1
|
Zeng Q, Liu L, He C, Zeng X, Wei P, Xu D, Mao N, Yu T. Early and noninvasive prediction of response to neoadjuvant therapy for breast cancer via longitudinal ultrasound and MR deep learning: A multicentre study. Acad Radiol 2025; 32:1264-1273. [PMID: 39542804 DOI: 10.1016/j.acra.2024.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
RATIONALE AND OBJECTIVES The early prediction of response to neoadjuvant chemotherapy (NAC) will aid in the development of personalized treatments for patients with breast cancer. This study investigated the value of longitudinal multimodal deep learning (DL) based on breast MR and ultrasound (US) in predicting pathological complete response (pCR) after NAC. MATERIALS AND METHODS We retrospectively reviewed the pre-NAC and post-2nd-NAC MR and/or US images of 448 patients enrolled from three centers and extracted DL features from the largest section of the breast tumour using ResNet50. T test, Pearson correlation analysis and least absolute shrinkage and selection operator regression were used to select the most significant DL features for the pre-NAC and post-2nd-NAC MR and US DL models. The stacking model integrates different single-modality DL models and meaningful clinical data. The diagnostic performance of the models was evaluated. RESULTS In all the patients, the pCR rate was 36.65%. There was no significant difference in diagnostic performance between the different single-modality DL models (DeLong test, p > 0.05). The stacking model integrating the above four DL models with HER2 status yielded areas under the curves of 0.951-0.979, accuracies of 91.55%-92.65%, sensitivities of 90.63%-93.94%, and specificities of 89.47%-94.44% in the cohorts. CONCLUSION Longitudinal multimodal DL can be useful in predicting pCR. The stacking model can be used as a new tool for the early noninvasive prediction of the response to NAC, as evidenced by its excellent performance, and therefore aid the development of personalized treatment strategies for patients with breast cancer.
Collapse
Affiliation(s)
- Qiao Zeng
- Department of Radiology, Jiangxi Cancer Hospital&Institute,Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Nanchang 330029, Jiangxi Province, China (Q.Z., L.L., P.W.)
| | - Lan Liu
- Department of Radiology, Jiangxi Cancer Hospital&Institute,Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Nanchang 330029, Jiangxi Province, China (Q.Z., L.L., P.W.)
| | - Chongwu He
- Department of Breast Surgery, Jiangxi Cancer Hospital&Institute,Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Nanchang 330029, Jiangxi Province, China (C.H., X.Z., T.Y.)
| | - Xiaoqiang Zeng
- Department of Breast Surgery, Jiangxi Cancer Hospital&Institute,Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Nanchang 330029, Jiangxi Province, China (C.H., X.Z., T.Y.)
| | - Pengfei Wei
- Department of Radiology, Jiangxi Cancer Hospital&Institute,Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Nanchang 330029, Jiangxi Province, China (Q.Z., L.L., P.W.)
| | - Dong Xu
- Department of Ultrasound, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China (D.X.)
| | - Ning Mao
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai 264000, China (N.M.)
| | - Tenghua Yu
- Department of Breast Surgery, Jiangxi Cancer Hospital&Institute,Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Nanchang 330029, Jiangxi Province, China (C.H., X.Z., T.Y.).
| |
Collapse
|
2
|
Huang Y, Cao Y, Hu X, Lan X, Chen H, Tang S, Li L, Cheng Y, Gong X, Wang W, Jiang F, Yin T, Wang X, Zhang J. Early Identification of Pathologic Complete Response to Neoadjuvant Chemotherapy Using Multiphase DCE-MRI by Siamese Network in Breast Cancer: A Longitudinal Multicenter Study. J Magn Reson Imaging 2024; 60:1325-1337. [PMID: 38109316 DOI: 10.1002/jmri.29188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Siamese network (SN) using longitudinal DCE-MRI for pathologic complete response (pCR) identification lack a unified approach to phases selection. PURPOSE To identify pCR in early-stage NAC, using SN with longitudinal DCE-MRI and introducing IPS for phases selection. STUDY TYPE Multicenter, longitudinal. POPULATION Center A: 162 female patients (50.63 ± 8.41 years) divided 7:3 into training and internal validation cohorts. Center B: 61 female patients (50.08 ± 7.82 years) were used as an external validation cohort. FIELD STRENGTH/SEQUENCE Center A: single vendor 3.0 T with a compressed-sensing volume interpolated breath-hold examination sequence. Center B: single vendor 1.5 T with volume interpolated breath-hold examination sequence. ASSESSMENT Patients underwent DCE-MRI before and after two NAC cycles, with tumor regions of interest (ROI) manually delineated. Histopathology was the reference for pCR identification. Models developed included a clinical one, four SN models based on IPS-selected phases, and integrated models combining clinical and SN features. STATISTICAL TESTS Model performance was evaluated using the area under the receiver operating characteristic curve (AUC). The DeLong test was used to compare AUCs. Net reclassification improvement and integrated discrimination improvement (IDI) tests were employed for performance comparison. P < 0.05 was considered significant. RESULTS In internal and external validation cohorts, the clinical model showed AUCs of 0.760 and 0.718. SN and integrated models, with increasing phases via IPS, achieved AUCs ranging from 0.813 to 0.951 and 0.818 to 0.922. Notably, SN-3 and integrated-3 and integrated-4 outperformed the clinical model. However, input phases beyond 20% did not significantly enhance performance (IDI test: SN-4 vs. SN-3, P = 0.314 and 0.630; integrated-4 vs. integrated-3, P = 0.785 and 0.709). DATA CONCLUSION The longitudinal multiphase DCE-MRI based on the SN demonstrates promise for identifying pCR in breast cancer. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 4.
