1
|
Mao N, Dai Y, Zhou H, Lin F, Zheng T, Li Z, Yang P, Zhao F, Li Q, Wang W, Liang Y, Xie H, Ma H, Zhang L, Guo Y, Song X, Zhang H, Lu J. A multimodal and fully automated system for prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer. SCIENCE ADVANCES 2025; 11:eadr1576. [PMID: 40305609 PMCID: PMC12042891 DOI: 10.1126/sciadv.adr1576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 03/25/2025] [Indexed: 05/02/2025]
Abstract
Accurately predicting pathological complete response (pCR) before neoadjuvant chemotherapy (NAC) is crucial for patients with breast cancer. In this study, we developed a multimodal integrated fully automated pipeline system (MIFAPS) in forecasting pCR to NAC, using a multicenter and prospective dataset of 1004 patients with locally advanced breast cancer, incorporating pretreatment magnetic resonance imaging, whole slide image, and clinical risk factors. The results demonstrated that MIFAPS offered a favorable predictive performance in both the pooled external test set [area under the curve (AUC) = 0.882] and the prospective test set (AUC = 0.909). In addition, MIFAPS significantly outperformed single-modality models (P < 0.05). Furthermore, the high deep learning scores were associated with immune-related pathways and the promotion of antitumor cells in the microenvironment during biological basis exploration. Overall, our study demonstrates a promising approach for improving the prediction of pCR to NAC in patients with breast cancer through the integration of multimodal data.
Collapse
Affiliation(s)
- Ning Mao
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital Capital Medical University, Beijing 100053, P. R. China
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, P. R. China
- Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, P. R. China
- Shandong Provincial Key Medical and Health Laboratory of Intelligent Diagnosis and Treatment for Women's Diseases (Yantai Yuhuangding Hospital), Yantai, Shandong 264000, P. R. China
| | - Yi Dai
- Department of Radiology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P. R. China
| | - Heng Zhou
- School of Information and Electronic Engineering, Shandong Technology and Business University, Yantai, Shandong 264005, P. R. China
| | - Fan Lin
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, P. R. China
| | - Tiantian Zheng
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, P. R. China
- School of Medical Imaging, Binzhou Medical University, Yantai, Shandong 264003, P. R. China
| | - Ziyin Li
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, P. R. China
- School of Medical Imaging, Binzhou Medical University, Yantai, Shandong 264003, P. R. China
| | - Ping Yang
- Department of Pathology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, P. R. China
| | - Feng Zhao
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, Shandong 264005, P. R. China
| | - Qin Li
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai 200433, P. R. China
| | - Weiwei Wang
- Department of Medical Imaging, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P. R. China
| | - Yun Liang
- Department of Medical Imaging, Guilin Municipal Hospital of Traditional Chinese Medicine, Guilin, Guangxi 541002, P. R. China
| | - Haizhu Xie
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, P. R. China
| | - Heng Ma
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, P. R. China
| | - Lina Zhang
- Department of Radiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P. R. China
| | - Yuan Guo
- Department of Radiology, Guangzhou First People’s Hospital, Guangzhou, Guangdong 510180, P. R. China
| | - Xicheng Song
- Shandong Provincial Key Medical and Health Laboratory of Intelligent Diagnosis and Treatment for Women's Diseases (Yantai Yuhuangding Hospital), Yantai, Shandong 264000, P. R. China
| | - Haicheng Zhang
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, P. R. China
- Shandong Provincial Key Medical and Health Laboratory of Intelligent Diagnosis and Treatment for Women's Diseases (Yantai Yuhuangding Hospital), Yantai, Shandong 264000, P. R. China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital Capital Medical University, Beijing 100053, P. R. China
| |
Collapse
|
2
|
Chen L, Su Y, Huang Y, Tao J, Huang X, Li K, Liu D, Zhang J. Predicting lymphovascular invasion in stage IA lung adenocarcinoma: a CT-based classification and regression tree model. Eur Radiol 2025:10.1007/s00330-025-11593-2. [PMID: 40251442 DOI: 10.1007/s00330-025-11593-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND Lymphovascular invasion (LVI) is a significant histopathological marker associated with poor prognosis in patients. However, there is a notable lack of reliable, non-invasive preoperative tools to predict LVI accurately. PURPOSE To develop and validate a computed tomography (CT)-based classification and regression tree (CART) model for the preoperative prediction of LVI in patients with clinical stage IA lung adenocarcinoma (LUAD). MATERIALS AND METHODS This multicenter cohort study recruited patients who underwent resection and had a preoperative CT examination. An internal cohort (n = 525) is included to construct the LVI classification and regression tree model (LVI-CART). An external cohort (n = 115) and a public cohort (n = 57) are then used to fully validate the predictive performance of the LVI-CART. Kaplan-Meier survival analysis and univariable Cox regression analyses were conducted to investigate the relationship between predicted LVI status and survival. RESULTS The LVI-CART model includes two features, diameter and nodule type, and shows acceptable performance in predicting pathological LVI, with area under the curve values of 0.719, 0.756, and 0.835 in the internal validation set, external validation set and test set, respectively. A predicted LVI positive relative to the median value in the outcomes cohort was found to be independently associated with 1-, 3-year RFS and 1-, 3-, 5-year OS (all p-values < 0.05). CONCLUSIONS The LVI-CART model could be used to preoperatively predict LVI and identify patients with poor prognosis in clinical IA LUAD. The model is like to be simple and easily applicable to risk stratification. KEY POINTS Question Lymphovascular invasion is a critical histopathological indicator of poor prognosis, necessitating reliable non-invasive preoperative predictive tools. Findings The classification and regression tree model for predicting lymphovascular invasion (LVI-CART) model demonstrates adequate predictive ability for pathological LVI, portending poor recurrence-free and overall survival. Clinical relevance The LVI-CART model provides clinicians with an easy-to-use method for preoperative identification of patients with clinical stage IA lung adenocarcinoma who are LVI-positive. It also provides a framework for a comprehensive assessment of patient survival risk.
Collapse
Affiliation(s)
- Lihua Chen
- Department of Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yangfan Su
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yao Huang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Junli Tao
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Xuemei Huang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Kai Li
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Daihong Liu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China.
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
3
|
Huang Y, Wang X, Cao Y, Lan X, Hu X, Mou F, Chen H, Gong X, Li L, Tang S, Wang L, Zhang J. Nomogram for Predicting Neoadjuvant Chemotherapy Response in Breast Cancer Using MRI-based Intratumoral Heterogeneity Quantification. Radiology 2025; 315:e241805. [PMID: 40232145 DOI: 10.1148/radiol.241805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Background Intratumoral heterogeneity (ITH) in breast cancer contributes to treatment failure and relapse. Noninvasive methods to quantify ITH are currently limited. Purpose To quantify ITH in breast cancer using pretreatment MRI, develop a nomogram to predict pathologic complete response (pCR) to neoadjuvant chemotherapy (NAC) and recurrence-free survival (RFS), and investigate biologic pathways associated with nomogram scores. Materials and Methods This retrospective study included patients with breast cancer who underwent NAC at nine centers between April 1988 and December 2023. Tumor regions on MRI scans were clustered and integrated with global pixel distribution patterns to calculate ITH scores. A nomogram for predicting pCR was developed using multivariable logistic regression. A survival dataset was used to evaluate the association between nomogram score and RFS, and a genomics dataset was used to explore the relationship between nomogram score and biologic pathways. Results The study included 1448 women (median age, 49 years [IQR, 43-54 years]). To predict pCR to NAC, the 505 patients from center A served as the training set, and the patients from center B, centers C-F, and center G served as three external validation sets (n = 331, 107, and 384, respectively). The survival set included patients from centers A and H (n = 179), and the genomics set included patients from center I (n = 74). The ITH score was an independent predictor of pCR (odds ratio, 0.12 [95% CI: 0.03, 0.43]; P < .001). The nomogram model achieved area under the receiver operating characteristic curve values of 0.82, 0.81, and 0.79, respectively, in the three external validation sets. A lower nomogram score was correlated with poorer RFS (hazard ratio, 4.04 [95% CI: 1.90, 8.60]; P < .001) and was associated with upregulation of biologic pathways related to tumor proliferation. Conclusion A nomogram model combining ITH score and clinicopathologic variables showed good performance in predicting pCR to NAC and RFS. Published under a CC BY 4.0 license. Supplemental material is available for this article.
Collapse
Affiliation(s)
- Yao Huang
- School of Medicine, Chongqing University, Chongqing, China
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer, No. 181 Hanyu Rd, Shapingba District, Chongqing 400030, China
| | - Xiaoxia Wang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer, No. 181 Hanyu Rd, Shapingba District, Chongqing 400030, China
| | - Ying Cao
- School of Medicine, Chongqing University, Chongqing, China
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer, No. 181 Hanyu Rd, Shapingba District, Chongqing 400030, China
| | - Xiaosong Lan
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer, No. 181 Hanyu Rd, Shapingba District, Chongqing 400030, China
| | - Xiaofei Hu
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Fangsheng Mou
- Chongqing Three Gorges University Hospital, Chongqing, China
| | - Huifang Chen
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer, No. 181 Hanyu Rd, Shapingba District, Chongqing 400030, China
| | - Xueqin Gong
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer, No. 181 Hanyu Rd, Shapingba District, Chongqing 400030, China
| | - Lan Li
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer, No. 181 Hanyu Rd, Shapingba District, Chongqing 400030, China
| | - Sun Tang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer, No. 181 Hanyu Rd, Shapingba District, Chongqing 400030, China
| | - Lu Wang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer, No. 181 Hanyu Rd, Shapingba District, Chongqing 400030, China
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer, No. 181 Hanyu Rd, Shapingba District, Chongqing 400030, China
| |
Collapse
|
4
|
Sun Y, Liao Q, Fan Y, Cui C, Wang Y, Yang C, Hou Y, Zhao D. DCE-MRI radiomics of primary breast lesions combined with ipsilateral axillary lymph nodes for predicting efficacy of NAT. BMC Cancer 2025; 25:589. [PMID: 40170181 PMCID: PMC11963401 DOI: 10.1186/s12885-025-14004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/24/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND This study aimed to assess the predictive value of radiomic analysis derived from primary lesions and ipsilateral axillary suspicious lymph nodes (SLN) on dynamic contrast-enhanced MRI (DCE-MRI) for evaluating the response to neoadjuvant therapy (NAT) in early high-risk and advanced breast cancer (BC) patients. METHODS A retrospective analysis was conducted on 222 BC patients (192 from Center I and 30 from Center II) who underwent NAT. Radiomic features were extracted from the primary lesion (intra- and peritumoral regions) and ipsilateral axillary SLN to develop radiomic signatures (RS-primary, RS-SLN). An integrated signature (RS-Com) combined features from both regions. Feature selection was performed using correlation analysis, the Mann-Whitney U test, and least absolute shrinkage and selection operator (LASSO) regression. A diagnostic nomogram was constructed by integrating RS-Com with key clinical factors. Model performance was evaluated using receiver operating characteristic (ROC) and decision curve analysis (DCA). RESULTS RS-Com demonstrated superior predictive performance compared to RS-primary and RS-SLN alone. The DeLong test confirmed that axillary SLNs provide supplementary information to the primary lesion. Among clinical factors, N staging and HER2 status were significant contributors. The nomogram, integrating RS-Com, N staging, and HER2 status, achieved the highest performance in the training (AUC: 0.926), validation (AUC: 0.868), and test (AUC: 0.839) cohorts, outperforming both the clinical models and RS-Com alone. CONCLUSION Radiomic features from axillary SLNs offer valuable supplementary information for predicting NAT response in BC patients. The proposed nomogram, incorporating radiomics and clinical factors, provides a robust tool for individualized treatment planning.
