data from the three institutions: (1) Unharmonized, (2) ComBat, and (3) CovBat. Models were built separately for each radiomics feature classes (First-order, GLCM, GLRLM, GLSZM, NGTD, GLDM), as well as a combined model integrating all feature classes. The Kruskal-Wallis test and principal component analysis (PCA) were used to assess the variability of radiomics features among the groups. Multiple linear regression models were used to analyze the sources of variation. Accuracy, sensitivity, specificity, F1-score, and area under the curve (AUC) were used to evaluate model performance. RESULTS After ComBat and CovBat harmonization, the number of consistent features increased by 68.82 % and 73.12 %, respectively, and the feature variability due to hardware differences decreased from 12.32-25.38 % to 1.89-2.01 % with ComBat and 1.19-1.88 % with CovBat. The AUC of the machine learning models improved significantly: Combined (Unharmonized: 0.93, ComBat: 0.99, CovBat: 1.00), First-order (0.93, 0.98, 0.98), GLCM (0.81, 0.93, 0.98), GLRLM (0.78, 0.96, 0.98), NGTDM (0.75, 0.96, 0.98), GLSZM (0.78, 0.93, 0.97), and GLDM (0.83, 0.94, 0.97). DeLong's test showed that the results before and after harmonization were statistically significant (P < 0.05). CONCLUSION CovBat further reduced radiomics feature variability caused by different CT scanners and significantly improved the performance of machine learning models, although the degree of improvement varied across different feature categories.
Collapse
Affiliation(s)
- Chuanghui Zhou
- Department of Imaging Diagnosis, Nanfang Hospital, Southern Medical University, Guangzhou 510000, Guangdong, China; School of Medical and Information Engineering, Gannan Medical University, Ganzhou 341000, Jiangxi, China
| | - Jianwei Zhou
- Department of Imaging Diagnosis, Nanfang Hospital, Southern Medical University, Guangzhou 510000, Guangdong, China
| | - Yijun Lv
- School of Medical and Information Engineering, Gannan Medical University, Ganzhou 341000, Jiangxi, China
| | - Maidina Batuer
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510000, Guangdong, China
| | - Jinghan Huang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510000, Guangdong, China
| | - Junyuan Zhong
- Medical Imaging Department of Ganzhou People's Hospital, Ganzhou 341000, Jiangxi, China
| | - Haijian Zhong
- School of Medical and Information Engineering, Gannan Medical University, Ganzhou 341000, Jiangxi, China.
| | - Genggeng Qin
- Department of Imaging Diagnosis, Nanfang Hospital, Southern Medical University, Guangzhou 510000, Guangdong, China.
| |
Collapse
|
3
|
Zhu L, Dong H, Sun J, Wang L, Xing Y, Hu Y, Lu J, Yang J, Chu J, Yan C, Yuan F, Zhong J. Robustness of radiomics among photon-counting detector CT and dual-energy CT systems: a texture phantom study. Eur Radiol 2025; 35:871-884. [PMID: 39048741 PMCID: PMC11782343 DOI: 10.1007/s00330-024-10976-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/18/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVES To evaluate the robustness of radiomics features among photon-counting detector CT (PCD-CT) and dual-energy CT (DECT) systems. METHODS A texture phantom consisting of twenty-eight materials was scanned with one PCD-CT and four DECT systems (dual-source, rapid kV-switching, dual-layer, and sequential scanning) at three dose levels twice. Thirty sets of virtual monochromatic images at 70 keV were reconstructed. Regions of interest were delineated for each material with a rigid registration. Ninety-three radiomics were extracted per PyRadiomics. The test-retest repeatability between repeated scans was assessed by Bland-Altman analysis. The intra-system reproducibility between dose levels, and inter-system reproducibility within the same dose level, were evaluated by intraclass correlation coefficient (ICC) and concordance correlation coefficient (CCC). Inter-system variability among five scanners was assessed by coefficient of variation (CV) and quartile coefficient of dispersion (QCD). RESULTS The test-retest repeatability analysis presented that 97.1% of features were repeatable between scan-rescans. The mean ± standard deviation ICC and CCC were 0.945 ± 0.079 and 0.945 ± 0.079 for intra-system reproducibility, respectively, and 86.0% and 85.7% of features were with ICC > 0.90 and CCC > 0.90, respectively, between different dose levels. The mean ± standard deviation ICC and CCC were 0.157 ± 0.174 and 0.157 ± 0.174 for inter-system reproducibility, respectively, and none of the features were with ICC > 0.90 or CCC > 0.90 within the same dose level. The inter-system variability suggested that 6.5% and 12.8% of features were with CV < 10% and QCD < 10%, respectively, among five CT systems. CONCLUSION The radiomics features were non-reproducible with significant variability in values among different CT techniques. CLINICAL RELEVANCE STATEMENT Radiomics features are non-reproducible with significant variability in values among photon-counting detector CT and dual-energy CT systems, necessitating careful attention to improve the cross-system generalizability of radiomic features before implementation of radiomics analysis in clinical routine. KEY POINTS CT radiomics stability should be guaranteed before the implementation in the clinical routine. Radiomics robustness was on a low level among photon-counting detectors and dual-energy CT techniques. Limited inter-system robustness of radiomic features may impact the generalizability of models.