Collapse
Affiliation(s)
- Yao Huang
- School of Medicine, Chongqing University, Chongqing, China
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing, China
| | - Ying Cao
- School of Medicine, Chongqing University, Chongqing, China
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing, China
| | - Xiaofei Hu
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaosong Lan
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing, China
| | - Huifang Chen
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing, China
| | - Sun Tang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing, China
| | - Lan Li
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing, China
| | - Yue Cheng
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing, China
| | - Xueqin Gong
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing, China
| | - Wei Wang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing, China
| | - Fujie Jiang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing, China
| | - Ting Yin
- MR Collaborations, Siemens Healthineers Ltd., Chengdu, China
| | - Xiaoxia Wang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing, China
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing, China
| |
Collapse
|
3
|
Liu K, Yang W, Tian H, Li Y, He J. Association between programmed cell death ligand-1 expression in patients with cervical cancer and apparent diffusion coefficient values: a promising tool for patient´s immunotherapy selection. Eur Radiol 2024; 34:6726-6737. [PMID: 38637428 DOI: 10.1007/s00330-024-10759-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/21/2024] [Accepted: 04/07/2024] [Indexed: 04/20/2024]
Abstract
OBJECTIVE To investigate the associations between apparent diffusion coefficient (ADC) values extracted from three different region of interest (ROI) position approaches and programmed cell death ligand-1 (PD-L1) expression, and evaluate the performance of the nomogram established based on ADC values and clinicopathological parameters in predicting PD-L1 expression in cervical cancer (CC) patients. METHODS Through retrospective recruitment, a training cohort of 683 CC patients was created, and a validation cohort of 332 CC patients was prospectively recruited. ROIs were delineated using three different methods to measure the mean ADC (ADCmean), single-section ADC (ADCss), and the minimum ADC of tumors (ADCmin). Logistic regression was employed to identify independent factors related to PD-L1 expression. A nomogram was drawn based on ADC values combined with clinicopathological features, its discrimination and calibration performances were estimated using the area under the curve (AUC) of receiver operating characteristic and calibration curve. The clinical benefits were evaluated by decision curve analysis. RESULTS The ADCmin independently correlated with PD-L1 expression. The nomogram constructed with ADCmin and other independent clinicopathological-related factors: FIGO staging, pathological grade, parametrial invasion, and lymph node status demonstrated excellent diagnostic performance (AUC = 0.912 and 0.903, respectively), good calibration capacities, and greater net benefits compared to the clinicopathological model in both the training and validation cohorts. CONCLUSION ADCmin independently correlated PD-L1 expression, and the nomogram established with ADCmin and clinicopathological independent prognostic factors had a strong predictive performance for PD-L1 expression, thereby serving as a promising tool for selecting cases eligible for immunotherapy. CLINICAL RELEVANCE STATEMENT The minimum ADC can serve as a reliable imaging biomarker related to PD-L1 expression; the established nomogram combines the minimum ADC and clinicopathological factors that can assist clinical immunotherapy decisions.
Collapse
Affiliation(s)
- Kaihui Liu
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, P.R. China
| | - Wei Yang
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, P.R. China.
| | - Haiping Tian
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan, P.R. China
| | - Yunxia Li
- Department of Medical Oncology, General Hospital of Ningxia Medical University, Yinchuan, P.R. China
| | - Jianli He
- Department of Radiotherapy, General Hospital of Ningxia Medical University, Yinchuan, P.R. China
| |
Collapse
|
4
|
Yang W, Yang Y, Zhang C, Yin Q, Zhang N. A clinicopathological-imaging nomogram for the prediction of pathological complete response in breast cancer cases administered neoadjuvant therapy. Magn Reson Imaging 2024; 111:120-130. [PMID: 38703971 DOI: 10.1016/j.mri.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
OBJECTIVE To construct a user-friendly nomogram with MRI and clinicopathological parameters for the prediction of pathological complete response (pCR) after neoadjuvant therapy (NAT) in patients with breast cancer (BC). METHODS We retrospectively enrolled consecutive female patients pathologically confirmed with breast cancer who received NAT followed by surgery between January 2018 and December 2022 as the development cohort. Additionally, we prospectively collected eligible candidates between January 2023 and December 2023 as an external validation group at our institution. Pretreatment MRI features and clinicopathological variables were collected, and the pre- and post-treatment background parenchymal enhancement (BPE) and the changes in BPE on two MRIs were compared between patients who achieved pCR and those who did not. Multivariable logistic regression analysis was used to identify independent variables associated with pCR in the development cohort. These independent variables were combined into a predictive nomogram for which performance was assessed using the area under the receiver operating characteristic curve (AUC), calibration plot, decision curve analysis, and external validation. RESULTS In the development cohort, there were a total of 276 female patients with a mean age of 48.3 ± 8.7 years, while in the validation cohort, there were 87 female patients with a mean age of 49.0 ± 9.5 years. Independent prognostic factors of pCR included small tumor size, HER2(+), high Ki-67 index,high signal enhancement ratio (SER), low minimum value of apparent diffusion coefficient (ADCmin), and significantly decreased BPE after NAT(change of BPE). The nomogram, which incorporates the above parameters, demonstrated excellent predictive performance in both the development and external validation cohorts, with AUC values of 0.900 and 0.850, respectively. Additionally, the nomogram showed excellent calibration capacities, as indicated by Hosmer-Lemeshow test p values of 0.508 and 0.423 in the two cohorts. Furthermore, the nomogram provided greater net benefits compared to the default simple schemes in both cohorts. CONCLUSION A nomogram constructed using tumor size, HER2 status, Ki-67 index, SER, ADCmin, and changes in pre- and post-NAT BPE demonstrated strong predictive performance, calibration ability, and greater net benefits for predicting pCR in patients with BC after NAT. This suggests that the user-friendly nomogram could be a valuable imaging biomarker for identifying suitable candidates for NAT.