Collapse
Affiliation(s)
- Yiyao Sun
- School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, 110122, P.R. China
| | - Qingxuan Liao
- School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, 110122, P.R. China
| | - Ying Fan
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, 200082, P.R. China
| | - Chunxiao Cui
- Department of Breast Imaging, Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266100, P.R. China
| | - Yan Wang
- School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, 110122, P.R. China
| | - Chunna Yang
- School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, 110122, P.R. China
| | - Yang Hou
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, P.R. China.
| | - Dan Zhao
- Department of Medical Imaging, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, P.R. China.
| |
Collapse
|
5
|
Feng X, Shi Y, Wu M, Cui G, Du Y, Yang J, Xu Y, Wang W, Liu F. Predicting the efficacy of neoadjuvant chemotherapy in breast cancer patients based on ultrasound longitudinal temporal depth network fusion model. Breast Cancer Res 2025; 27:30. [PMID: 40016785 PMCID: PMC11869678 DOI: 10.1186/s13058-025-01971-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/30/2025] [Indexed: 03/01/2025] Open
Abstract
OBJECTIVE The aim of this study was to develop and validate a deep learning radiomics (DLR) model based on longitudinal ultrasound data and clinical features to predict pathologic complete response (pCR) after neoadjuvant chemotherapy (NAC) in breast cancer patients. METHODS Between January 2018 and June 2023, 312 patients with histologically confirmed breast cancer were enrolled and randomly assigned to a training cohort (n = 219) and a test cohort (n = 93) in a 7:3 ratio. Next, pre-NAC and post-treatment 2-cycle ultrasound images were collected, and radiomics and deep learning features were extracted from NAC pre-treatment (Pre), post-treatment 2 cycle (Post), and Delta (pre-NAC-NAC 2 cycle) images. In the training cohort, to filter features, the intraclass correlation coefficient test, the Boruta algorithm, and the least absolute shrinkage and selection operator (LASSO) logistic regression were used. Single-modality models (Pre, Post, and Delta) were constructed based on five machine-learning classifiers. Finally, based on the classifier with the optimal predictive performance, the DLR model was constructed by combining Pre, Post, and Delta ultrasound features and was subsequently combined with clinical features to develop a combined model (Integrated). The discriminative power, predictive performance, and clinical utility of the models were further evaluated in the test cohort. Furthermore, patients were assigned into three subgroups, including the HR+/HER2-, HER2+, and TNBC subgroups, according to molecular typing to validate the predictability of the model across the different subgroups. RESULTS After feature screening, 16, 13, and 10 features were selected to construct the Pre model, Post model, and Delta model based on the five machine learning classifiers, respectively. The three single-modality models based on the XGBoost classifier displayed optimal predictive performance. Meanwhile, the DLR model (AUC of 0.827) was superior to the single-modality model (Pre, Post, and Delta AUCs of 0.726, 0.776, and 0.710, respectively) in terms of prediction performance. Moreover, multivariate logistic regression analysis identified Her-2 status and histological grade as independent risk factors for NAC response in breast cancer. In both the training and test cohorts, the Integrated model, which included Pre, Post, and Delta ultrasound features and clinical features, exhibited the highest predictive ability, with AUC values of 0.924 and 0.875, respectively. Likewise, the Integrated model displayed the highest predictive performance across the different subgroups. CONCLUSION The Integrated model, which incorporated pre-NAC treatment and early treatment ultrasound data and clinical features, accurately predicted pCR after NAC in breast cancer patients and provided valuable insights for personalized treatment strategies, allowing for timely adjustment of chemotherapy regimens.
Collapse
Affiliation(s)
- Xiaodan Feng
- Department of Ultrasound, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Yan Shi
- Department of Ultrasonography, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, China
| | - Meng Wu
- Department of Ultrasound, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Guanghe Cui
- Department of Ultrasound, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Yao Du
- Department of Ultrasound, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Jie Yang
- Department of Ultrasound, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Yuyuan Xu
- Department of Ultrasound, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Wenjuan Wang
- Department of Ultrasound, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Feifei Liu
- Department of Ultrasound, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China.
| |
Collapse
|
6
|
Luo L, Wang X, Lin Y, Ma X, Tan A, Chan R, Vardhanabhuti V, Chu WC, Cheng KT, Chen H. Deep Learning in Breast Cancer Imaging: A Decade of Progress and Future Directions. IEEE Rev Biomed Eng 2025; 18:130-151. [PMID: 38265911 DOI: 10.1109/rbme.2024.3357877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Breast cancer has reached the highest incidence rate worldwide among all malignancies since 2020. Breast imaging plays a significant role in early diagnosis and intervention to improve the outcome of breast cancer patients. In the past decade, deep learning has shown remarkable progress in breast cancer imaging analysis, holding great promise in interpreting the rich information and complex context of breast imaging modalities. Considering the rapid improvement in deep learning technology and the increasing severity of breast cancer, it is critical to summarize past progress and identify future challenges to be addressed. This paper provides an extensive review of deep learning-based breast cancer imaging research, covering studies on mammograms, ultrasound, magnetic resonance imaging, and digital pathology images over the past decade. The major deep learning methods and applications on imaging-based screening, diagnosis, treatment response prediction, and prognosis are elaborated and discussed. Drawn from the findings of this survey, we present a comprehensive discussion of the challenges and potential avenues for future research in deep learning-based breast cancer imaging.
Collapse
|
7
|
Xie J, Wei J, Shi H, Lin Z, Lu J, Zhang X, Wan C. A deep learning approach for early prediction of breast cancer neoadjuvant chemotherapy response on multistage bimodal ultrasound images. BMC Med Imaging 2025; 25:26. [PMID: 39849366 PMCID: PMC11758756 DOI: 10.1186/s12880-024-01543-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 12/19/2024] [Indexed: 01/25/2025] Open
Abstract
Neoadjuvant chemotherapy (NAC) is a systemic and systematic chemotherapy regimen for breast cancer patients before surgery. However, NAC is not effective for everyone, and the process is excruciating. Therefore, accurate early prediction of the efficacy of NAC is essential for the clinical diagnosis and treatment of patients. In this study, a novel convolutional neural network model with bimodal layer-wise feature fusion module (BLFFM) and temporal hybrid attention module (THAM) is proposed, which uses multistage bimodal ultrasound images as input for early prediction of the efficacy of neoadjuvant chemotherapy in locally advanced breast cancer (LABC) patients. The BLFFM can effectively mine the highly complex correlation and complementary feature information between gray-scale ultrasound (GUS) and color Doppler blood flow imaging (CDFI). The THAM is able to focus on key features of lesion progression before and after one cycle of NAC. The GUS and CDFI videos of 101 patients collected from cooperative medical institutions were preprocessed to obtain 3000 sets of multistage bimodal ultrasound image combinations for experiments. The experimental results show that the proposed model is effective and outperforms the compared models. The code will be published on the https://github.com/jinzhuwei/BLTA-CNN .
Collapse
Affiliation(s)
- Jiang Xie
- School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, China
| | - Jinzhu Wei
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Huachan Shi
- School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, China
| | - Zhe Lin
- School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, China
| | - Jinsong Lu
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Xueqing Zhang
- Department of Pathology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Caifeng Wan
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Department of Breast Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
8
|
Zhou P, Qian H, Zhu P, Ben J, Chen G, Chen Q, Chen L, Chen J, He Y. Machine learning for predicting neoadjuvant chemotherapy effectiveness using ultrasound radiomics features and routine clinical data of patients with breast cancer. Front Oncol 2025; 14:1485681. [PMID: 39927116 PMCID: PMC11803464 DOI: 10.3389/fonc.2024.1485681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 12/26/2024] [Indexed: 02/11/2025] Open
Abstract
Background This study explores the clinical value of a machine learning (ML) model based on ultrasound radiomics features of primary foci, combined with clinicopathologic factors to predict the pathological complete response (pCR) of neoadjuvant chemotherapy (NAC) for patients with breast cancer (BC). Method We retrospectively analyzed ultrasound images and clinical information from 231 participants with BC who received NAC. These patients were randomly assigned to training and validation cohorts. Tumor regions of interest (ROI) were delineated, and radiomics features were extracted. Z-score normalization, Pearson correlation analysis, and the least absolute shrinkage selection operator (LASSO) were utilized for further screening ultrasound radiomics and clinical features. Univariate and multivariate logistic regression analysis were performed to identify the CFs that were independently associated with pCR. We compared 10 ML models based on radiomics features: support vector machine (SVM), logistic regression (LR), random forest, extra trees (ET), naïve Bayes (NB), k-nearest neighbor (KNN), multilayer perceptron (MLP), gradient boosting ML (GBM), light GBM (LGBM), and adaptive boost (AB). Diagnostic performance was evaluated using the receiver operating characteristic (ROC) area under the curve (AUC), accuracy, sensitivity, and specificity, and the Rad score was calculated. Subsequently, construction of clinical predictive models and Rad score joint clinical predictive models using ML algorithms for optimal diagnostic performance. The diagnostic process of the ML model was visualized and analyzed using SHapley Additive exPlanation (SHAP). Results Out of 231 participants with BC, 98 (42.42%) achieved pCR, and 133 (57.58%) did not. Twelve radiomics features were identified, with the GBM model demonstrating the best predictive performance (AUC of 0.851, accuracy of 0.75, sensitivity of 0.821, and specificity of 0.698). The clinical feature prediction model using the GBM algorithm had an AUC of 0.819 and an accuracy of 0.739. Combining the Rad score with clinical features in the GBM model resulted in superior predictive performance (AUC of 0.939 and an accuracy of 0.87). SHAP analysis indicated that participants with a high Rad score, PR-negative, ER-negative and human epidermal growth factor receptor-2 (HER-2) positive were more possibly to reach pCR. Based on the decision curve analysis, it was shown that the combined model of GBM provided higher clinical benefits. Conclusion The GBM model based on ultrasound radiomics features and routine clinical date of BC patients had high performance in predicting pCR. SHAP analysis provided a clear explanation for the prediction results of the GBM model, revealing that patients with a high Rad score, PR-negative status, ER-negative status and HER-2-positive status are more likely to achieve pCR.