Collapse
Affiliation(s)
- Lan Zhu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Haipeng Dong
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jing Sun
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lingyun Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yue Xing
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yangfan Hu
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Junjie Lu
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jiarui Yang
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Jingshen Chu
- Department of Science and Technology Development, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chao Yan
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Fei Yuan
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| |
Collapse
|
4
|
Zhang H, Lu T, Wang L, Xing Y, Hu Y, Xu Z, Lu J, Yang J, Chu J, Zhang B, Zhong J. Robustness of radiomics within photon-counting detector CT: impact of acquisition and reconstruction factors. Eur Radiol 2025:10.1007/s00330-025-11374-x. [PMID: 39890616 DOI: 10.1007/s00330-025-11374-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 02/03/2025]
Abstract
OBJECTIVES To assess the impact of acquisition and reconstruction factors on the robustness of radiomics within photon-counting detector CT (PCD-CT). METHODS A phantom with twenty-eight texture materials was scanned with different acquisition and reconstruction factors including reposition, scan mode (standard vs high-pitch), tube voltage (120 kVp vs 140 kVp), slice thickness (1.0 mm vs 0.4 mm), radiation dose level (0.5 mGy, 1.0 mGy, 3.0 mGy, 5.0 mGy, vs 10.0 mGy), quantum iterative reconstruction level (0/4, 2/4, vs 4/4), and reconstruction kernel (Qr40, Qr44, vs Qr48). Thirteen sets of virtual monochromatic images at 70-keV were reconstructed. The regions of interest were drawn with rigid registrations. Ninety-three radiomics features were extracted from each material. The reproducibility of radiomics features was evaluated using the intraclass correlation coefficient (ICC) and concordance correlation coefficient (CCC). The variability of radiomics features was assessed by coefficient of variation (CV) and quartile coefficient of dispersion (QCD). RESULTS The percentage of features with ICC > 0.90 and CCC > 0.90 were high when repositioned (88.2% and 88.2%) and tube voltage was changed (87.1% and 87.1%), but none of the features with ICC > 0.90 and CCC > 0.90 when high-pitch scan and different slice thickness were used. The percentage of features with CV < 10% and QCD < 10% were high when repositioned (47.3% and 68.8%) and tube voltage was changed (64.2% and 71.0%), but that with CV < 10% and QCD < 10% were low between standard and high-pitch scans (16.1% and 26.9%) and slice thickness (19.4% and 29.0%). CONCLUSIONS The PCD-CT radiomics was robust to tube voltage, radiation dose, reconstruction strength level, and kernel, but brittle to high-pitch scan and slice thickness. KEY POINTS Question The stability of radiomics features against acquisition and reconstruction factors within PCD-CT should be fully determined before academic research and clinical application. Findings The radiomics features are robust against tube voltage, radiation dose, reconstruction strength level, and kernel within PCD-CT but brittle to high-pitch scan and slice thickness. Clinical relevance The high-pitch scan and slice thickness that influence voxel size should be set with careful attention within PCD-CT, to allow a higher robustness of radiomics features before the implementation of radiomics analysis in clinical routine.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingwei Lu
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingyun Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Xing
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yangfan Hu
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihan Xu
- Siemens Healthineers, Shanghai, China
| | - Junjie Lu
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Jiarui Yang
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Jingshen Chu
- Department of Science and Technology Development, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Benyan Zhang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Teng X, Wang Y, Nicol AJ, Ching JCF, Wong EKY, Lam KTC, Zhang J, Lee SWY, Cai J. Enhancing the Clinical Utility of Radiomics: Addressing the Challenges of Repeatability and Reproducibility in CT and MRI. Diagnostics (Basel) 2024; 14:1835. [PMID: 39202322 PMCID: PMC11353986 DOI: 10.3390/diagnostics14161835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/03/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Radiomics, which integrates the comprehensive characterization of imaging phenotypes with machine learning algorithms, is increasingly recognized for its potential in the diagnosis and prognosis of oncological conditions. However, the repeatability and reproducibility of radiomic features are critical challenges that hinder their widespread clinical adoption. This review aims to address the paucity of discussion regarding the factors that influence the reproducibility and repeatability of radiomic features and their subsequent impact on the application of radiomic models. We provide a synthesis of the literature on the repeatability and reproducibility of CT/MR-based radiomic features, examining sources of variation, the number of reproducible features, and the availability of individual feature repeatability indices. We differentiate sources of variation into random effects, which are challenging to control but can be quantified through simulation methods such as perturbation, and biases, which arise from scanner variability and inter-reader differences and can significantly affect the generalizability of radiomic model performance in diverse settings. Four suggestions for repeatability and reproducibility studies are suggested: (1) detailed reporting of variation sources, (2) transparent disclosure of calculation parameters, (3) careful selection of suitable reliability indices, and (4) comprehensive reporting of reliability metrics. This review underscores the importance of random effects in feature selection and harmonizing biases between development and clinical application settings to facilitate the successful translation of radiomic models from research to clinical practice.
Collapse
Affiliation(s)
- Xinzhi Teng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong SAR, China; (X.T.); (Y.W.); (A.J.N.); (J.C.F.C.); (E.K.Y.W.); (K.T.C.L.); (J.Z.)
| | - Yongqiang Wang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong SAR, China; (X.T.); (Y.W.); (A.J.N.); (J.C.F.C.); (E.K.Y.W.); (K.T.C.L.); (J.Z.)
| | - Alexander James Nicol
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong SAR, China; (X.T.); (Y.W.); (A.J.N.); (J.C.F.C.); (E.K.Y.W.); (K.T.C.L.); (J.Z.)
| | - Jerry Chi Fung Ching
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong SAR, China; (X.T.); (Y.W.); (A.J.N.); (J.C.F.C.); (E.K.Y.W.); (K.T.C.L.); (J.Z.)
| | - Edwin Ka Yiu Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong SAR, China; (X.T.); (Y.W.); (A.J.N.); (J.C.F.C.); (E.K.Y.W.); (K.T.C.L.); (J.Z.)
| | - Kenneth Tsz Chun Lam
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong SAR, China; (X.T.); (Y.W.); (A.J.N.); (J.C.F.C.); (E.K.Y.W.); (K.T.C.L.); (J.Z.)
| | - Jiang Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong SAR, China; (X.T.); (Y.W.); (A.J.N.); (J.C.F.C.); (E.K.Y.W.); (K.T.C.L.); (J.Z.)
| | - Shara Wee-Yee Lee
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong SAR, China; (X.T.); (Y.W.); (A.J.N.); (J.C.F.C.); (E.K.Y.W.); (K.T.C.L.); (J.Z.)