Collapse
Affiliation(s)
- Wei Yang
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan 750004, China.
| | - Yan Yang
- Information Technology Center, 32752 Troop, Xiangyang 441000, China
| | - Chaolin Zhang
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, 804 Shengli Road, Yinchuan 750004, China
| | - Qingyun Yin
- Department of medical Oncology, General Hospital of Ningxia Medical University, 804 Shengli Road, Yinchuan 750004, China
| | - Ningmei Zhang
- Department of Pathology, General Hospital of Ningxia Medical University, 804 Shengli Road, Yinchuan 750004, China
| |
Collapse
|
5
|
Rauch GM. Biomarkers for Personalized Neoadjuvant Therapy in Triple-Negative Breast Cancer: Moving Forward. Radiology 2024; 312:e242011. [PMID: 39225606 DOI: 10.1148/radiol.242011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Affiliation(s)
- Gaiane M Rauch
- From the University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1473, Houston, TX 77030
| |
Collapse
|
6
|
Liang R, Li F, Yao J, Tong F, Hua M, Liu J, Shi C, Sui L, Lu H. Predictive value of MRI-based deep learning model for lymphovascular invasion status in node-negative invasive breast cancer. Sci Rep 2024; 14:16204. [PMID: 39003325 PMCID: PMC11246470 DOI: 10.1038/s41598-024-67217-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 07/09/2024] [Indexed: 07/15/2024] Open
Abstract
To retrospectively assess the effectiveness of deep learning (DL) model, based on breast magnetic resonance imaging (MRI), in predicting preoperative lymphovascular invasion (LVI) status in patients diagnosed with invasive breast cancer who have negative axillary lymph nodes (LNs). Data was gathered from 280 patients, including 148 with LVI-positive and 141 with LVI-negative lesions. These patients had undergone preoperative breast MRI and were histopathologically confirmed to have invasive breast cancer without axillary LN metastasis. The cohort was randomly split into training and validation groups in a 7:3 ratio. Radiomics features for each lesion were extracted from the first post-contrast dynamic contrast-enhanced (DCE)-MRI. The Least Absolute Shrinkage and Selection Operator (LASSO) regression method and logistic regression analyses were employed to identify significant radiomic features and clinicoradiological variables. These models were established using four machine learning (ML) algorithms and one DL algorithm. The predictive performance of the models (radiomics, clinicoradiological, and combination) was assessed through discrimination and compared using the DeLong test. Four clinicoradiological parameters and 10 radiomic features were selected by LASSO for model development. The Multilayer Perceptron (MLP) model, constructed using both radiomic and clinicoradiological features, demonstrated excellent performance in predicting LVI, achieving a high area under the curve (AUC) of 0.835 for validation. The DL model (MLP-radiomic) achieved the highest accuracy (AUC = 0.896), followed by DL model (MLP-combination) with an AUC of 0.835. Both DL models were significantly superior to the ML model (RF-clinical) with an AUC of 0.720. The DL model (MLP), which integrates radiomic features with clinicoradiological information, effectively aids in the preoperative determination of LVI status in patients with invasive breast cancer and negative axillary LNs. This is beneficial for making informed clinical decisions.
Collapse
Affiliation(s)
- Rong Liang
- Department of Breast Imaging, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, West Huan-Hu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, People's Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, People's Republic of China
| | - Fangfang Li
- Department of Breast Imaging, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, West Huan-Hu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, People's Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, People's Republic of China
| | - Jingyuan Yao
- Department of Physiology and Biochemistry, School of Fundamental Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, People's Republic of China
| | - Fang Tong
- Department of Physiology and Biochemistry, School of Fundamental Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, People's Republic of China
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, People's Republic of China
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, People's Republic of China
| | - Minghui Hua
- Department of Radiology, Chest Hospital, Tianjin University, Tianjin, People's Republic of China
| | - Junjun Liu
- Department of Breast Imaging, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, West Huan-Hu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, People's Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, People's Republic of China
| | - Chenlei Shi
- Department of Physiology and Biochemistry, School of Fundamental Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, People's Republic of China
| | - Lewen Sui
- Department of Physiology and Biochemistry, School of Fundamental Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, People's Republic of China
| | - Hong Lu
- Department of Breast Imaging, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, West Huan-Hu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, People's Republic of China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, People's Republic of China.
| |
Collapse
|
7
|
Xia L, Yang L, Hu M. Diagnostic Accuracy of Combined 3.0T Magnetic Resonance Imaging and Molybdenum Target X-Ray in Triple-Negative Breast Cancer: Correlation with Prognosis in Patients Undergoing Sentinel Lymph Node Biopsy. WOMEN'S HEALTH REPORTS (NEW ROCHELLE, N.Y.) 2024; 5:546-553. [PMID: 39035134 PMCID: PMC11257123 DOI: 10.1089/whr.2023.0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/23/2024]
Abstract
Objective This study assessed the diagnostic efficacy of combining 3.0T MRI and molybdenum target X-ray in triple-negative breast carcinoma (TNBC) and its association with the prognosis of sentinel lymph node biopsy (SLNB). Methods The retrospective analysis included 128 patients suspected of having TNBC, who underwent 3.0T MRI and molybdenum target X-ray. Sensitivity and specificity were calculated for each imaging technique, and their combined diagnosis was evaluated using the four-table method. Consistency between the imaging techniques and pathological examination was assessed using the consistency checking method. Additionally, changes in imaging indicators were compared among patients with different prognostic indicators. Results Among the 128 patients, 86 were diagnosed with TNBC through pathological examination. The sensitivity and specificity of 3.0T MRI for TNBC were 82.56% and 76.19%, respectively. Molybdenum target X-ray exhibited a sensitivity of 77.91% and specificity of 78.57%. The combined diagnosis of the two techniques showed a sensitivity of 90.70% and specificity of 86.36%. There was good agreement between both imaging techniques and pathological examination results. Significant differences were observed in imaging indicators based on tumor diameter, histological grade, and lymph node metastasis. Conclusion Both 3.0T MRI and molybdenum target X-ray are valuable in diagnosing TNBC. Additionally, these imaging techniques provide prognostic information and can aid in treatment decision-making. The findings highlight the importance of 3.0T MRI and molybdenum target X-ray in improving the outcomes of patients with TNBC.