Collapse
Affiliation(s)
- Pu Zhou
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, and Medical School of Nantong University, Nantong, China
- Department of Ultrasound, Affiliated Tumor Hospital of Nantong University, Jiangsu, Nantong, China
| | - Hongyan Qian
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, and Medical School of Nantong University, Nantong, China
| | - Pengfei Zhu
- Department of Ultrasound, Affiliated Tumor Hospital of Nantong University, Jiangsu, Nantong, China
| | - Jiangyuan Ben
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, and Medical School of Nantong University, Nantong, China
- Department of Ultrasound, Affiliated Tumor Hospital of Nantong University, Jiangsu, Nantong, China
| | - Guifang Chen
- Department of Ultrasound, Affiliated Tumor Hospital of Nantong University, Jiangsu, Nantong, China
| | - Qiuyi Chen
- Department of Ultrasound, Affiliated Tumor Hospital of Nantong University, Jiangsu, Nantong, China
| | - Lingli Chen
- Department of Surgery, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Jia Chen
- Department of Oncology Internal Medicine, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Ying He
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, and Medical School of Nantong University, Nantong, China
- Department of Ultrasound, Affiliated Tumor Hospital of Nantong University, Jiangsu, Nantong, China
| |
Collapse
|
9
|
Chia JLL, He GS, Ngiam KY, Hartman M, Ng QX, Goh SSN. Harnessing Artificial Intelligence to Enhance Global Breast Cancer Care: A Scoping Review of Applications, Outcomes, and Challenges. Cancers (Basel) 2025; 17:197. [PMID: 39857979 PMCID: PMC11764353 DOI: 10.3390/cancers17020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND In recent years, Artificial Intelligence (AI) has shown transformative potential in advancing breast cancer care globally. This scoping review seeks to provide a comprehensive overview of AI applications in breast cancer care, examining how they could reshape diagnosis, treatment, and management on a worldwide scale and discussing both the benefits and challenges associated with their adoption. METHODS In accordance with PRISMA-ScR and ensuing guidelines on scoping reviews, PubMed, Web of Science, Cochrane Library, and Embase were systematically searched from inception to end of May 2024. Keywords included "Artificial Intelligence" and "Breast Cancer". Original studies were included based on their focus on AI applications in breast cancer care and narrative synthesis was employed for data extraction and interpretation, with the findings organized into coherent themes. RESULTS Finally, 84 articles were included. The majority were conducted in developed countries (n = 54). The majority of publications were in the last 10 years (n = 83). The six main themes for AI applications were AI for breast cancer screening (n = 32), AI for image detection of nodal status (n = 7), AI-assisted histopathology (n = 8), AI in assessing post-neoadjuvant chemotherapy (NACT) response (n = 23), AI in breast cancer margin assessment (n = 5), and AI as a clinical decision support tool (n = 9). AI has been used as clinical decision support tools to augment treatment decisions for breast cancer and in multidisciplinary tumor board settings. Overall, AI applications demonstrated improved accuracy and efficiency; however, most articles did not report patient-centric clinical outcomes. CONCLUSIONS AI applications in breast cancer care show promise in enhancing diagnostic accuracy and treatment planning. However, persistent challenges in AI adoption, such as data quality, algorithm transparency, and resource disparities, must be addressed to advance the field.
Collapse
Affiliation(s)
- Jolene Li Ling Chia
- NUS Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr. S117597, Singapore 119077, Singapore (G.S.H.)
| | - George Shiyao He
- NUS Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr. S117597, Singapore 119077, Singapore (G.S.H.)
| | - Kee Yuen Ngiam
- Department of Surgery, National University Hospital, Singapore 119074, Singapore; (K.Y.N.); (M.H.)
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, 12 Science Drive 2, #10-01, Singapore 117549, Singapore
| | - Mikael Hartman
- Department of Surgery, National University Hospital, Singapore 119074, Singapore; (K.Y.N.); (M.H.)
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, 12 Science Drive 2, #10-01, Singapore 117549, Singapore
| | - Qin Xiang Ng
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, 12 Science Drive 2, #10-01, Singapore 117549, Singapore
- SingHealth Duke-NUS Global Health Institute, Singapore 169857, Singapore
| | - Serene Si Ning Goh
- Department of Surgery, National University Hospital, Singapore 119074, Singapore; (K.Y.N.); (M.H.)
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, 12 Science Drive 2, #10-01, Singapore 117549, Singapore
| |
Collapse
|
10
|
Song Y, Liu S, Liu X, Jia H, Shi H, Liu X, Hao D, Wang H, Xing X. An Integrated Radiopathomics Machine Learning Model to Predict Pathological Response to Preoperative Chemotherapy in Gastric Cancer. Acad Radiol 2025; 32:134-145. [PMID: 39214816 DOI: 10.1016/j.acra.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
RATIONALE AND OBJECTIVES Accurately predicting the pathological response to chemotherapy before treatment is important for selecting the appropriate treatment groups, formulating individualized treatment plans, and improving the survival rates of patients with gastric cancer (GC). METHODS We retrospectively enrolled 151 patients diagnosed with GC who underwent preoperative chemotherapy and surgical resection at the Affiliated Hospital of Qingdao University between January 2015 and June 2023. Both pretreatment-enhanced computer technology images and whole slide images of pathological hematoxylin and eosin-stained sections were available for each patient. The image features were extracted and used to construct an ensemble radiopathomics machine learning model. In addition, a nomogram was developed by combining the imaging features and clinical characteristics. RESULTS In total, 962 radiomics and 999 pathomics signatures were extracted from 106 patients in the training cohort. A fusion radiopathomics model was constructed using 13 radiomics and 5 pathomics signatures. The fusion model showed favorable performance compared to single-omics models, with an area under the curve (AUC) of 0.789 in the validation cohort. Moreover, a combined radiopathomics nomogram (RPN) was developed based on radiopathomics features and the Borrmann type, which is a classification method for advanced GC according to tumor growth pattern and gross morphology. The RPN showed superior predictive performance in the training (AUC 0.880) and validation cohorts (AUC 0.797). The decision curve analysis showed that RPN could provide favorable clinical benefits to patients with GC. CONCLUSIONS RPN was able to predict the pathological response to preoperative chemotherapy with high accuracy, and therefore provides a novel tool for personalized treatment of GC.
Collapse
Affiliation(s)
- Yaolin Song
- Department of Pathology, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, China
| | - Shunli Liu
- Department of Radiology, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, China
| | - Xinyu Liu
- Department of Pathology, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, China
| | - Huiqing Jia
- Department of Pathology, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, China
| | - Hailei Shi
- Department of Pathology, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, China
| | - Xianglan Liu
- Department of Pathology, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, China
| | - Dapeng Hao
- Department of Radiology, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, China
| | - Hexiang Wang
- Department of Radiology, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, China
| | - Xiaoming Xing
- Department of Pathology, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, China.
| |
Collapse
|
11
|
Huang JX, Lu Y, Tan YT, Liu FT, Li YL, Wang XY, Huang JH, Lin SY, Huang GL, Zhang YT, Pei XQ. Elastography-based AI model can predict axillary status after neoadjuvant chemotherapy in breast cancer with nodal involvement: a prospective, multicenter, diagnostic study. Int J Surg 2025; 111:221-229. [PMID: 39724577 PMCID: PMC11745675 DOI: 10.1097/js9.0000000000002105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/18/2024] [Indexed: 12/28/2024]
Abstract
OBJECTIVE To develop a model for accurate prediction of axillary lymph node (LN) status after neoadjuvant chemotherapy (NAC) in breast cancer patients with nodal involvement. METHODS Between October 2018 and February 2024, 671 breast cancer patients with biopsy-proven LN metastasis who received NAC followed by axillary LN dissection were enrolled in this prospective, multicenter study. Preoperative ultrasound (US) images, including B-mode ultrasound (BUS) and shear wave elastography (SWE), were obtained. The included patients were randomly divided at a ratio of 8:2 into a training set and an independent test set, with five-fold cross-validation applied to the training set. The authors first identified clinicopathological characteristics and conventional US features significantly associated with the axillary LN response and developed corresponding prediction models. The authors then constructed deep learning radiomics (DLR) models based on BUS and SWE data. Models performances were compared, and a combination model was developed using significant clinicopathological data and interpreted US features with the SWE-based DLR model. Discrimination, calibration and clinical utility of this model were analyzed using the receiver operating characteristic curve, calibration curve, and decision curve, respectively. RESULTS Axillary pathologic complete response (pCR) was achieved in 52.41% of patients. In the test cohort, the clinicopathologic model had an accuracy of 71.30%, while radiologists' diagnoses ranged from 64.26 to 71.11%, indicating limited to moderate predictive ability for the axillary response to NAC. The SWE-based DLR model, with an accuracy of 80.81%, significantly outperformed the BUS-based DLR model, which scored 59.57%. The combination DLR model boasted an accuracy of 88.70% and a false-negative rate of 8.82%. It demonstrated strong discriminatory ability (AUC, 0.95), precise calibration ( P -value obtained by Hosmer-Lemeshow goodness-of-fit test, 0.68), and practical clinical utility (probability threshold, 2.5-97.5%). CONCLUSIONS The combination SWE-based DLR model can predict the axillary status after NAC in patients with node-positive breast cancer, and thus, may inform clinical decision-making to help avoid unnecessary axillary LN dissection.