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong SAR, China; (X.T.); (Y.W.); (A.J.N.); (J.C.F.C.); (E.K.Y.W.); (K.T.C.L.); (J.Z.)
- Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
6
|
Levi R, Mollura M, Savini G, Garoli F, Battaglia M, Ammirabile A, Cappellini LA, Superbi S, Grimaldi M, Barbieri R, Politi LS. A reference framework for standardization and harmonization of CT radiomics features on cadaveric sample. Sci Rep 2024; 14:19259. [PMID: 39164314 PMCID: PMC11336160 DOI: 10.1038/s41598-024-68158-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
Radiomics features (RFs) serve as quantitative metrics to characterize shape, density/intensity, and texture patterns in radiological images. Despite their promise, RFs exhibit reproducibility challenges across acquisition settings, thus limiting implementation into clinical practice. In this investigation, we evaluate the effects of different CT scanners and CT acquisition protocols (KV, mA, field-of-view, and reconstruction kernel settings) on RFs extracted from lumbar vertebrae of a cadaveric trunk. Employing univariate and multivariate Generalized Linear Models (GLM), we evaluated the impact of each acquisition parameter on RFs. Our findings indicate that variations in mA had negligible effects on RFs, while alterations in kV resulted in exponential changes in several RFs, notably First Order (94.4%), GLCM (87.5%), and NGTDM (100%). Moreover, we demonstrated that a tailored GLM model was superior to the ComBat algorithm in harmonizing CT images. GLM achieved R2 > 0.90 in 21 RFs (19.6%), contrasting ComBat's mean R2 above 0.90 in only 1 RF (0.9%). This pioneering study unveils the effects of CT acquisition parameters on bone RFs in cadaveric specimens, highlighting significant variations across parameters and scanner datasets. The proposed GLM model presents a robust solution for mitigating these differences, potentially advancing harmonization efforts in Radiomics-based studies across diverse CT protocols and vendors.
Collapse
Affiliation(s)
- Riccardo Levi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, 20072, Milan, Italy
- Neuroradiology Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Maximiliano Mollura
- Department of Electronic, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Giovanni Savini
- Neuroradiology Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Federico Garoli
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, 20072, Milan, Italy
| | - Massimiliano Battaglia
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, 20072, Milan, Italy
| | - Angela Ammirabile
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, 20072, Milan, Italy
| | - Luca A Cappellini
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, 20072, Milan, Italy
| | - Simona Superbi
- Neuroradiology Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Marco Grimaldi
- Neuroradiology Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Riccardo Barbieri
- Department of Electronic, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Letterio S Politi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, 20072, Milan, Italy.
- Neuroradiology Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy.
| |
Collapse
|
7
|
García-Figueiras R, Oleaga L, Broncano J, Tardáguila G, Fernández-Pérez G, Vañó E, Santos-Armentia E, Méndez R, Luna A, Baleato-González S. What to Expect (and What Not) from Dual-Energy CT Imaging Now and in the Future? J Imaging 2024; 10:154. [PMID: 39057725 PMCID: PMC11278514 DOI: 10.3390/jimaging10070154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Dual-energy CT (DECT) imaging has broadened the potential of CT imaging by offering multiple postprocessing datasets with a single acquisition at more than one energy level. DECT shows profound capabilities to improve diagnosis based on its superior material differentiation and its quantitative value. However, the potential of dual-energy imaging remains relatively untapped, possibly due to its intricate workflow and the intrinsic technical limitations of DECT. Knowing the clinical advantages of dual-energy imaging and recognizing its limitations and pitfalls is necessary for an appropriate clinical use. The aims of this paper are to review the physical and technical bases of DECT acquisition and analysis, to discuss the advantages and limitations of DECT in different clinical scenarios, to review the technical constraints in material labeling and quantification, and to evaluate the cutting-edge applications of DECT imaging, including artificial intelligence, qualitative and quantitative imaging biomarkers, and DECT-derived radiomics and radiogenomics.