Collapse
Affiliation(s)
- Li Xia
- Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Huangpu, China
| | - Ling Yang
- Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Huangpu, China
| | - Meng Hu
- Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Huangpu, China
| |
Collapse
|
8
|
Yan X, Fu X, Gui Y, Chen X, Cheng Y, Dai M, Wang W, Xiao M, Tan L, Zhang J, Shao Y, Wang H, Chang X, Lv K. Development and validation of a nomogram model based on pretreatment ultrasound and contrast-enhanced ultrasound to predict the efficacy of neoadjuvant chemotherapy in patients with borderline resectable or locally advanced pancreatic cancer. Cancer Imaging 2024; 24:13. [PMID: 38245789 PMCID: PMC10800053 DOI: 10.1186/s40644-024-00662-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024] Open
Abstract
OBJECTIVES To develop a nomogram using pretreatment ultrasound (US) and contrast-enhanced ultrasound (CEUS) to predict the clinical response of neoadjuvant chemotherapy (NAC) in patients with borderline resectable pancreatic cancer (BRPC) or locally advanced pancreatic cancer (LAPC). METHODS A total of 111 patients with pancreatic ductal adenocarcinoma (PDAC) treated with NAC between October 2017 and February 2022 were retrospectively enrolled. The patients were randomly divided (7:3) into training and validation cohorts. The pretreatment US and CEUS features were reviewed. Univariate and multivariate logistic regression analyses were used to determine the independent predictors of clinical response in the training cohort. Then a prediction nomogram model based on the independent predictors was constructed. The area under the curve (AUC), calibration plot, C-index and decision curve analysis (DCA) were used to assess the nomogram's performance, calibration, discrimination and clinical benefit. RESULTS The multivariate logistic regression analysis showed that the taller-than-wide shape in the longitudinal plane (odds ratio [OR]:0.20, p = 0.01), time from injection of contrast agent to peak enhancement (OR:3.64; p = 0.05) and Peaktumor/ Peaknormal (OR:1.51; p = 0.03) were independent predictors of clinical response to NAC. The predictive nomogram developed based on the above imaging features showed AUCs were 0.852 and 0.854 in the primary and validation cohorts, respectively. Good calibration was achieved in the training datasets, with C-index of 0.852. DCA verified the clinical usefulness of the nomogram. CONCLUSIONS The nomogram based on pretreatment US and CEUS can effectively predict the clinical response of NAC in patients with BRPC and LAPC; it may help guide personalized treatment.
Collapse
Affiliation(s)
- Xiaoyi Yan
- Department of Ultrasound, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xianshui Fu
- Department of Ultrasound, No.304 Hospital of Chinese PLA, Beijing, 100037, China
| | - Yang Gui
- Department of Ultrasound, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xueqi Chen
- Department of Ultrasound, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yuejuan Cheng
- Department of Medical Oncology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Menghua Dai
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Weibin Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Mengsu Xiao
- Department of Ultrasound, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Li Tan
- Department of Ultrasound, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jing Zhang
- Department of Ultrasound, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yuming Shao
- Department of Ultrasound, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Huanyu Wang
- Department of Ultrasound, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiaoyan Chang
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ke Lv
- Department of Ultrasound, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
9
|
Elsayed B, Alksas A, Shehata M, Mahmoud A, Zaky M, Alghandour R, Abdelwahab K, Abdelkhalek M, Ghazal M, Contractor S, El-Din Moustafa H, El-Baz A. Exploring Neoadjuvant Chemotherapy, Predictive Models, Radiomic, and Pathological Markers in Breast Cancer: A Comprehensive Review. Cancers (Basel) 2023; 15:5288. [PMID: 37958461 PMCID: PMC10648987 DOI: 10.3390/cancers15215288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Breast cancer retains its position as the most prevalent form of malignancy among females on a global scale. The careful selection of appropriate treatment for each patient holds paramount importance in effectively managing breast cancer. Neoadjuvant chemotherapy (NACT) plays a pivotal role in the comprehensive treatment of this disease. Administering chemotherapy before surgery, NACT becomes a powerful tool in reducing tumor size, potentially enabling fewer invasive surgical procedures and even rendering initially inoperable tumors amenable to surgery. However, a significant challenge lies in the varying responses exhibited by different patients towards NACT. To address this challenge, researchers have focused on developing prediction models that can identify those who would benefit from NACT and those who would not. Such models have the potential to reduce treatment costs and contribute to a more efficient and accurate management of breast cancer. Therefore, this review has two objectives: first, to identify the most effective radiomic markers correlated with NACT response, and second, to explore whether integrating radiomic markers extracted from radiological images with pathological markers can enhance the predictive accuracy of NACT response. This review will delve into addressing these research questions and also shed light on the emerging research direction of leveraging artificial intelligence techniques for predicting NACT response, thereby shaping the future landscape of breast cancer treatment.
Collapse
Affiliation(s)
- Basma Elsayed
- Biomedical Engineering Program, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt;
| | - Ahmed Alksas
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA; (A.A.); (M.S.); (A.M.)
| | - Mohamed Shehata
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA; (A.A.); (M.S.); (A.M.)
| | - Ali Mahmoud
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA; (A.A.); (M.S.); (A.M.)
| | - Mona Zaky
- Diagnostic Radiology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Reham Alghandour
- Medical Oncology Department, Mansoura Oncology Center, Mansoura University, Mansoura 35516, Egypt;
| | - Khaled Abdelwahab
- Surgical Oncology Department, Mansoura Oncology Center, Mansoura University, Mansoura 35516, Egypt; (K.A.); (M.A.)
| | - Mohamed Abdelkhalek
- Surgical Oncology Department, Mansoura Oncology Center, Mansoura University, Mansoura 35516, Egypt; (K.A.); (M.A.)
| | - Mohammed Ghazal
- Electrical, Computer, and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates;
| | - Sohail Contractor
- Department of Radiology, University of Louisville, Louisville, KY 40202, USA;
| | | | - Ayman El-Baz
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA; (A.A.); (M.S.); (A.M.)