Collapse
Affiliation(s)
- Jia-Xin Huang
- Department of Liver Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
- Department of Medical Ultrasound, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Yao Lu
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yu-Ting Tan
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Feng-Tao Liu
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yi-Liang Li
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Xue-Yan Wang
- Department of Medical Ultrasound, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Jia-Hui Huang
- Institute of Artificial Intelligence and Blockchain, Guangzhou University, Guangzhou, People’s Republic of China
| | - Shi-Yang Lin
- Department of Medical Ultrasound, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Gui-Ling Huang
- Department of Medical Ultrasound, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Yu-Ting Zhang
- Department of Medical Ultrasound, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Xiao-Qing Pei
- Department of Medical Ultrasound, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| |
Collapse
|
12
|
Liu YX, Liu QH, Hu QH, Shi JY, Liu GL, Liu H, Shu SC. Ultrasound-Based Deep Learning Radiomics Nomogram for Tumor and Axillary Lymph Node Status Prediction After Neoadjuvant Chemotherapy. Acad Radiol 2025; 32:12-23. [PMID: 39183131 DOI: 10.1016/j.acra.2024.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 08/27/2024]
Abstract
RATIONALE AND OBJECTIVES This study aims to explore the feasibility of the deep learning radiomics nomogram (DLRN) for predicting tumor status and axillary lymph node metastasis (ALNM) after neoadjuvant chemotherapy (NAC) in patients with breast cancer. Additionally, we employ a Cox regression model for survival analysis to validate the effectiveness of the fusion algorithm. MATERIALS AND METHODS A total of 243 patients who underwent NAC were retrospectively included between October 2014 and July 2022. The DLRN integrated clinical characteristics as well as radiomics and deep transfer learning features extracted from ultrasound (US) images. The diagnostic performance of DLRN was evaluated by constructing ROC curves, and the clinical usefulness of models was assessed using decision curve analysis (DCA). A survival model was developed to validate the effectiveness of the fusion algorithm. RESULTS In the training cohort, the DLRN yielded area under the receiver operating characteristic curve values of 0.984 and 0.985 for the tumor and LNM, while 0.892 and 0.870, respectively, in the test cohort. The consistency indices (C-index) of the nomogram were 0.761 and 0.731, respectively, in the training and test cohorts. The Kaplan-Meier survival curves showed that patients in the high-risk group had significantly poorer overall survival than patients in the low-risk group (P < 0.05). CONCLUSION The US-based DLRN model could hold promise as clinical guidance for predicting the status of tumors and LNM after NAC in patients with breast cancer. This fusion model can also predict the prognosis of patients, which could help clinicians make better clinical decisions.
Collapse
Affiliation(s)
- Yue-Xia Liu
- Department of Ultrasound, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qing-Hua Liu
- Department of Health Management, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Quan-Hui Hu
- Department of Health Management, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jia-Yao Shi
- Department of Ultrasound, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gui-Lian Liu
- Department of Ultrasound, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Han Liu
- Department of Ultrasound, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sheng-Chun Shu
- Department of Ultrasound, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
13
|
Yang L, Zhang N, Jia J, Ma Z. Deep learning radiomics on grayscale ultrasound images assists in diagnosing benign and malignant of BI-RADS 4 lesions. Sci Rep 2024; 14:31479. [PMID: 39733121 PMCID: PMC11682229 DOI: 10.1038/s41598-024-83347-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 12/13/2024] [Indexed: 12/30/2024] Open
Abstract
This study aimed to explore a deep learning radiomics (DLR) model based on grayscale ultrasound images to assist radiologists in distinguishing between benign breast lesions (BBL) and malignant breast lesions (MBL). A total of 382 patients with breast lesions were included, comprising 183 benign lesions and 199 malignant lesions that were collected and confirmed through clinical pathology or biopsy. The enrolled patients were randomly allocated into two groups: a training cohort and an independent test cohort, maintaining a ratio of 7:3.We created a model called CLDLR that utilizes clinical parameters and DLR to diagnose both BBL and MBL through grayscale ultrasound images. In order to assess the practicality of the CLDLR model, two rounds of evaluations were conducted by radiologists. The CLDLR model demonstrates the highest diagnostic performance in predicting benign and malignant BI-RADS 4 lesions, with areas under the receiver operating characteristic curve (AUC) of 0.988 (95% confidence interval : 0.949, 0.985) in the training cohort and 0.888 (95% confidence interval : 0.829, 0.947) in the testing cohort.The CLDLR model outperformed the diagnoses made by the three radiologists in the initial assessment of the testing cohorts. By utilizing AI scores from the CLDLR model and heatmaps from the DLR model, the diagnostic performance of all radiologists was further enhanced in the testing cohorts. Our study presents a noninvasive imaging biomarker for the prediction of benign and malignant BI-RADS 4 lesions. By comparing the results from two rounds of assessment, our AI-assisted diagnostic tool demonstrates practical value for radiologists with varying levels of experience.
Collapse
Affiliation(s)
- Liu Yang
- Department of Medical Ultrasound, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, Shandong, People's Republic of China
| | - Naiwen Zhang
- Department of Medical Ultrasound, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, Shandong, People's Republic of China
| | - Junying Jia
- Department of Medical Ultrasound, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, Shandong, People's Republic of China
| | - Zhe Ma
- Department of Medical Ultrasound, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, Shandong, People's Republic of China.
| |
Collapse
|
14
|
Singh S, Healy NA. The top 100 most-cited articles on artificial intelligence in breast radiology: a bibliometric analysis. Insights Imaging 2024; 15:297. [PMID: 39666106 PMCID: PMC11638451 DOI: 10.1186/s13244-024-01869-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/24/2024] [Indexed: 12/13/2024] Open
Abstract
INTRODUCTION Artificial intelligence (AI) in radiology is a rapidly evolving field. In breast imaging, AI has already been applied in a real-world setting and multiple studies have been conducted in the area. The aim of this analysis is to identify the most influential publications on the topic of artificial intelligence in breast imaging. METHODS A retrospective bibliometric analysis was conducted on artificial intelligence in breast radiology using the Web of Science database. The search strategy involved searching for the keywords 'breast radiology' or 'breast imaging' and the various keywords associated with AI such as 'deep learning', 'machine learning,' and 'neural networks'. RESULTS From the top 100 list, the number of citations per article ranged from 30 to 346 (average 85). The highest cited article titled 'Artificial Neural Networks In Mammography-Application To Decision-Making In The Diagnosis Of Breast-Cancer' was published in Radiology in 1993. Eighty-three of the articles were published in the last 10 years. The journal with the greatest number of articles was Radiology (n = 22). The most common country of origin was the United States (n = 51). Commonly occurring topics published were the use of deep learning models for breast cancer detection in mammography or ultrasound, radiomics in breast cancer, and the use of AI for breast cancer risk prediction. CONCLUSION This study provides a comprehensive analysis of the top 100 most-cited papers on the subject of artificial intelligence in breast radiology and discusses the current most influential papers in the field. CLINICAL RELEVANCE STATEMENT This article provides a concise summary of the top 100 most-cited articles in the field of artificial intelligence in breast radiology. It discusses the most impactful articles and explores the recent trends and topics of research in the field. KEY POINTS Multiple studies have been conducted on AI in breast radiology. The most-cited article was published in the journal Radiology in 1993. This study highlights influential articles and topics on AI in breast radiology.
Collapse
Affiliation(s)
- Sneha Singh
- Department of Radiology, Royal College of Surgeons in Ireland, Dublin, Ireland.
- Beaumont Breast Centre, Beaumont Hospital, Dublin, Ireland.
| | - Nuala A Healy
- Department of Radiology, Royal College of Surgeons in Ireland, Dublin, Ireland
- Beaumont Breast Centre, Beaumont Hospital, Dublin, Ireland
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
15
|
Zhang H, Yi H, Qin S, Liu X, Liu G. CLIP-based multimodal endorectal ultrasound enhances prediction of neoadjuvant chemoradiotherapy response in locally advanced rectal cancer. PLoS One 2024; 19:e0315339. [PMID: 39661640 PMCID: PMC11633952 DOI: 10.1371/journal.pone.0315339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/22/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Forecasting the patient's response to neoadjuvant chemoradiotherapy (nCRT) is crucial for managing locally advanced rectal cancer (LARC). This study investigates whether a predictive model using image-text features extracted from endorectal ultrasound (ERUS) via Contrastive Language-Image Pretraining (CLIP) can predict tumor regression grade (TRG) before nCRT. METHODS A retrospective analysis of 577 LARC patients who received nCRT followed by surgery was conducted from January 2018 to December 2023. ERUS scans and TRG were used to assess nCRT response, categorizing patients into good (TRG 0) and poor (TRG 1-3) responders. Image and text features were extracted using the ResNet50+RBT3 (RN50) and ViT-B/16+RoBERTa-wwm (VB16) components of the Chinese-CLIP model. LightGBM was used for model construction and comparison. A subset of 100 patients from each responder group was used to compare the CLIP method with manual radiomics methods (logistic regression, support vector machines, and random forest). SHapley Additive exPlanations (SHAP) technique was used to analyze feature contributions. RESULTS The RN50 and VB16 models achieved AUROC scores of 0.928 (95% CI: 0.90-0.96) and 0.900 (95% CI: 0.86-0.93), respectively, outperforming manual radiomics methods. SHAP analysis indicated that image features dominated the RN50 model, while both image and text features were significant in the VB16 model. CONCLUSIONS The CLIP-based predictive model using ERUS image-text features and LightGBM showed potential for improving personalized treatment strategies. However, this study is limited by its retrospective design and single-center data.
Collapse
Affiliation(s)
- Hanchen Zhang
- Department of Medical Ultrasonics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Nuclear Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hang Yi
- Department of Medical Ultrasonics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Si Qin
- Department of Medical Ultrasonics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyin Liu
- Department of Medical Ultrasonics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guangjian Liu
- Department of Medical Ultrasonics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
Bahl M, Chang JM, Mullen LA, Berg WA. Artificial Intelligence for Breast Ultrasound: AJR Expert Panel Narrative Review. AJR Am J Roentgenol 2024; 223:e2330645. [PMID: 38353449 DOI: 10.2214/ajr.23.30645] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2024]
Abstract
Breast ultrasound is used in a wide variety of clinical scenarios, including both diagnostic and screening applications. Limitations of ultrasound, however, include its low specificity and, for automated breast ultrasound screening, the time necessary to review whole-breast ultrasound images. As of this writing, four AI tools that are approved or cleared by the FDA address these limitations. Current tools, which are intended to provide decision support for lesion classification and/or detection, have been shown to increase specificity among nonspecialists and to decrease interpretation times. Potential future applications include triage of patients with palpable masses in low-resource settings, preoperative prediction of axillary lymph node metastasis, and preoperative prediction of neoadjuvant chemotherapy response. Challenges in the development and clinical deployment of AI for ultrasound include the limited availability of curated training datasets compared with mammography, the high variability in ultrasound image acquisition due to equipment- and operator-related factors (which may limit algorithm generalizability), and the lack of postimplementation evaluation studies. Furthermore, current AI tools for lesion classification were developed based on 2D data, but diagnostic accuracy could potentially be improved if multimodal ultrasound data were used, such as color Doppler, elastography, cine clips, and 3D imaging.