Collapse
Affiliation(s)
- Roberto García-Figueiras
- Department of Radiology, Hospital Clínico Universitario de Santiago, Choupana, 15706 Santiago de Compostela, Spain
| | - Laura Oleaga
- Department of Radiology, Hospital Clinic, C. de Villarroel, 170, 08036 Barcelona, Spain
| | | | - Gonzalo Tardáguila
- Department of Radiology, Hospital Ribera Povisa, Rúa de Salamanca, 5, Vigo, 36211 Pontevedra, Spain
| | | | - Eliseo Vañó
- Department of Radiology, Hospital Universitario Nuestra Señora, del Rosario, C. del Príncipe de Vergara, 53, 28006 Madrid, Spain
| | - Eloísa Santos-Armentia
- Department of Radiology, Hospital Ribera Povisa, Rúa de Salamanca, 5, Vigo, 36211 Pontevedra, Spain
| | - Ramiro Méndez
- Department of Radiology, Hospital Universitario Nuestra Señora, del Rosario, C. del Príncipe de Vergara, 53, 28006 Madrid, Spain
- Department of Radiology, Hospital Universitario Clínico San Carlos, Calle del Prof Martín Lagos, 28040 Madrid, Spain
| | | | - Sandra Baleato-González
- Department of Radiology, Hospital Clínico Universitario de Santiago, Choupana, 15706 Santiago de Compostela, Spain
| |
Collapse
|
8
|
Zhang X, Iqbal Bin Saripan M, Wu Y, Wang Z, Wen D, Cao Z, Wang B, Xu S, Liu Y, Marhaban MH, Dong X. The impact of the combat method on radiomics feature compensation and analysis of scanners from different manufacturers. BMC Med Imaging 2024; 24:137. [PMID: 38844854 PMCID: PMC11157873 DOI: 10.1186/s12880-024-01306-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND This study investigated whether the Combat compensation method can remove the variability of radiomic features extracted from different scanners, while also examining its impact on the subsequent predictive performance of machine learning models. MATERIALS AND METHODS 135 CT images of Credence Cartridge Radiomic phantoms were collected and screened from three scanners manufactured by Siemens, Philips, and GE. 100 radiomic features were extracted and 20 radiomic features were screened according to the Lasso regression method. The radiomic features extracted from the rubber and resin-filled regions in the cartridges were labeled into different categories for evaluating the performance of the machine learning model. Radiomics features were divided into three groups based on the different scanner manufacturers. The radiomic features were randomly divided into training and test sets with a ratio of 8:2. Five machine learning models (lasso, logistic regression, random forest, support vector machine, neural network) were employed to evaluate the impact of Combat on radiomic features. The variability among radiomic features were assessed using analysis of variance (ANOVA) and principal component analysis (PCA). Accuracy, precision, recall, and area under the receiver curve (AUC) were used as evaluation metrics for model classification. RESULTS The principal component and ANOVA analysis results show that the variability of different scanner manufacturers in radiomic features was removed (P˃0.05). After harmonization with the Combat algorithm, the distributions of radiomic features were aligned in terms of location and scale. The performance of machine learning models for classification improved, with the Random Forest model showing the most significant enhancement. The AUC value increased from 0.88 to 0.92. CONCLUSIONS The Combat algorithm has reduced variability in radiomic features from different scanners. In the phantom CT dataset, it appears that the machine learning model's classification performance may have improved after Combat harmonization. However, further investigation and validation are required to fully comprehend Combat's impact on radiomic features in medical imaging.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Faculty of Engineering, Universiti Putra Malaysia, Serdang, Malaysia.
- Hebei International Research Center of Medical Engineering, Chengde Medical University, Chengde City, Hebei Province, China.
- Department of Biomedical Engineering, Chengde Medical University, Chengde City, Hebei Province, China.
| | | | - Yanjun Wu
- Hebei International Research Center of Medical Engineering, Chengde Medical University, Chengde City, Hebei Province, China
| | - Zhongxiao Wang
- Hebei International Research Center of Medical Engineering, Chengde Medical University, Chengde City, Hebei Province, China
| | - Dong Wen
- Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing, China
| | - Zhendong Cao
- Department of Radiology, the Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Bingzhen Wang
- Faculty of Engineering, Universiti Putra Malaysia, Serdang, Malaysia
- Hebei International Research Center of Medical Engineering, Chengde Medical University, Chengde City, Hebei Province, China
| | - Shiqi Xu
- Hebei International Research Center of Medical Engineering, Chengde Medical University, Chengde City, Hebei Province, China
| | - Yanli Liu
- Hebei International Research Center of Medical Engineering, Chengde Medical University, Chengde City, Hebei Province, China
| | | | - Xianling Dong
- Hebei International Research Center of Medical Engineering, Chengde Medical University, Chengde City, Hebei Province, China.
- Hebei Provincial Key Laboratory of Nerve Injury and Repair, Chengde Medical University, Chengde City, Hebei Province, China.
| |
Collapse
|
9
|
Schöneck M, Lennartz S, Zopfs D, Sonnabend K, Wawer Matos Reimer R, Rinneburger M, Graffe J, Persigehl T, Hentschke C, Baeßler B, Lourenco Caldeira L, Große Hokamp N. Robustness of radiomic features in healthy abdominal parenchyma of patients with repeated examinations on dual-layer dual-energy CT. Eur J Radiol 2024; 175:111447. [PMID: 38677039 DOI: 10.1016/j.ejrad.2024.111447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/29/2024]
Abstract
OBJECTIVES Robustness of radiomic features in physiological tissue is an important prerequisite for quantitative analysis of tumor biology and response assessment. In contrast to previous studies which focused on different tumors with mostly short scan-re-scan intervals, this study aimed to evaluate the robustness of radiomic features in cancer-free patients and over a clinically encountered inter-scan interval. MATERIALS AND METHODS Patients without visible tumor burden who underwent at least two portal-venous phase dual energy CT examinations of the abdomen between May 2016 and January 2020 were included, while macroscopic tumor burden was excluded based upon follow-up imaging for all patients (≥3 months). Further, patients were excluded if no follow-up imaging was available, or if the CT protocol showed deviations between repeated examinations. Circular regions of interest were placed and proofread by two board-certified radiologists (4 years and 5 years experience) within the liver (segments 3 and 6), the psoas muscle (left and right), the pancreatic head, and the spleen to obtain radiomic features from normal-appearing organ parenchyma using PyRadiomics. Radiomic feature robustness was tested using the concordance correlation coefficient with a threshold of 0.75 considered indicative for deeming a feature robust. RESULTS In total, 160 patients with 480 repeated abdominal CT examinations (range: 2-4 per patient) were retrospectively included in this single-center, IRB-approved study. Considering all organs and feature categories, only 4.58 % (25/546) of all features were robust with the highest rate being found in the first order feature category (20.37 %, 22/108). Other feature categories (grey level co-occurrence matrix, grey level dependence matrix, grey level run length matrix, grey level size zone matrix, and neighborhood gray-tone difference matrix) yielded an overall low percentage of robust features (range: 0.00 %-1.19 %). A subgroup analysis revealed the reconstructed field of view and the X-ray tube current as determinants of feature robustness (significant differences in subgroups for all organs, p < 0.001) as well as the size of the region of interest (no significant difference for the pancreatic head with p = 0.135, significant difference with p < 0.001 for all other organs). CONCLUSION Radiomic feature robustness obtained from cancer-free subjects with repeated examinations using a consistent protocol and CT scanner was limited, with first order features yielding the highest proportion of robust features.