| |
Collapse
|
10
|
Chen Z, Huang M, Lyu J, Qi X, He F, Li X. Machine learning for predicting breast-conserving surgery candidates after neoadjuvant chemotherapy based on DCE-MRI. Front Oncol 2023; 13:1174843. [PMID: 37621690 PMCID: PMC10446166 DOI: 10.3389/fonc.2023.1174843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
Purpose This study aimed to investigate a machine learning method for predicting breast-conserving surgery (BCS) candidates, from patients who received neoadjuvant chemotherapy (NAC) by using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) obtained before and after NAC. Materials and methods This retrospective study included 75 patients who underwent NAC and breast surgery. First, 3,390 features were comprehensively extracted from pre- and post-NAC DCE-MRIs. Then patients were then divided into two groups: type 1, patients with pathologic complete response (pCR) and single lesion shrinkage; type 2, major residual lesion with satellite foci, multifocal residual, stable disease (SD), and progressive disease (PD). The logistic regression (LR) was used to build prediction models to identify the two groups. Prediction performance was assessed using the area under the curve (AUC), accuracy, sensitivity, and specificity. Results Radiomics features were significantly related to breast cancer shrinkage after NAC. The combination model achieved an AUC of 0.82, and the pre-NAC model was 0.64, the post-NAC model was 0.70, and the pre-post-NAC model was 0.80. In the combination model, 15 features, including nine wavelet-based features, four Laplacian-of-Gauss (LoG) features, and two original features, were filtered. Among these selected were four features from pre-NAC DCE-MRI, six were from post-NAC DCE-MRI, and five were from pre-post-NAC features. Conclusion The model combined with pre- and post-NAC DCE-MRI can effectively predict candidates to undergo BCS and provide AI-based decision support for clinicians with ensured safety. High-order (LoG- and wavelet-based) features play an important role in our machine learning model. The features from pre-post-NAC DCE-MRI had better predictive performance.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiang Li
- Department of Radiology, the Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
11
|
Wan C, Zhou L, Li H, Wang L, Li F, Yin W, Wang Y, Jiang L, Lu J. Multiparametric Contrast-Enhanced Ultrasound in Early Prediction of Response to Neoadjuvant Chemotherapy and Recurrence-Free Survival in Breast Cancer. Diagnostics (Basel) 2023; 13:2378. [PMID: 37510121 PMCID: PMC10378059 DOI: 10.3390/diagnostics13142378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
We aimed to explore the value of contrast-enhanced ultrasound (CEUS) in early prediction of pathologic complete response (pCR) and recurrence-free survival (RFS) in locally advanced breast cancer (LABC) patients treated with neoadjuvant chemotherapy (NAC). LABC patients who underwent CEUS before and during NAC from March 2014 to October 2018 were included and assessed. Logistic regression analysis and the Cox proportional hazards model were used to identify independent variables associated with pCR and RFS. Among 122 women, 44 underwent pCR. Molecular subtype, peak intensity (PEAK) and change in diameter were independent predictors of pCR after one cycle of NAC (area under the receiver operating characteristic curve [AUC], 0.81; 95% CI: 0.73, 0.88); Molecular subtype, PEAK and change in time to peak (TTP) were independently associated with pCR after two cycles of NAC (AUC, 0.85; 95% CI: 0.77, 0.91). A higher clinical T (hazard ratio [HR] = 4.75; 95% CI: 1.75, 12.87; p = 0.002) and N stages (HR = 3.39; 95% CI: 1.25, 9.19; p = 0.02) and a longer TTP (HR = 1.06; 95% CI: 1.01, 1.11; p = 0.02) at pre-NAC CEUS were independently associated with poorer RFS. CEUS can be used as a technique to predict pCR and RFS early in LABC patients treated with NAC.
Collapse
Affiliation(s)
- Caifeng Wan
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pujian Rd., Shanghai 200127, China
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pujian Rd., Shanghai 200127, China
| | - Liheng Zhou
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pujian Rd., Shanghai 200127, China
| | - Hongli Li
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pujian Rd., Shanghai 200127, China
| | - Lin Wang
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pujian Rd., Shanghai 200127, China
| | - Fenghua Li
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pujian Rd., Shanghai 200127, China
| | - Wenjin Yin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pujian Rd., Shanghai 200127, China
| | - Yaohui Wang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pujian Rd., Shanghai 200127, China
| | - Lixin Jiang
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pujian Rd., Shanghai 200127, China
| | - Jinsong Lu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pujian Rd., Shanghai 200127, China
| |
Collapse
|
12
|
Hao X, Xu H, Zhao N, Yu T, Hamalainen T, Cong F. Predicting pathological complete response based on weakly and semi-supervised joint learning from breast cancer MRI. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083773 DOI: 10.1109/embc40787.2023.10340081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Neoadjuvant chemotherapy (NAC) is the standard treatment for breast cancer patients. Patients achieving complete pathological response (pCR) after NAC usually have a good prognosis. However, automatic pCR prediction has been a challenging problem due to lacking well annotations in 3D MRI. Thus far, unifying different annotation information to predict the tumor's early response to NAC has not been systematically addressed. This paper proposes a weakly and semi-supervised joint learning method that integrates attentional features from multi-parametric MRI with radiomic features for predicting pCR to NAC in breast cancer patients. The attention-based multi-instance learning (MIL) is first developed to generate informative MRI bag-level features and mine key instances. The mean-teacher framework is then employed to segment tumor regions in a semi-supervised setting for extracting radiomic features. We perform experiments on 442 patients' data and show that our method achieves an AUC value of 0.85 in pCR prediction, which is superior to comparative methods. It is also shown that learning from multi-parametric MRI outperforms that of single-parameter MRI in pCR prediction.