Collapse
Affiliation(s)
- Manisha Bahl
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St, WAC 240, Boston, MA 02114
| | - Jung Min Chang
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Lisa A Mullen
- Department of Radiology and Radiological Science, Johns Hopkins Medicine, Baltimore, MD
| | - Wendie A Berg
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
17
|
Wu J, Guo Y, Wu C, Wang Z, Sun Y, Xu D. Integration of Longitudinal and Transverse Radiomics from Ultrasound Images with Clinical Factors for HER-2 Status Prediction in Invasive Breast Cancer Patients. J INVEST SURG 2024; 37:2436050. [PMID: 39647167 DOI: 10.1080/08941939.2024.2436050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/18/2024] [Accepted: 11/24/2024] [Indexed: 12/10/2024]
Abstract
OBJECTIVE This study developed a nomogram combining longitudinal and transverse ultrasound radiomics with clinical factors to identify human epidermal growth factor receptor 2 (HER2) status in invasive breast cancer (BC). MATERIALS AND METHODS We analyzed 537 invasive BC patients from two hospitals: 436 in the training cohort (Hospital A) and 101 in the test cohort (Hospital B). From longitudinal and transverse ultrasound planes, 788 radiomics features were extracted, with dimensionality reduced using least absolute shrinkage and selection operator regression. A radiomics nomogram integrating clinical predictors and radiomics scores (Rad-scores) was constructed. RESULTS Fifteen and sixteen features from longitudinal and transverse ultrasound planes, respectively, were selected to generate Rad-scores, which differed significantly between HER2-positive and HER2-negative groups in both cohorts (p < 0.05). The combined radiomics model outperformed individual models with AUCs of 0.783 and 0.762 in the training and external test cohorts, respectively. Tumor size was an independent clinical predictor. The nomogram, incorporating Rad-scores and tumor size, achieved AUCs of 0.790 (training cohort) and 0.774 (test cohort). Decision curve analysis demonstrated its potential clinical utility. CONCLUSION A biplanar ultrasound radiomics nomogram effectively predicts HER2 status in invasive BC, potentially reducing the need for biopsies and supporting personalized treatment strategies.
Collapse
Affiliation(s)
- Jiangfeng Wu
- Department of Ultrasonography, Dongyang People's Hospital, Dongyang, Zhejiang, China
| | - Yinghong Guo
- Department of Ultrasonography, Dongyang People's Hospital, Dongyang, Zhejiang, China
| | - Chao Wu
- Department of Ultrasonography, Dongyang People's Hospital, Dongyang, Zhejiang, China
| | - Zhengping Wang
- Department of Ultrasonography, Dongyang People's Hospital, Dongyang, Zhejiang, China
| | - Yue Sun
- Department of Ultrasonography, Dongyang People's Hospital, Dongyang, Zhejiang, China
| | - Dong Xu
- Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
18
|
Yan Y, Liu Y, Yao J, Sui L, Chen C, Jiang T, Liu X, Wang Y, Ou D, Chen J, Wang H, Feng L, Pan Q, Su Y, Wang Y, Wang L, Zhou L, Xu D. Deep learning-assisted distinguishing breast phyllodes tumours from fibroadenomas based on ultrasound images: a diagnostic study. Br J Radiol 2024; 97:1816-1825. [PMID: 39288312 DOI: 10.1093/bjr/tqae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/25/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024] Open
Abstract
OBJECTIVES To evaluate the performance of ultrasound-based deep learning (DL) models in distinguishing breast phyllodes tumours (PTs) from fibroadenomas (FAs) and their clinical utility in assisting radiologists with varying diagnostic experiences. METHODS We retrospectively collected 1180 ultrasound images from 539 patients (247 PTs and 292 FAs). Five DL network models with different structures were trained and validated using nodule regions annotated by radiologists on breast ultrasound images. DL models were trained using the methods of transfer learning and 3-fold cross-validation. The model demonstrated the best evaluation index in the 3-fold cross-validation was selected for comparison with radiologists' diagnostic decisions. Two-round reader studies were conducted to investigate the value of DL model in assisting 6 radiologists with different levels of experience. RESULTS Upon testing, Xception model demonstrated the best diagnostic performance (area under the receiver-operating characteristic curve: 0.87; 95% CI, 0.81-0.92), outperforming all radiologists (all P < .05). Additionally, the DL model enhanced the diagnostic performance of radiologists. Accuracy demonstrated improvements of 4%, 4%, and 3% for senior, intermediate, and junior radiologists, respectively. CONCLUSIONS The DL models showed superior predictive abilities compared to experienced radiologists in distinguishing breast PTs from FAs. Utilizing the model led to improved efficiency and diagnostic performance for radiologists with different levels of experience (6-25 years of work). ADVANCES IN KNOWLEDGE We developed and validated a DL model based on the largest available dataset to assist in diagnosing PTs. This model has the potential to allow radiologists to discriminate 2 types of breast tumours which are challenging to identify with precision and accuracy, and subsequently to make more informed decisions about surgical plans.
Collapse
Affiliation(s)
- Yuqi Yan
- Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Wenling Big Data and Artificial Intelligence Institute in Medicine, TaiZhou 317502, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou 310022, China
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), Taizhou 317502, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, Hangzhou, Zhejiang 310022, China
| | - Yuanzhen Liu
- Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Wenling Big Data and Artificial Intelligence Institute in Medicine, TaiZhou 317502, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou 310022, China
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), Taizhou 317502, China
| | - Jincao Yao
- Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Cancer Intelligent Diagnosis and Molecular Technology, Hangzhou 310022, China
| | - Lin Sui
- Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Wenling Big Data and Artificial Intelligence Institute in Medicine, TaiZhou 317502, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou 310022, China
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), Taizhou 317502, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, Hangzhou, Zhejiang 310022, China
| | - Chen Chen
- Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Wenling Big Data and Artificial Intelligence Institute in Medicine, TaiZhou 317502, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou 310022, China
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), Taizhou 317502, China
| | - Tian Jiang
- Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, Hangzhou, Zhejiang 310022, China
- Zhejiang Provincial Research Center for Cancer Intelligent Diagnosis and Molecular Technology, Hangzhou 310022, China
| | - Xiaofang Liu
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), Taizhou 317502, China
| | - Yifan Wang
- Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Wenling Big Data and Artificial Intelligence Institute in Medicine, TaiZhou 317502, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou 310022, China
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), Taizhou 317502, China
- Zhejiang Provincial Research Center for Cancer Intelligent Diagnosis and Molecular Technology, Hangzhou 310022, China
| | - Di Ou
- Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Cancer Intelligent Diagnosis and Molecular Technology, Hangzhou 310022, China
| | - Jing Chen
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), Taizhou 317502, China
| | - Hui Wang
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), Taizhou 317502, China
| | - Lina Feng
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), Taizhou 317502, China
| | - Qianmeng Pan
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), Taizhou 317502, China
| | - Ying Su
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Yukai Wang
- Zunyi Medical University, Zunyi 563000, China
| | - Liping Wang
- Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Cancer Intelligent Diagnosis and Molecular Technology, Hangzhou 310022, China
| | - Lingyan Zhou
- Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Cancer Intelligent Diagnosis and Molecular Technology, Hangzhou 310022, China
| | - Dong Xu
- Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Wenling Big Data and Artificial Intelligence Institute in Medicine, TaiZhou 317502, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou 310022, China
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), Taizhou 317502, China
- Zhejiang Provincial Research Center for Cancer Intelligent Diagnosis and Molecular Technology, Hangzhou 310022, China
| |
Collapse
|
19
|
Tian S, Yu Y, Shi K, Jiang Y, Song H, Wang Y, Yan X, Zhong Y, Shao G. Deep learning radiomics based on ultrasound images for the assisted diagnosis of chronic kidney disease. Nephrology (Carlton) 2024; 29:748-757. [PMID: 39134509 DOI: 10.1111/nep.14376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/16/2024] [Accepted: 07/24/2024] [Indexed: 10/19/2024]
Abstract
AIM This study aimed to explore the value of ultrasound (US) images in chronic kidney disease (CKD) screening by constructing a CKD screening model based on grey-scale US images. METHODS According to the CKD diagnostic criteria, 1049 patients from Tongde Hospital of Zhejiang Province were retrospectively enrolled in the study. A total of 4365 renal US images were collected from these patients. Convolutional neural networks were used for feature extractions and a screening model was constructed by fusing ResNet34 and texture features to identify CKD and its stage. A comparative analysis was performed to compare the diagnosis results of the model with physicians. RESULTS When diagnosing CKD or non-CKD, the receiver operating characteristic curve (AUC) of our model was 0.918 and that of the senior physician group was 0.869 (p < .05). For the diagnosis of CKD stage, the AUC of our model for CKD G1-G3 was 0.781, 0.880, and 0.905, respectively, while the AUC of the senior physician group for CKD G1-G3 was 0.506, 0.586, and 0.796, respectively; all differences were statistically significant (p < .05). The diagnostic efficiency of our model for CKD G4 and G5 reached the level of the senior physicians group. Specifically, the AUC of our model for CKD G4-G5 was 0.867 and 0.931, respectively, while the AUC of the senior physician group for CKD G4-G5 was 0.838 and 0.963, respectively (all p > .05). CONCLUSIONS Our deep learning radiomics model is more effective than senior physicians in the diagnosis of early CKD.