Collapse
Affiliation(s)
- Mirjam Schöneck
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937 Cologne, Germany.
| | - Simon Lennartz
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937 Cologne, Germany
| | - David Zopfs
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937 Cologne, Germany
| | - Kristina Sonnabend
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937 Cologne, Germany; Philips Healthcare Market DACH, Röntgenstraße 22, 22335 Hamburg, Germany
| | - Robert Wawer Matos Reimer
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937 Cologne, Germany
| | - Miriam Rinneburger
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937 Cologne, Germany
| | - Josefine Graffe
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937 Cologne, Germany
| | - Thorsten Persigehl
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937 Cologne, Germany
| | | | - Bettina Baeßler
- University Hospital Würzburg, Department of Diagnostic and Interventional Radiology, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Liliana Lourenco Caldeira
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937 Cologne, Germany
| | - Nils Große Hokamp
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937 Cologne, Germany
| |
Collapse
|
10
|
Zhong J, Wu Z, Wang L, Chen Y, Xia Y, Wang L, Li J, Lu W, Shi X, Feng J, Dong H, Zhang H, Yao W. Impacts of Adaptive Statistical Iterative Reconstruction-V and Deep Learning Image Reconstruction Algorithms on Robustness of CT Radiomics Features: Opportunity for Minimizing Radiomics Variability Among Scans of Different Dose Levels. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:123-133. [PMID: 38343265 PMCID: PMC10976956 DOI: 10.1007/s10278-023-00901-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 03/02/2024]
Abstract
This study aims to investigate the influence of adaptive statistical iterative reconstruction-V (ASIR-V) and deep learning image reconstruction (DLIR) on CT radiomics feature robustness. A standardized phantom was scanned under single-energy CT (SECT) and dual-energy CT (DECT) modes at standard and low (20 and 10 mGy) dose levels. Images of SECT 120 kVp and corresponding DECT 120 kVp-like virtual monochromatic images were generated with filtered back-projection (FBP), ASIR-V at 40% (AV-40) and 100% (AV-100) blending levels, and DLIR algorithm at low (DLIR-L), medium (DLIR-M), and high (DLIR-H) strength levels. Ninety-four features were extracted via Pyradiomics. Reproducibility of features was calculated between standard and low dose levels, between reconstruction algorithms in reference to FBP images, and within scan mode, using intraclass correlation coefficient (ICC) and concordance correlation coefficient (CCC). The average percentage of features with ICC > 0.90 and CCC > 0.90 between the two dose levels was 21.28% and 20.75% in AV-40 images, and 39.90% and 35.11% in AV-100 images, respectively, and increased from 15.43 to 45.22% and from 15.43 to 44.15% with an increasing strength level of DLIR. The average percentage of features with ICC > 0.90 and CCC > 0.90 in reference to FBP images was 26.07% and 25.80% in AV-40 images, and 18.88% and 18.62% in AV-100 images, respectively, and decreased from 27.93 to 17.82% and from 27.66 to 17.29% with an increasing strength level of DLIR. DLIR and ASIR-V algorithms showed low reproducibility in reference to FBP images, while the high-strength DLIR algorithm provides an opportunity for minimizing radiomics variability due to dose reduction.
Collapse
Affiliation(s)
- Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Zhiyuan Wu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lingyun Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yong Chen
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yihan Xia
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lan Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jianying Li
- Computed Tomography Research Center, GE Healthcare, Beijing, 100176, China
| | - Wei Lu
- Computed Tomography Research Center, GE Healthcare, Shanghai, 201203, China
| | - Xiaomeng Shi
- Department of Materials, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Jianxing Feng
- Haohua Technology Co., Ltd., Shanghai, 201100, China
| | - Haipeng Dong
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Weiwu Yao
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| |
Collapse
|
11
|
Zhong J, Pan Z, Chen Y, Wang L, Xia Y, Wang L, Li J, Lu W, Shi X, Feng J, Yan F, Zhang H, Yao W. Robustness of radiomics features of virtual unenhanced and virtual monoenergetic images in dual-energy CT among different imaging platforms and potential role of CT number variability. Insights Imaging 2023; 14:79. [PMID: 37166511 PMCID: PMC10175529 DOI: 10.1186/s13244-023-01426-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/05/2023] [Indexed: 05/12/2023] Open
Abstract
OBJECTIVES To evaluate robustness of dual-energy CT (DECT) radiomics features of virtual unenhanced (VUE) image and virtual monoenergetic image (VMI) among different imaging platforms. METHODS A phantom with sixteen clinical-relevant densities was scanned on ten DECT platforms with comparable scan parameters. Ninety-four radiomic features were extracted via Pyradiomics from VUE images and VMIs at energy level of 70 keV (VMI70keV). Test-retest repeatability was assessed by Bland-Altman analysis. Inter-platform reproducibility of VUE images and VMI70keV was evaluated by coefficient of variation (CV) and quartile coefficient of dispersion (QCD) among platforms, and by intraclass correlation coefficient (ICC) and concordance correlation coefficient (CCC) between platform pairs. The correlation between variability of CT number radiomics reproducibility was estimated. RESULTS 92.02% and 92.87% of features were repeatable between scan-rescans for VUE images and VMI70keV, respectively. Among platforms, 11.30% and 28.39% features of VUE images, and 15.16% and 28.99% features of VMI70keV were with CV < 10% and QCD < 10%. The average percentages of radiomics features with ICC > 0.90 and CCC > 0.90 between platform pairs were 10.00% and 9.86% in VUE images and 11.23% and 11.23% in VMI70keV. The CT number inter-platform reproducibility using CV and QCD showed negative correlations with percentage of the first-order radiomics features with CV < 10% and QCD < 10%, in both VUE images and VMI70keV (r2 0.3870-0.6178, all p < 0.001). CONCLUSIONS The majority of DECT radiomics features were non-reproducible. The differences in CT number were considered as an indicator of inter-platform DECT radiomics variation. Critical relevance statement: The majority of radiomics features extracted from the VUE images and the VMI70keV were non-reproducible among platforms, while synchronizing energy levels of VMI to reduce the CT number value variability may be a potential way to mitigate radiomics instability.