Collapse
|
13
|
Fan M, Wu X, Yu J, Liu Y, Wang K, Xue T, Zeng T, Chen S, Li L. Multiparametric MRI radiomics fusion for predicting the response and shrinkage pattern to neoadjuvant chemotherapy in breast cancer. Front Oncol 2023; 13:1057841. [PMID: 37207135 PMCID: PMC10189126 DOI: 10.3389/fonc.2023.1057841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/19/2023] [Indexed: 05/21/2023] Open
Abstract
Purpose During neoadjuvant chemotherapy (NACT), breast tumor morphological and vascular characteristics are usually changed. This study aimed to evaluate the tumor shrinkage pattern and response to NACT by preoperative multiparametric magnetic resonance imaging (MRI), including dynamic contrast-enhanced MRI (DCE-MRI), diffuse weighted imaging (DWI) and T2 weighted imaging (T2WI). Method In this retrospective analysis, female patients with unilateral unifocal primary breast cancer were included for predicting tumor pathologic/clinical response to NACT (n=216, development set, n=151 and validation set, n=65) and for discriminating the tumor concentric shrinkage (CS) pattern from the others (n=193; development set, n=135 and validation set, n=58). Radiomic features (n=102) of first-order statistical, morphological and textural features were calculated on tumors from the multiparametric MRI. Single- and multiparametric image-based features were assessed separately and were further combined to feed into a random forest-based predictive model. The predictive model was trained in the testing set and assessed on the testing dataset with an area under the curve (AUC). Molecular subtype information and radiomic features were fused to enhance the predictive performance. Results The DCE-MRI-based model showed higher performance (AUCs of 0.919, 0.830 and 0.825 for tumor pathologic response, clinical response and tumor shrinkage patterns, respectively) than either the T2WI or the ADC image-based model. An increased prediction performance was achieved by a model with multiparametric MRI radiomic feature fusion. Conclusions All these results demonstrated that multiparametric MRI features and their information fusion could be of important clinical value for the preoperative prediction of treatment response and shrinkage pattern.
Collapse
Affiliation(s)
- Ming Fan
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China
| | - Xilin Wu
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China
| | - Jiadong Yu
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China
| | - Yueyue Liu
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China
| | - Kailang Wang
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China
| | - Tailong Xue
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China
| | - Tieyong Zeng
- Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Shujun Chen
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- *Correspondence: Shujun Chen, ; Lihua Li,
| | - Lihua Li
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China
- *Correspondence: Shujun Chen, ; Lihua Li,
| |
Collapse
|
14
|
Meng X, Cai Y, Chang X, Guo Y. A novel conditional survival nomogram for monitoring real-time prognosis of non-metastatic triple-negative breast cancer. Front Endocrinol (Lausanne) 2023; 14:1119105. [PMID: 36909305 PMCID: PMC9998975 DOI: 10.3389/fendo.2023.1119105] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Conditional survival (CS) is defined as the possibility of further survival after patients have survived for several years since diagnosis. This may be highly valuable for real-time prognostic monitoring, especially when considering individualized factors. Such prediction tools were lacking for non-metastatic triple-negative breast cancer (TNBC). Therefore, this study estimated CS and developed a novel CS-nomogram for real-time prediction of 10-year survival. METHODS We recruited 32,836 non-metastatic TNBC patients from the Surveillance, Epidemiology, and End Results (SEER) database (2010-2019), who were divided into training and validation groups according to a 7:3 ratio. The Kaplan-Meier method estimated overall survival (OS), and the CS was calculated using the formula CS(y|x) =OS(y+x)/OS(x), where OS(x) and OS(y+x) were the survival of x- and (x+y)-years, respectively. The least absolute shrinkage and selection operator (LASSO) regression identified predictors to develop the CS-nomogram. RESULTS CS analysis reported gradual improvement in real-time survival over time since diagnosis, with 10-year OS updated annually from an initial 69.9% to 72.8%, 78.1%, 83.0%, 87.0%, 90.3%, 93.0%, 95.0%, 97.0%, and 98.9% (after 1-9 years of survival, respectively). The LASSO regression identified age, marriage, race, T status, N status, chemotherapy, surgery, and radiotherapy as predictors of CS-nomogram development. This model had a satisfactory predictive performance with a stable 10-year time-dependent area under the curves (AUCs) between 0.75 and 0.86. CONCLUSIONS Survival of non-metastatic TNBC survivors improved dynamically and non-linearly with survival time. The study developed a CS-nomogram that provided more accurate prognostic data than traditional nomograms, aiding clinical decision-making and reducing patient anxiety.
Collapse
|
15
|
Gianni C, Palleschi M, Merloni F, Bleve S, Casadei C, Sirico M, Di Menna G, Sarti S, Cecconetto L, Mariotti M, De Giorgi U. Potential Impact of Preoperative Circulating Biomarkers on Individual Escalating/de-Escalating Strategies in Early Breast Cancer. Cancers (Basel) 2022; 15:96. [PMID: 36612091 PMCID: PMC9817806 DOI: 10.3390/cancers15010096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The research on non-invasive circulating biomarkers to guide clinical decision is in wide expansion, including the earliest disease settings. Several new intensification/de-intensification strategies are approaching clinical practice, personalizing the treatment for each patient. Moreover, liquid biopsy is revealing its potential with multiple techniques and studies available on circulating biomarkers in the preoperative phase. Inflammatory circulating cells, circulating tumor cells (CTCs), cell-free DNA (cfDNA), circulating tumor DNA (ctDNA), and other biological biomarkers are improving the armamentarium for treatment selection. Defining the escalation and de-escalation of treatments is a mainstay of personalized medicine in early breast cancer. In this review, we delineate the studies investigating the possible application of these non-invasive tools to give a more enlightened approach to escalating/de-escalating strategies in early breast cancer.