Collapse
Affiliation(s)
- Shuyuan Tian
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, PR China
- Department of Ultrasound, Tongde Hospital of Zhejiang Province, Hangzhou, PR China
| | - Yonghong Yu
- Department of Ultrasound, Tongde Hospital of Zhejiang Province, Hangzhou, PR China
| | - Kangjian Shi
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, PR China
| | - Yunwen Jiang
- Department of Ultrasound, Tongde Hospital of Zhejiang Province, Hangzhou, PR China
| | - Huachun Song
- Department of Ultrasound, Tongde Hospital of Zhejiang Province, Hangzhou, PR China
| | - Yuting Wang
- Department of Ultrasound, Tongde Hospital of Zhejiang Province, Hangzhou, PR China
| | - Xiaoqian Yan
- Department of Nephropathy, Tongde Hospital of Zhejiang Province, Hangzhou, PR China
| | - Yu Zhong
- Department of Nephropathy, Tongde Hospital of Zhejiang Province, Hangzhou, PR China
| | - Guoliang Shao
- Department of Radiology, Zhejiang Cancer Hospital, Hangzhou, PR China
| |
Collapse
|
20
|
Huang Y, Cao Y, Hu X, Lan X, Chen H, Tang S, Li L, Cheng Y, Gong X, Wang W, Jiang F, Yin T, Wang X, Zhang J. Early Identification of Pathologic Complete Response to Neoadjuvant Chemotherapy Using Multiphase DCE-MRI by Siamese Network in Breast Cancer: A Longitudinal Multicenter Study. J Magn Reson Imaging 2024; 60:1325-1337. [PMID: 38109316 DOI: 10.1002/jmri.29188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Siamese network (SN) using longitudinal DCE-MRI for pathologic complete response (pCR) identification lack a unified approach to phases selection. PURPOSE To identify pCR in early-stage NAC, using SN with longitudinal DCE-MRI and introducing IPS for phases selection. STUDY TYPE Multicenter, longitudinal. POPULATION Center A: 162 female patients (50.63 ± 8.41 years) divided 7:3 into training and internal validation cohorts. Center B: 61 female patients (50.08 ± 7.82 years) were used as an external validation cohort. FIELD STRENGTH/SEQUENCE Center A: single vendor 3.0 T with a compressed-sensing volume interpolated breath-hold examination sequence. Center B: single vendor 1.5 T with volume interpolated breath-hold examination sequence. ASSESSMENT Patients underwent DCE-MRI before and after two NAC cycles, with tumor regions of interest (ROI) manually delineated. Histopathology was the reference for pCR identification. Models developed included a clinical one, four SN models based on IPS-selected phases, and integrated models combining clinical and SN features. STATISTICAL TESTS Model performance was evaluated using the area under the receiver operating characteristic curve (AUC). The DeLong test was used to compare AUCs. Net reclassification improvement and integrated discrimination improvement (IDI) tests were employed for performance comparison. P < 0.05 was considered significant. RESULTS In internal and external validation cohorts, the clinical model showed AUCs of 0.760 and 0.718. SN and integrated models, with increasing phases via IPS, achieved AUCs ranging from 0.813 to 0.951 and 0.818 to 0.922. Notably, SN-3 and integrated-3 and integrated-4 outperformed the clinical model. However, input phases beyond 20% did not significantly enhance performance (IDI test: SN-4 vs. SN-3, P = 0.314 and 0.630; integrated-4 vs. integrated-3, P = 0.785 and 0.709). DATA CONCLUSION The longitudinal multiphase DCE-MRI based on the SN demonstrates promise for identifying pCR in breast cancer. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 4.
Collapse
Affiliation(s)
- Yao Huang
- School of Medicine, Chongqing University, Chongqing, China
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing, China
| | - Ying Cao
- School of Medicine, Chongqing University, Chongqing, China
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing, China
| | - Xiaofei Hu
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaosong Lan
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing, China
| | - Huifang Chen
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing, China
| | - Sun Tang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing, China
| | - Lan Li
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing, China
| | - Yue Cheng
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing, China
| | - Xueqin Gong
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing, China
| | - Wei Wang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing, China
| | - Fujie Jiang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing, China
| | - Ting Yin
- MR Collaborations, Siemens Healthineers Ltd., Chengdu, China
| | - Xiaoxia Wang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing, China
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing, China
| |
Collapse
|
21
|
Riaz IB, Khan MA, Haddad TC. Potential application of artificial intelligence in cancer therapy. Curr Opin Oncol 2024; 36:437-448. [PMID: 39007164 DOI: 10.1097/cco.0000000000001068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
PURPOSE OF REVIEW This review underscores the critical role and challenges associated with the widespread adoption of artificial intelligence in cancer care to enhance disease management, streamline clinical processes, optimize data retrieval of health information, and generate and synthesize evidence. RECENT FINDINGS Advancements in artificial intelligence models and the development of digital biomarkers and diagnostics are applicable across the cancer continuum from early detection to survivorship care. Additionally, generative artificial intelligence has promised to streamline clinical documentation and patient communications, generate structured data for clinical trial matching, automate cancer registries, and facilitate advanced clinical decision support. Widespread adoption of artificial intelligence has been slow because of concerns about data diversity and data shift, model reliability and algorithm bias, legal oversight, and high information technology and infrastructure costs. SUMMARY Artificial intelligence models have significant potential to transform cancer care. Efforts are underway to deploy artificial intelligence models in the cancer practice, evaluate their clinical impact, and enhance their fairness and explainability. Standardized guidelines for the ethical integration of artificial intelligence models in cancer care pathways and clinical operations are needed. Clear governance and oversight will be necessary to gain trust in artificial intelligence-assisted cancer care by clinicians, scientists, and patients.
Collapse
Affiliation(s)
- Irbaz Bin Riaz
- Department of AI and Informatics, Mayo Clinic, Minnesota
- Division of Hematology and Oncology, Mayo Clinic, Phoenix, Arizona
| | | | - Tufia C Haddad
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
22
|
Yang Z, Liu C. Research on the application of radiomics in breast cancer: A bibliometrics and visualization analysis. Medicine (Baltimore) 2024; 103:e39463. [PMID: 39213225 PMCID: PMC11365679 DOI: 10.1097/md.0000000000039463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/24/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Breast cancer is the most prevalent form of cancer worldwide. Therefore, improved disease detection has emerged as a focal point in clinical studies. At the forefront of innovation, radiomics has the capability to extract comprehensive insights from medical images, ultimately enhancing the accuracy of diagnostic procedures. There has been rapid growth in the field of radiomics research on breast cancer in the past few years. We explored pertinent research articles in the Web of Science Core Collection database to gain a thorough understanding of breast cancer radiomics. We used CiteSpace to conduct a bibliometric analysis of the annual distribution of different nations, institutions, journals, authors, keywords, and references in the field of breast cancer radiomics. GraphPad Prism software was used to examine and graph yearly and country-specific trends and the proportions of publications. The tools utilized for the visualization of science mapping included CiteSpace and VOSviewer. Of the 891 publications, most were original articles (731, 91.09%) and a few were reviews (160, 8.91%). Most academic research has been published in China and the United States. The study centers predominantly consisted of major academic institutions, such as Fudan University and the Chinese Academy of Sciences, with some of their members being prominent figures in the field. Pinker, Katja has published the largest number of research papers. The majority of these studies have been published in medical journals focusing on radiology and oncology in recent years. In the realm of cutting-edge medical research, the top two keywords, magnetic resonance imaging and machine learning stand at the forefront as current areas of intense focus. Breast cancer radiomics is advancing rapidly, presenting numerous opportunities and obstacles. Our study of the literature in this academic area aimed to pinpoint the primary themes addressed in the studies and anticipate prospective avenues for research.
Collapse
Affiliation(s)
- Zhe Yang
- Department of Radiology, the Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Chenglong Liu
- Department of Radiology, the Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| |
Collapse
|
23
|
Zhang M, Zha H, Pan J, Liu X, Zong M, Du L, Du Y. Development of an Ultrasound-based Nomogram for Predicting Pathologic Complete Response and Axillary Response in Node-Positive Patients with Triple- Negative Breast Cancer. Clin Breast Cancer 2024; 24:e485-e494.e1. [PMID: 38627192 DOI: 10.1016/j.clbc.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND The accurate prediction of pathological complete response (pCR) in the breast and axillary lymph nodes (ALN) before neoadjuvant chemotherapy (NAC) is of utmost importance for the development of treatment strategies. We aim to construct a nomogram on ultrasound (US) and clinical-pathologic factors to predict breast and ALN pCR in node-positive triple-negative breast cancers (TNBCs). METHODS Patients identified with TNBCs from institution 1 (n = 328) were used for training cohort and those from institution 2 (n = 192) were for validation cohort. US was conducted before and after NAC, and characteristics were obtained from medical records. Univariate and multivariate regression analysis were performed to identify US and clinical-pathologic factors associated with breast and ALN pCR in the training cohort. The assessment of predictive performance was conducted using the receiving operating characteristic curve (ROC), discrimination, and calibration. RESULTS Overall, 34.6% of patients achieved breast pCR and 48.1% of patients achieved ALN pCR. The nomogram 1 used for predicting pCR in the breast (AUC, 0.84; 95% CI: 0.79, 0.88) outperformed the clinical (AUC, 0.73; 95% CI: 0.68, 0.78) and US models (AUC, 0.79; 95% CI: 0.74, 0.83). The nomogram 2 used for predicting pCR in the axllia (AUC, 0.83; 95% CI: 0.78, 0.87) also outperformed the clinical (AUC, 0.64; 95% CI: 0.58, 0.69) and US models (AUC, 0.80; 95% CI: 0.75, 0.84). The calibration curve and discrimination curve indicate that the nomogram has good calibration performance and clinical applicability. CONCLUSION The nomogram showed promising predictive performance for predicting breast and ALN pCR in patients with TNBCs.
Collapse
Affiliation(s)
- Manqi Zhang
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hailing Zha
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiazhen Pan
- Department of Ultrasound, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoan Liu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Zong
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Liwen Du
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Yu Du
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
24
|
Jiang C, Zhang X, Qu T, Yang X, Xiu Y, Yu X, Zhang S, Qiao K, Meng H, Li X, Huang Y. The prediction of pCR and chemosensitivity for breast cancer patients using DLG3, RADL and Pathomics signatures based on machine learning and deep learning. Transl Oncol 2024; 46:101985. [PMID: 38805774 PMCID: PMC11154003 DOI: 10.1016/j.tranon.2024.101985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Limited studies have investigated the predictive value of multiomics signatures (radiomics, deep learning features, pathological features and DLG3) in breast cancer patients who underwent neoadjuvant chemotherapy (NAC). However, no study has explored the relationships among radiomic, pathomic signatures and chemosensitivity. This study aimed to predict pathological complete response (pCR) using multiomics signatures, and to evaluate the predictive utility of radiomic and pathomic signatures for guiding chemotherapy selection. METHODS The oncogenic function of DLG3 was explored in breast cancer cells via DLG3 knockdown. Immunohistochemistry (IHC) was used to evaluate the relationship between DLG3 expression and docetaxel/epirubin sensitivity. Machine learning (ML) and deep learning (DL) algorithms were used to develop multiomics signatures. Survival analysis was conducted by K-M curves and log-rank. Multivariate logistic regression analysis was used to develop nomograms. RESULTS A total of 311 patients with malignant breast tumours who underwent NAC were retrospectively included in this multicentre study. Multiomics (DLG3, RADL and PATHO) signatures could accurately predict pCR (AUC: training: 0.900; testing: 0.814; external validation: 0.792). Its performance is also superior to that of clinical TNM staging and the single RADL signature in different cohorts. Patients in the low DLG3 group more easily achieved pCR, and those in the high RADL Signature_pCR and PATHO_Signature_pCR (OR = 7.93, 95 % CI: 3.49-18, P < 0.001) groups more easily achieved pCR. In the TEC regimen NAC group, patients who achieved pCR had a lower DLG3 score (4.00 ± 2.33 vs. 6.43 ± 3.01, P < 0.05). Patients in the low RADL_Signature_DLG3 and PATHO_Signature_DLG3 groups had lower DLG3 IHC scores (P < 0.05). Patients in the high RADL signature, PATHO signature and DLG3 signature groups had worse DFS and OS. CONCLUSIONS Multiomics signatures (RADL, PATHO and DLG3) demonstrated great potential in predicting the pCR of breast cancer patients who underwent NAC. The RADL and PATHO signatures are associated with DLG3 status and could help doctors or patients choose proper neoadjuvant chemotherapy regimens (TEC regimens). This simple, structured, convenient and inexpensive multiomics model could help clinicians and patients make treatment decisions.