Collapse
Affiliation(s)
- Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Zilai Pan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yong Chen
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lingyun Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yihan Xia
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lan Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jianying Li
- Computed Tomography Research Center, GE Healthcare, Beijing, 100176, China
| | - Wei Lu
- Computed Tomography Research Center, GE Healthcare, Shanghai, 201203, China
| | - Xiaomeng Shi
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Jianxing Feng
- Haohua Technology Co., Ltd., Shanghai, 201100, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Weiwu Yao
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| |
Collapse
|
12
|
Ponsiglione A, Stanzione A, Spadarella G, Baran A, Cappellini LA, Lipman KG, Van Ooijen P, Cuocolo R. Ovarian imaging radiomics quality score assessment: an EuSoMII radiomics auditing group initiative. Eur Radiol 2023; 33:2239-2247. [PMID: 36303093 PMCID: PMC9935717 DOI: 10.1007/s00330-022-09180-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/26/2022] [Accepted: 09/18/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To evaluate the methodological rigor of radiomics-based studies using noninvasive imaging in ovarian setting. METHODS Multiple medical literature archives (PubMed, Web of Science, and Scopus) were searched to retrieve original studies focused on computed tomography (CT), magnetic resonance imaging (MRI), ultrasound (US), or positron emission tomography (PET) radiomics for ovarian disorders' assessment. Two researchers in consensus evaluated each investigation using the radiomics quality score (RQS). Subgroup analyses were performed to assess whether the total RQS varied according to first author category, study aim and topic, imaging modality, and journal quartile. RESULTS From a total of 531 items, 63 investigations were finally included in the analysis. The studies were greatly focused (94%) on the field of oncology, with CT representing the most used imaging technique (41%). Overall, the papers achieved a median total RQS 6 (IQR, -0.5 to 11), corresponding to a percentage of 16.7% of the maximum score (IQR, 0-30.6%). The scoring was low especially due to the lack of prospective design and formal validation of the results. At subgroup analysis, the 4 studies not focused on oncological topic showed significantly lower quality scores than the others. CONCLUSIONS The overall methodological rigor of radiomics studies in the ovarian field is still not ideal, limiting the reproducibility of results and potential translation to clinical setting. More efforts towards a standardized methodology in the workflow are needed to allow radiomics to become a viable tool for clinical decision-making. KEY POINTS • The 63 included studies using noninvasive imaging for ovarian applications were mostly focused on oncologic topic (94%). • The included investigations achieved a median total RQS 6 (IQR, -0.5 to 11), indicating poor methodological rigor. • The RQS was low especially due to the lack of prospective design and formal validation of the results.
Collapse
Affiliation(s)
- Andrea Ponsiglione
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy.
| | - Gaia Spadarella
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Agah Baran
- Department of Diagnostic and Interventional Radiology, University of Cologne, Cologne, Germany
| | | | - Kevin Groot Lipman
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Peter Van Ooijen
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, The Netherlands
- Machine Learning Lab, Data Science Center in Health, University Medical Center Groningen, Groningen, the Netherlands
| | - Renato Cuocolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
- Augmented Reality for Health Monitoring Laboratory (ARHeMLab), Department of Electrical Engineering and Information Technology, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
13
|
Demircioğlu A. The effect of preprocessing filters on predictive performance in radiomics. Eur Radiol Exp 2022; 6:40. [PMID: 36045274 PMCID: PMC9433552 DOI: 10.1186/s41747-022-00294-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Background Radiomics is a noninvasive method using machine learning to support personalised medicine. Preprocessing filters such as wavelet and Laplacian-of-Gaussian filters are commonly used being thought to increase predictive performance. However, the use of preprocessing filters increases the number of features by up to an order of magnitude and can produce many correlated features. Both substantially increase the dataset complexity, which in turn makes modeling with machine learning techniques more challenging, possibly leading to poorer performance. We investigated the impact of these filters on predictive performance. Methods Using seven publicly available radiomic datasets, we measured the impact of adding features preprocessed with eight different preprocessing filters to the unprocessed features on the predictive performance of radiomic models. Modeling was performed using five feature selection methods and five classifiers, while predictive performance was measured using area-under-the-curve at receiver operating characteristics analysis (AUC-ROC) with nested, stratified 10-fold cross-validation. Results Significant improvements of up to 0.08 in AUC-ROC were observed when all image preprocessing filters were applied compared to using only the original features (up to p = 0.024). Decreases of -0.04 and -0.10 were observed on some data sets, but these were not statistically significant (p > 0.179). Tuning of the image preprocessing filters did not result in decreases in AUC-ROC but further improved results by up to 0.1; however, these improvements were not statistically significant (p > 0.086) except for one data set (p = 0.023). Conclusions Preprocessing filters can have a significant impact on the predictive performance and should be used in radiomic studies. Supplementary Information The online version contains supplementary material available at 10.1186/s41747-022-00294-w.