Collapse
Affiliation(s)
- Caterina Gianni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Xu ML, Zeng SE, Li F, Cui XW, Liu GF. Preoperative prediction of lymphovascular invasion in patients with T1 breast invasive ductal carcinoma based on radiomics nomogram using grayscale ultrasound. Front Oncol 2022; 12:1071677. [PMID: 36568215 PMCID: PMC9770991 DOI: 10.3389/fonc.2022.1071677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose The aim of this study was to develop a radiomics nomogram based on grayscale ultrasound (US) for preoperatively predicting Lymphovascular invasion (LVI) in patients with pathologically confirmed T1 (pT1) breast invasive ductal carcinoma (IDC). Methods One hundred and ninety-two patients with pT1 IDC between September 2020 and August 2022 were analyzed retrospectively. Study population was randomly divided in a 7: 3 ratio into a training dataset of 134 patients (37 patients with LVI-positive) and a validation dataset of 58 patients (19 patients with LVI-positive). Clinical information and conventional US (CUS) features (called clinic_CUS features) were recorded and evaluated to predict LVI. In the training dataset, independent predictors of clinic_CUS features were obtained by univariate and multivariate logistic regression analyses and incorporated into a clinic_CUS prediction model. In addition, radiomics features were extracted from the grayscale US images, and the radiomics score (Radscore) was constructed after radiomics feature selection. Subsequent multivariate logistic regression analysis was also performed for Radscore and the independent predictors of clinic_CUS features, and a radiomics nomogram was developed. The performance of the nomogram model was evaluated via its discrimination, calibration, and clinical usefulness. Results The US reported axillary lymph node metastasis (LNM) (US_LNM) status and tumor margin were determined as independent risk factors, which were combined for the construction of clinic_CUS prediction model for LVI in pT1 IDC. Moreover, tumor margin, US_LNM status and Radscore were independent predictors, incorporated as the radiomics nomogram model, which achieved a superior discrimination to the clinic_CUS model in the training dataset (AUC: 0.849 vs. 0.747; P < 0.001) and validation dataset (AUC: 0.854 vs. 0.713; P = 0.001). Calibration curve for the radiomic nomogram showed good concordance between predicted and actual probability. Furthermore, decision curve analysis (DCA) confirmed that the radiomics nomogram had higher clinical net benefit than the clinic_CUS model. Conclusion The US-based radiomics nomogram, incorporating tumor margin, US_LNM status and Radscore, showed a satisfactory preoperative prediction of LVI in pT1 IDC patients.
Collapse
Affiliation(s)
- Mao-Lin Xu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shu-E Zeng
- Department of Ultrasound, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Li
- Department of Ultrasound, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Fang Li, ; Xin-Wu Cui, ; Gui-Feng Liu,
| | - Xin-Wu Cui
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Fang Li, ; Xin-Wu Cui, ; Gui-Feng Liu,
| | - Gui-Feng Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China,*Correspondence: Fang Li, ; Xin-Wu Cui, ; Gui-Feng Liu,
| |
Collapse
|
17
|
Tang WJ, Yao W, Jin Z, Kong QC, Hu WK, Liang YS, Chen LX, Chen SY, Zhang QQ, Wei XH, Xu XD, Guo Y, Jiang XQ. Evaluation of the Effects of Anti-PD-1 Therapy on Triple-Negative Breast Cancer in Mice by Diffusion Kurtosis Imaging and Dynamic Contrast-Enhanced Imaging. J Magn Reson Imaging 2022; 56:1912-1923. [PMID: 35499275 DOI: 10.1002/jmri.28215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The monitoring of immunotherapies is still based on changes in the tumor size in imaging, with a long evaluation period and low sensitivity. PURPOSE To investigate the effectiveness of diffusion kurtosis imaging (DKI) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in assessing the therapeutic efficacy of anti-programmed death-1 (PD-1) therapy in a mouse triple negative breast cancer (TNBC) model. STUDY TYPE Prospective. ANIMAL MODEL A total of 54 BALB/c mouse subcutaneous 4 T1 transplantation models of TNBC. FIELD STRENGTH/SEQUENCE A 3.0-T; turbo spin echo (TSE) T2-weighted imaging, DKI with seven b values (0, 500, 1000, 1500, 2000, 2500, and 3000 sec/mm2 ) and T1-twist DCE acquisition series. ASSESSMENT DKI and DCE-MRI parameters were evaluated by two radiologists independently. Regions of interest (ROIs) were drawn manually on the maximum cross-sectional area of the lesion; care was taken to avoid necrotic areas. The tumor cell density, the CD45 and CD31 levels were analyzed by two pathologists. STATISTICAL TESTS The two-tailed unpaired t-test, Mann-Whitney U test, Fisher's exact test and Pearson correlation coefficient were performed. A P < 0.05 was considered statistically significant. RESULTS The apparent diffusion coefficient (ADC), mean diffusivity (MD), Ktrans and Kep values were significantly different between the two groups at each time point after treatment. There were significant differences in the mean kurtosis (MK) and Ve values between the two groups at 5 and 10 days after treatment but no significant differences at 15 days (P = 0.317 and 0.183, respectively). The ADC and MD values were significantly correlated with tumor cell density (ADC, r = -0.833; MD, r = 0.890) and the CD45 level (ADC, r = 0.720; MD, r = 0.718). The Ktrans and Kep values were significantly correlated with the CD31 level (Ktrans , r = 0.820; Kep , r = 0.683). DATA CONCLUSION DKI and DCE-MRI could reflect the changes in tumor microstructure and tumor tissue vasculature after anti-PD-1 therapy, respectively. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: Stage 4.