Collapse
Affiliation(s)
- Cong Jiang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150086, China
| | - XueFang Zhang
- Department of Pathology, The first people's hospital of Xiangtan City, Xiangtan 411100, China
| | - Tong Qu
- Department of Oncology, The second cancer hospital of Heilongjiang province, Harbin 150086, China
| | - Xinxin Yang
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin 150086, China
| | - Yuting Xiu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150086, China
| | - Xiao Yu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150086, China
| | - Shiyuan Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150086, China
| | - Kun Qiao
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150086, China
| | - Hongxue Meng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin 150086, China
| | - Xuelian Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150086, China; State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yuanxi Huang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150086, China.
| |
Collapse
|
25
|
Li Z, Liu X, Gao Y, Lu X, Lei J. Ultrasound-based radiomics for early predicting response to neoadjuvant chemotherapy in patients with breast cancer: a systematic review with meta-analysis. LA RADIOLOGIA MEDICA 2024; 129:934-944. [PMID: 38630147 DOI: 10.1007/s11547-024-01783-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 01/10/2024] [Indexed: 06/13/2024]
Abstract
OBJECTIVE This study aims to evaluate the diagnostic accuracy of ultrasound imaging (US)-based radiomics for the early prediction of response to neoadjuvant chemotherapy (NAC) in breast cancer patients. METHODS We comprehensively searched PubMed, Cochrane Library, Embase, and Web of Science databases up to 1 January 2023 for eligible studies. We assessed the methodological quality of the enrolled studies with Radiomics Quality Score (RQS) and the Quality Assessment of Diagnostic Accuracy Studies-2 tools. We performed meta-analyses to summarize the diagnostic efficacy of US-based radiomics in response to NAC in breast cancer patients. RESULTS Eight studies proved eligible. Eligible studies exhibited an average RQS score of 12.88 (35.8% of the total score), with the RQS score ranging from 8 to 19. In the meta-analyses, the pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio were 0.87 (95% CI 0.81-0.92), 0.78 (95% CI 0.72-0.83), 4.02 (95% CI 3.18-5.08), 0.16 (95% CI 0.10-0.25), and 25.17 (95% CI 15.10-41.95), respectively. Results from subgroup analyses indicated that prospective studies apparently exhibited more optimal sensitivity than retrospective studies. Sensitivity analyses exhibited similar results to the primary analyses. CONCLUSION US-based radiomics may be a potentially crucial adjuvant method for evaluating the response of breast cancer to NAC. Due to limited data available and low quality of eligible studies, more multicenter prospective studies with rigorous methods are required to confirm our findings.
Collapse
Affiliation(s)
- Zhifan Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Xinran Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Ya Gao
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Xingru Lu
- Department of Radiology, the First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Junqiang Lei
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China.
- Department of Radiology, the First Hospital of Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
26
|
Li ZY, Wu SN, Lin ZH, Jiang MC, Chen C, Liang RX, Lin WJ, Xue ES. Ultrasound-based radiomics-clinical nomogram for noninvasive prediction of residual cancer burden grading in breast cancer. JOURNAL OF CLINICAL ULTRASOUND : JCU 2024; 52:566-574. [PMID: 38538081 DOI: 10.1002/jcu.23666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/12/2024] [Indexed: 06/15/2024]
Abstract
PURPOSE To assess the predictive value of an ultrasound-based radiomics-clinical nomogram for grading residual cancer burden (RCB) in breast cancer patients. METHODS This retrospective study of breast cancer patients who underwent neoadjuvant therapy (NAC) and ultrasound scanning between November 2020 and July 2023. First, a radiomics model was established based on ultrasound images. Subsequently, multivariate LR (logistic regression) analysis incorporating both radiomic scores and clinical factors was performed to construct a nomogram. Finally, Receiver operating characteristics (ROC) curve analysis and decision curve analysis (DCA) were employed to evaluate and validate the diagnostic accuracy and effectiveness of the nomogram. RESULTS A total of 1122 patients were included in this study. Among them, 427 patients exhibited a favorable response to NAC chemotherapy, while 695 patients demonstrated a poor response to NAC therapy. The radiomics model achieved an AUC value of 0.84 in the training cohort and 0.83 in the validation cohort. The ultrasound-based radiomics-clinical nomogram achieved an AUC value of 0.90 in the training cohort and 0.91 in the validation cohort. CONCLUSIONS Ultrasound-based radiomics-clinical nomogram can accurately predict the effectiveness of NAC therapy by predicting RCB grading in breast cancer patients.
Collapse
Affiliation(s)
- Zhi-Yong Li
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou, China
| | - Sheng-Nan Wu
- Department of Ultrasound, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Ultrasound, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zhen-Hu Lin
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou, China
| | - Mei-Chen Jiang
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Cong Chen
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou, China
| | - Rong-Xi Liang
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou, China
| | - Wen-Jin Lin
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou, China
| | - En-Sheng Xue
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
27
|
Hathaway QA, Abdeen Y, Conte J, Hass R, Santer MJ, Alyami B, Avalon JC, Patel B. Prediction of heart failure and all-cause mortality using cardiac ultrasomics in patients with breast cancer. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2024; 40:1305-1317. [PMID: 38625628 DOI: 10.1007/s10554-024-03101-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/02/2024] [Indexed: 04/17/2024]
Abstract
Breast cancer chemotherapy/immunotherapy can be associated with treatment-limiting cardiotoxicity. Radiomics techniques applied to ultrasound, known as ultrasomics, can be used in cardio-oncology to leverage echocardiography for added prognostic value. To utilize ultrasomics features collected prior to antineoplastic therapy to enhance prediction of mortality and heart failure (HF) in patients with breast cancer. Patients were retrospectively recruited in a study at the West Virginia University Cancer Institute. The final inclusion criteria were met by a total of 134 patients identified for the study. Patients were imaged using echocardiography in the parasternal long axis prior to receiving chemotherapy. All-cause mortality and HF, developed during treatment, were the primary outcomes. 269 features were assessed, grouped into four major classes: demographics (n = 21), heart function (n = 7), antineoplastic medication (n = 17), and ultrasomics (n = 224). Data was split into an internal training (60%, n = 81) and testing (40%, n = 53) set. Ultrasomics features augmented classification of mortality (area under the curve (AUC) 0.89 vs. 0.65, P = 0.003), when compared to demographic variables. When developing a risk prediction score for each feature category, ultrasomics features were significantly associated with both mortality (P = 0.031, log-rank test) and HF (P = 0.002, log-rank test). Further, only ultrasomics features provided significant improvement over demographic variables when predicting mortality (C-Index: 0.78 vs. 0.65, P = 0.044) and HF (C-Index: 0.77 vs. 0.60, P = 0.017), respectively. With further investigation, a clinical decision support tool could be developed utilizing routinely obtained patient data alongside ultrasomics variables to augment treatment regimens.
Collapse
Affiliation(s)
- Quincy A Hathaway
- Department of Medical Education, West Virginia University, Morgantown, WV, USA
- Heart and Vascular Institute, West Virginia University, Morgantown, WV, USA
| | - Yahya Abdeen
- Heart and Vascular Institute, West Virginia University, Morgantown, WV, USA
| | - Justin Conte
- Heart and Vascular Institute, West Virginia University, Morgantown, WV, USA
| | - Rotem Hass
- Heart and Vascular Institute, West Virginia University, Morgantown, WV, USA
| | - Matthew J Santer
- Heart and Vascular Institute, West Virginia University, Morgantown, WV, USA
| | - Bandar Alyami
- Heart and Vascular Institute, West Virginia University, Morgantown, WV, USA
| | - Juan Carlo Avalon
- Heart and Vascular Institute, West Virginia University, Morgantown, WV, USA
| | - Brijesh Patel
- Heart and Vascular Institute, West Virginia University, Morgantown, WV, USA.
- Department of Cardiovascular and Thoracic Surgery, West Virginia University School of Medicine, 1 Medical Center Drive, Morgantown, WV, 26505, USA.
| |
Collapse
|
28
|
Duwe G, Mercier D, Wiesmann C, Kauth V, Moench K, Junker M, Neumann CCM, Haferkamp A, Dengel A, Höfner T. Challenges and perspectives in use of artificial intelligence to support treatment recommendations in clinical oncology. Cancer Med 2024; 13:e7398. [PMID: 38923826 PMCID: PMC11196383 DOI: 10.1002/cam4.7398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Artificial intelligence (AI) promises to be the next revolutionary step in modern society. Yet, its role in all fields of industry and science need to be determined. One very promising field is represented by AI-based decision-making tools in clinical oncology leading to more comprehensive, personalized therapy approaches. In this review, the authors provide an overview on all relevant technical applications of AI in oncology, which are required to understand the future challenges and realistic perspectives for decision-making tools. In recent years, various applications of AI in medicine have been developed focusing on the analysis of radiological and pathological images. AI applications encompass large amounts of complex data supporting clinical decision-making and reducing errors by objectively quantifying all aspects of the data collected. In clinical oncology, almost all patients receive a treatment recommendation in a multidisciplinary cancer conference at the beginning and during their treatment periods. These highly complex decisions are based on a large amount of information (of the patients and of the various treatment options), which need to be analyzed and correctly classified in a short time. In this review, the authors describe the technical and medical requirements of AI to address these scientific challenges in a multidisciplinary manner. Major challenges in the use of AI in oncology and decision-making tools are data security, data representation, and explainability of AI-based outcome predictions, in particular for decision-making processes in multidisciplinary cancer conferences. Finally, limitations and potential solutions are described and compared for current and future research attempts.