Collapse
Affiliation(s)
- Aydin Demircioğlu
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany.
| |
Collapse
|
14
|
Development and validation of 68Ga-PSMA-11 PET/CT-based radiomics model to detect primary prostate cancer. EJNMMI Res 2022; 12:63. [PMID: 36175753 PMCID: PMC9522942 DOI: 10.1186/s13550-022-00936-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/21/2022] [Indexed: 12/03/2022] Open
Abstract
Background This study aimed to develop a novel analytic approach based on a radiomics model derived from 68Ga-prostate-specific membrane antigen (PSMA)-11 PET/CT for predicting intraprostatic lesions in patients with prostate cancer (PCa). Methods This retrospective study included consecutive patients with or without PCa who underwent surgery or biopsy after 68Ga-PSMA-11 PET/CT. A total of 944 radiomics features were extracted from the images. A radiomics model was constructed using the least absolute shrinkage and selection operator (LASSO) algorithm with tenfold cross-validation in the training set. PET/CT images for the test set were reviewed by experienced nuclear medicine radiologists. The sensitivity, specificity, positive predictive value, negative predictive value, and area under the receiver operating characteristic curve (AUC) were calculated for the model and radiologists’ results. The AUCs were compared. Results The total of 125 patients (86 PCa, 39 benign prostate disease [BPD]) included 87 (61 PCa, 26 BPD) in the training set and 38 (61 PCa, 26 BPD) in the test set. Nine features were selected to construct the radiomics model. The model score differed between PCa and BPD in the training and test sets (both P < 0.001). In the test set, the radiomics model performed better than the radiologists’ assessment (AUC, 0.85 [95% confidence interval 0.73, 0.97] vs. 0.63 [0.47, 0.79]; P = 0.036) and showed higher sensitivity (model vs radiologists, 0.84 [0.63, 0.95] vs. 0.74 [0.53, 0.88]; P = 0.002). Conclusion Radiomics analysis based on 68Ga-PSMA-11 PET may non-invasively predict intraprostatic lesions in patients with PCa. Supplementary Information The online version contains supplementary material available at 10.1186/s13550-022-00936-5.
Collapse
|
15
|
Meningioma Radiomics: At the Nexus of Imaging, Pathology and Biomolecular Characterization. Cancers (Basel) 2022; 14:cancers14112605. [PMID: 35681585 PMCID: PMC9179263 DOI: 10.3390/cancers14112605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Meningiomas are typically benign, common extra-axial tumors of the central nervous system. Routine clinical assessment by radiologists presents some limitations regarding long-term patient outcome prediction and risk stratification. Given the exponential growth of interest in radiomics and artificial intelligence in medical imaging, numerous studies have evaluated the potential of these tools in the setting of meningioma imaging. These were aimed at the development of reliable and reproducible models based on quantitative data. Although several limitations have yet to be overcome for their routine use in clinical practice, their innovative potential is evident. In this review, we present a wide-ranging overview of radiomics and artificial intelligence applications in meningioma imaging. Abstract Meningiomas are the most common extra-axial tumors of the central nervous system (CNS). Even though recurrence is uncommon after surgery and most meningiomas are benign, an aggressive behavior may still be exhibited in some cases. Although the diagnosis can be made by radiologists, typically with magnetic resonance imaging, qualitative analysis has some limitations in regard to outcome prediction and risk stratification. The acquisition of this information could help the referring clinician in the decision-making process and selection of the appropriate treatment. Following the increased attention and potential of radiomics and artificial intelligence in the healthcare domain, including oncological imaging, researchers have investigated their use over the years to overcome the current limitations of imaging. The aim of these new tools is the replacement of subjective and, therefore, potentially variable medical image analysis by more objective quantitative data, using computational algorithms. Although radiomics has not yet fully entered clinical practice, its potential for the detection, diagnostic, and prognostic characterization of tumors is evident. In this review, we present a wide-ranging overview of radiomics and artificial intelligence applications in meningioma imaging.
Collapse
|
16
|
Tharmaseelan H, Hertel A, Tollens F, Rink J, Woźnicki P, Haselmann V, Ayx I, Nörenberg D, Schoenberg SO, Froelich MF. Identification of CT Imaging Phenotypes of Colorectal Liver Metastases from Radiomics Signatures-Towards Assessment of Interlesional Tumor Heterogeneity. Cancers (Basel) 2022; 14:cancers14071646. [PMID: 35406418 PMCID: PMC8997087 DOI: 10.3390/cancers14071646] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023] Open
Abstract
(1) Background: Tumoral heterogeneity (TH) is a major challenge in the treatment of metastatic colorectal cancer (mCRC) and is associated with inferior response. Therefore, the identification of TH would be beneficial for treatment planning. TH can be assessed by identifying genetic alterations. In this work, a radiomics-based approach for assessment of TH in colorectal liver metastases (CRLM) in CT scans is demonstrated. (2) Methods: In this retrospective study, CRLM of mCRC were segmented and radiomics features extracted using pyradiomics. Unsupervised k-means clustering was applied to features and lesions. Feature redundancy was evaluated by principal component analysis and reduced by Pearson correlation coefficient cutoff. Feature selection was conducted by LASSO regression and visual analysis of the clusters by radiologists. (3) Results: A total of 47 patients’ (36% female, median age 64) CTs with 261 lesions were included. Five clusters were identified, and the categories small disseminated (n = 31), heterogeneous (n = 105), homogeneous (n = 64), mixed (n = 59), and very large type (n = 2) were assigned based on visual characteristics. Further statistical analysis showed correlation (p < 0.01) of clusters with sex, primary location, T- and N-status, and mutational status. Feature reduction and selection resulted in the identification of four features as a final set for cluster definition. (4) Conclusions: Radiomics features can characterize TH in liver metastases of mCRC in CT scans, and may be suitable for a better pretherapeutic classification of liver lesion phenotypes.