Collapse
Affiliation(s)
- Wen-Jie Tang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Wang Yao
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Zhe Jin
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Qing-Cong Kong
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Wen-Ke Hu
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Yun-Shi Liang
- Department of Pathology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Lei-Xin Chen
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Si-Yi Chen
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Qiong-Qiong Zhang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Xin-Hua Wei
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Xiang-Dong Xu
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Yuan Guo
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Xin-Qing Jiang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| |
Collapse
|
18
|
Panico C, Ferrara F, Woitek R, D’Angelo A, Di Paola V, Bufi E, Conti M, Palma S, Cicero SL, Cimino G, Belli P, Manfredi R. Staging Breast Cancer with MRI, the T. A Key Role in the Neoadjuvant Setting. Cancers (Basel) 2022; 14:cancers14235786. [PMID: 36497265 PMCID: PMC9739275 DOI: 10.3390/cancers14235786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
Breast cancer (BC) is the most common cancer among women worldwide. Neoadjuvant chemotherapy (NACT) indications have expanded from inoperable locally advanced to early-stage breast cancer. Achieving a pathological complete response (pCR) has been proven to be an excellent prognostic marker leading to better disease-free survival (DFS) and overall survival (OS). Although diagnostic accuracy of MRI has been shown repeatedly to be superior to conventional methods in assessing the extent of breast disease there are still controversies regarding the indication of MRI in this setting. We intended to review the complex literature concerning the tumor size in staging, response and surgical planning in patients with early breast cancer receiving NACT, in order to clarify the role of MRI. Morphological and functional MRI techniques are making headway in the assessment of the tumor size in the staging, residual tumor assessment and prediction of response. Radiomics and radiogenomics MRI applications in the setting of the prediction of response to NACT in breast cancer are continuously increasing. Tailored therapy strategies allow considerations of treatment de-escalation in excellent responders and avoiding or at least postponing breast surgery in selected patients.
Collapse
Affiliation(s)
- Camilla Panico
- Department of Bioimaging, Radiation Oncology and Hematology, UOC of Radiologia, Fondazione Policlinico Universitario A. Gemelli IRCSS, Largo A. Gemelli 8, 00168 Rome, Italy
- Correspondence:
| | - Francesca Ferrara
- Institute of Radiology, Catholic University of the Sacred Heart, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Ramona Woitek
- Medical Image Analysis and AI (MIAAI), Danube Private University, 3500 Krems, Austria
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK
- Cancer Research UK Cambridge Centre, Cambridge CB2 0RE, UK
| | - Anna D’Angelo
- Department of Bioimaging, Radiation Oncology and Hematology, UOC of Radiologia, Fondazione Policlinico Universitario A. Gemelli IRCSS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Valerio Di Paola
- Department of Bioimaging, Radiation Oncology and Hematology, UOC of Radiologia, Fondazione Policlinico Universitario A. Gemelli IRCSS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Enida Bufi
- Department of Bioimaging, Radiation Oncology and Hematology, UOC of Radiologia, Fondazione Policlinico Universitario A. Gemelli IRCSS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Marco Conti
- Department of Bioimaging, Radiation Oncology and Hematology, UOC of Radiologia, Fondazione Policlinico Universitario A. Gemelli IRCSS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Simone Palma
- Institute of Radiology, Catholic University of the Sacred Heart, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Stefano Lo Cicero
- Institute of Radiology, Catholic University of the Sacred Heart, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Giovanni Cimino
- Institute of Radiology, Catholic University of the Sacred Heart, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Paolo Belli
- Department of Bioimaging, Radiation Oncology and Hematology, UOC of Radiologia, Fondazione Policlinico Universitario A. Gemelli IRCSS, Largo A. Gemelli 8, 00168 Rome, Italy
- Institute of Radiology, Catholic University of the Sacred Heart, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Riccardo Manfredi
- Department of Bioimaging, Radiation Oncology and Hematology, UOC of Radiologia, Fondazione Policlinico Universitario A. Gemelli IRCSS, Largo A. Gemelli 8, 00168 Rome, Italy
- Institute of Radiology, Catholic University of the Sacred Heart, Largo A. Gemelli 8, 00168 Rome, Italy
| |
Collapse
|
19
|
Dong Q, Deng J, Mok TN, Chen J, Zha Z. Construction and Validation of Two Novel Nomograms for Predicting the Overall Survival and Cancer-Specific Survival of NSCLC Patients with Bone Metastasis. Int J Gen Med 2021; 14:9261-9272. [PMID: 34880665 PMCID: PMC8648091 DOI: 10.2147/ijgm.s342596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/22/2021] [Indexed: 01/09/2023] Open
Abstract
Background Bone metastasis (BM) is the most common site of metastasis in non-small cell lung carcinoma (NSCLC). We aimed to construct and validate 2 novel nomograms predicting the 3-, 6-, and 12-months overall survival (OS) and cancer-specific survival (CSS). Methods The clinical data of 7480 patients between 2010 and 2016 were enrolled from the Surveillance, Epidemiology, and End Results database (SEER). The patients were allocated randomly to training and validation cohorts in a 7:3 ratio. Cox proportional hazards regression models were used to identify prognostic risk factors and establish 2 nomograms. The prediction accuracy of nomograms was assessed by C-index, the area under the ROC curve (AUC), and calibration curves. Results A total of 244998 NSCLC patients were identified between 2010 and 2016, with 7480 found with BM, accounting for 3.1%. Overall, 7480 patients were enrolled in the OS nomogram construction and were randomized to the training set (n = 5236) and the validation set (n = 2244). Age, sex, race, marital status, histology, grade, primary site, T stage, N stage, liver metastasis, surgery, radiotherapy, and chemotherapy were found to correlate with OS. A total of 7422 samples were included in the CSS nomogram construction, randomly grouped into training set (n = 5195) and the validation set (n = 2227). Age, sex, race, histology, grade, primary site, T stage, N stage, brain metastasis, liver metastasis, surgery, radiotherapy, and chemotherapy were associated with CSS. Two nomograms were conducted to predict the 3-, 6-, and 12-months OS and CSS. The ROC curves and exhibited good performance for predicting OS and CSS. Conclusion We established and validated 2 high-performance nomograms to assist clinical doctors in making personalized treatment decisions.
Collapse
Affiliation(s)
- Qiu Dong
- Center for Bone, Joint and Sports Medicine, The First Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Jialin Deng
- School of Medicine, Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Tsz Ngai Mok
- Center for Bone, Joint and Sports Medicine, The First Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Junyuan Chen
- Center for Bone, Joint and Sports Medicine, The First Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Zhengang Zha
- Center for Bone, Joint and Sports Medicine, The First Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|