Collapse
Affiliation(s)
- Hishan Tharmaseelan
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, 68167 Mannheim, Germany; (H.T.); (A.H.); (F.T.); (J.R.); (P.W.); (I.A.); (D.N.); (S.O.S.)
| | - Alexander Hertel
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, 68167 Mannheim, Germany; (H.T.); (A.H.); (F.T.); (J.R.); (P.W.); (I.A.); (D.N.); (S.O.S.)
| | - Fabian Tollens
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, 68167 Mannheim, Germany; (H.T.); (A.H.); (F.T.); (J.R.); (P.W.); (I.A.); (D.N.); (S.O.S.)
| | - Johann Rink
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, 68167 Mannheim, Germany; (H.T.); (A.H.); (F.T.); (J.R.); (P.W.); (I.A.); (D.N.); (S.O.S.)
| | - Piotr Woźnicki
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, 68167 Mannheim, Germany; (H.T.); (A.H.); (F.T.); (J.R.); (P.W.); (I.A.); (D.N.); (S.O.S.)
| | - Verena Haselmann
- Institute of Clinical Chemistry, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, 68167 Mannheim, Germany;
| | - Isabelle Ayx
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, 68167 Mannheim, Germany; (H.T.); (A.H.); (F.T.); (J.R.); (P.W.); (I.A.); (D.N.); (S.O.S.)
| | - Dominik Nörenberg
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, 68167 Mannheim, Germany; (H.T.); (A.H.); (F.T.); (J.R.); (P.W.); (I.A.); (D.N.); (S.O.S.)
| | - Stefan O. Schoenberg
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, 68167 Mannheim, Germany; (H.T.); (A.H.); (F.T.); (J.R.); (P.W.); (I.A.); (D.N.); (S.O.S.)
| | - Matthias F. Froelich
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, 68167 Mannheim, Germany; (H.T.); (A.H.); (F.T.); (J.R.); (P.W.); (I.A.); (D.N.); (S.O.S.)
- Correspondence:
| |
Collapse
|
17
|
Differentiating pulmonary metastasis from benign lung nodules in thyroid cancer patients using dual-energy CT parameters. Eur Radiol 2021; 32:1902-1911. [PMID: 34564746 DOI: 10.1007/s00330-021-08278-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/01/2021] [Accepted: 08/16/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVES To explore the importance of quantitative characteristics of dual-energy CT (DECT) between pulmonary metastasis and benign lung nodules in thyroid cancer. METHODS In this retrospective study, we identified 63 patients from our institution's database with pathologically proven thyroid cancer who underwent DECT to assess pulmonary metastasis. Among these patients, 22 had 55 pulmonary metastases, and 41 had 97 benign nodules. If nodules showed increased iodine uptake on I-131 single-photon emission computed tomography-computed tomography or increased size in follow-up CT, they were considered metastatic. We compared the clinical findings and DECT parameters of both groups and performed a receiver operating characteristic analysis to evaluate the optimal cutoff values of the DECT parameters. RESULTS Patients with metastases were significantly older than patients with benign nodules (p = 0.048). The DECT parameters of the metastatic nodules were significantly higher than those of the benign nodules (iodine concentration [IC], 5.61 ± 2.02 mg/mL vs. 1.61 ± 0.98 mg/mL; normalized IC [NIC], 0.60 ± 0.20 vs. 0.16 ± 0.11; NIC using pulmonary artery [NICPA], 0.60 ± 0.44 vs. 0.15 ± 0.11; slope of the spectral attenuation curves [λHU], 5.18 ± 2.54 vs. 2.12 ± 1.39; and Z-effective value [Zeff], 10.0 ± 0.94 vs. 8.79 ± 0.75; all p < 0.001). In the subgroup analysis according to nodule size, all DECT parameters of the metastatic nodules in all subgroups were significantly higher than those of the benign nodules (all p < 0.05). The cutoff values for IC, NIC, λHU, NICPA, and Zeff for diagnosing metastases were 3.10, 0.29, 3.57, 0.28, and 9.34, respectively (all p < 0.001). CONCLUSIONS DECT parameters can help to differentiate metastatic and benign lung nodules in thyroid cancer. KEY POINTS • DECT parameters can help to differentiate metastatic and benign lung nodules in patients with thyroid cancer. • DECT parameters showed a significant difference between benign lung nodules and lung metastases, even for nodules with diameters ≥ 3 mm and < 5 mm. • Among the DECT parameters, the highest diagnostic accuracy for differentiating pulmonary metastases from benign lung nodules was achieved with the NIC and IC, followed by the NICPA and λHU, and their cutoff values were 0.29, 3.10, 0.28, and 3.57, respectively.
Collapse
|