Collapse
Affiliation(s)
- Gregor Duwe
- Department of Urology and Pediatric UrologyUniversity Medical Center, Johannes Gutenberg UniversityMainzGermany
| | - Dominique Mercier
- Research Unit Smart Data and Knowledge ServicesGerman Research Center for Artificial IntelligenceKaiserslauternGermany
| | - Crispin Wiesmann
- Department of Urology and Pediatric UrologyUniversity Medical Center, Johannes Gutenberg UniversityMainzGermany
| | - Verena Kauth
- Department of Urology and Pediatric UrologyUniversity Medical Center, Johannes Gutenberg UniversityMainzGermany
| | - Kerstin Moench
- Department of Urology and Pediatric UrologyUniversity Medical Center, Johannes Gutenberg UniversityMainzGermany
| | - Markus Junker
- Research Unit Smart Data and Knowledge ServicesGerman Research Center for Artificial IntelligenceKaiserslauternGermany
| | - Christopher C. M. Neumann
- Department of Hematology, Oncology and Tumor ImmunologyCharité‐Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt‐Universität zu BerlinBerlinGermany
| | - Axel Haferkamp
- Department of Urology and Pediatric UrologyUniversity Medical Center, Johannes Gutenberg UniversityMainzGermany
| | - Andreas Dengel
- Research Unit Smart Data and Knowledge ServicesGerman Research Center for Artificial IntelligenceKaiserslauternGermany
| | - Thomas Höfner
- Department of Urology and Pediatric UrologyUniversity Medical Center, Johannes Gutenberg UniversityMainzGermany
- Department of Urology, Ordensklinikum Linz ElisabethinenLinzAustria
| |
Collapse
|
29
|
Han J, Hua H, Fei J, Liu J, Guo Y, Ma W, Chen J. Prediction of Disease-Free Survival in Breast Cancer using Deep Learning with Ultrasound and Mammography: A Multicenter Study. Clin Breast Cancer 2024; 24:215-226. [PMID: 38281863 DOI: 10.1016/j.clbc.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Breast cancer is a leading cause of cancer morbility and mortality in women. The possibility of overtreatment or inappropriate treatment exists, and methods for evaluating prognosis need to be improved. MATERIALS AND METHODS Patients (from January 2013 to December 2018) were recruited and divided into a training group and a testing group. All patients were followed for more than 3 years. Patients were divided into a disease-free group and a recurrence group based on follow up results at 3 years. Ultrasound (US) and mammography (MG) images were collected to establish deep learning models (DLMs) using ResNet50. Clinical data, MG, and US characteristics were collected to select independent prognostic factors using a cox proportional hazards model to establish a clinical model. DLM and independent prognostic factors were combined to establish a combined model. RESULTS In total, 1242 patients were included. Independent prognostic factors included age, neoadjuvant chemotherapy, HER2, orientation, blood flow, dubious calcification, and size. We established 5 models: the US DLM, MG DLM, US + MG DLM, clinical and combined model. The combined model using US images, MG images, and pathological, clinical, and radiographic characteristics had the highest predictive performance (AUC = 0.882 in the training group, AUC = 0.739 in the testing group). CONCLUSION DLMs based on the combination of US, MG, and clinical data have potential as predictive tools for breast cancer prognosis.
Collapse
Affiliation(s)
- Junqi Han
- Department of Breast Imaging, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Hui Hua
- Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Jie Fei
- Department of Breast Imaging, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Jingjing Liu
- Department of Breast Imaging, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Yijun Guo
- Department of Breast Imaging Diagnosis, National Clinical Research Center for Cancer, Tianjin Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Wenjuan Ma
- Department of Breast Imaging Diagnosis, National Clinical Research Center for Cancer, Tianjin Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Jingjing Chen
- Department of Breast Imaging, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China.
| |
Collapse
|
30
|
Cai L, Sidey-Gibbons C, Nees J, Riedel F, Schäfgen B, Togawa R, Killinger K, Heil J, Pfob A, Golatta M. Can multi-modal radiomics using pretreatment ultrasound and tomosynthesis predict response to neoadjuvant systemic treatment in breast cancer? Eur Radiol 2024; 34:2560-2573. [PMID: 37707548 PMCID: PMC10957593 DOI: 10.1007/s00330-023-10238-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/17/2023] [Accepted: 08/01/2023] [Indexed: 09/15/2023]
Abstract
OBJECTIVES Response assessment to neoadjuvant systemic treatment (NAST) to guide individualized treatment in breast cancer is a clinical research priority. We aimed to develop an intelligent algorithm using multi-modal pretreatment ultrasound and tomosynthesis radiomics features in addition to clinical variables to predict pathologic complete response (pCR) prior to the initiation of therapy. METHODS We used retrospective data on patients who underwent ultrasound and tomosynthesis before starting NAST. We developed a support vector machine algorithm using pretreatment ultrasound and tomosynthesis radiomics features in addition to patient and tumor variables to predict pCR status (ypT0 and ypN0). Findings were compared to the histopathologic evaluation of the surgical specimen. The main outcome measures were area under the curve (AUC) and false-negative rate (FNR). RESULTS We included 720 patients, 504 in the development set and 216 in the validation set. Median age was 51.6 years and 33.6% (242 of 720) achieved pCR. The addition of radiomics features significantly improved the performance of the algorithm (AUC 0.72 to 0.81; p = 0.007). The FNR of the multi-modal radiomics and clinical algorithm was 6.7% (10 of 150 with missed residual cancer). Surface/volume ratio at tomosynthesis and peritumoral entropy characteristics at ultrasound were the most relevant radiomics. Hormonal receptors and HER-2 status were the most important clinical predictors. CONCLUSION A multi-modal machine learning algorithm with pretreatment clinical, ultrasound, and tomosynthesis radiomics features may aid in predicting residual cancer after NAST. Pending prospective validation, this may facilitate individually tailored NAST regimens. CLINICAL RELEVANCE STATEMENT Multi-modal radiomics using pretreatment ultrasound and tomosynthesis showed significant improvement in assessing response to NAST compared to an algorithm using clinical variables only. Further prospective validation of our findings seems warranted to enable individualized predictions of NAST outcomes. KEY POINTS • We proposed a multi-modal machine learning algorithm with pretreatment clinical, ultrasound, and tomosynthesis radiomics features to predict response to neoadjuvant breast cancer treatment. • Compared with the clinical algorithm, the AUC of this integrative algorithm is significantly higher. • Used prior to the initiative of therapy, our algorithm can identify patients who will experience pathologic complete response following neoadjuvant therapy with a high negative predictive value.
Collapse
Affiliation(s)
- Lie Cai
- Department of Obstetrics and Gynecology, Heidelberg University Hospital, Im Neuenheimer Feld 440, 69120, Heidelberg, Germany
| | - Chris Sidey-Gibbons
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Center for INSPiRED Cancer Care (Integrated Systems for Patient-Reported Data), The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Juliane Nees
- Department of Obstetrics and Gynecology, Heidelberg University Hospital, Im Neuenheimer Feld 440, 69120, Heidelberg, Germany
| | - Fabian Riedel
- Department of Obstetrics and Gynecology, Heidelberg University Hospital, Im Neuenheimer Feld 440, 69120, Heidelberg, Germany
| | - Benedikt Schäfgen
- Department of Obstetrics and Gynecology, Heidelberg University Hospital, Im Neuenheimer Feld 440, 69120, Heidelberg, Germany
| | - Riku Togawa
- Department of Obstetrics and Gynecology, Heidelberg University Hospital, Im Neuenheimer Feld 440, 69120, Heidelberg, Germany
| | - Kristina Killinger
- Department of Obstetrics and Gynecology, Heidelberg University Hospital, Im Neuenheimer Feld 440, 69120, Heidelberg, Germany
| | - Joerg Heil
- Department of Obstetrics and Gynecology, Heidelberg University Hospital, Im Neuenheimer Feld 440, 69120, Heidelberg, Germany
| | - André Pfob
- Department of Obstetrics and Gynecology, Heidelberg University Hospital, Im Neuenheimer Feld 440, 69120, Heidelberg, Germany.
- MD Anderson Center for INSPiRED Cancer Care (Integrated Systems for Patient-Reported Data), The University of Texas MD Anderson Cancer Center, Houston, USA.
- National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Michael Golatta
- Department of Obstetrics and Gynecology, Heidelberg University Hospital, Im Neuenheimer Feld 440, 69120, Heidelberg, Germany.
| |
Collapse
|
31
|
Qin Q, Gan X, Lin P, Pang J, Gao R, Wen R, Liu D, Tang Q, Liu C, He Y, Yang H, Wu Y. Development and validation of a multi-modal ultrasomics model to predict response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. BMC Med Imaging 2024; 24:65. [PMID: 38500022 PMCID: PMC10946192 DOI: 10.1186/s12880-024-01237-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 03/02/2024] [Indexed: 03/20/2024] Open
Abstract
OBJECTIVES To assess the performance of multi-modal ultrasomics model to predict efficacy to neoadjuvant chemoradiotherapy (nCRT) in patients with locally advanced rectal cancer (LARC) and compare with the clinical model. MATERIALS AND METHODS This study retrospectively included 106 patients with LARC who underwent total mesorectal excision after nCRT between April 2018 and April 2023 at our hospital, randomly divided into a training set of 74 and a validation set of 32 in a 7: 3 ratios. Ultrasomics features were extracted from the tumors' region of interest of B-mode ultrasound (BUS) and contrast-enhanced ultrasound (CEUS) images based on PyRadiomics. Mann-Whitney U test, spearman, and least absolute shrinkage and selection operator algorithms were utilized to reduce features dimension. Five models were built with ultrasomics and clinical analysis using multilayer perceptron neural network classifier based on python. Including BUS, CEUS, Combined_1, Combined_2 and Clinical models. The diagnostic performance of models was assessed with the area under the curve (AUC) of the receiver operating characteristic. The DeLong testing algorithm was utilized to compare the models' overall performance. RESULTS The AUC (95% confidence interval [CI]) of the five models in the validation cohort were as follows: BUS 0.675 (95%CI: 0.481-0.868), CEUS 0.821 (95%CI: 0.660-0.983), Combined_1 0.829 (95%CI: 0.673-0.985), Combined_2 0.893 (95%CI: 0.780-1.000), and Clinical 0.690 (95%CI: 0.509-0.872). The Combined_2 model was the best in the overall prediction performance, showed significantly better compared to the Clinical model after DeLong testing (P < 0.01). Both univariate and multivariate logistic regression analyses showed that age (P < 0.01) and clinical stage (P < 0.01) could be an independent predictor of efficacy after nCRT in patients with LARC. CONCLUSION The ultrasomics model had better diagnostic performance to predict efficacy to nCRT in patients with LARC than the Clinical model.
Collapse
Affiliation(s)
- Qiong Qin
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Xiangyu Gan
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Peng Lin
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Jingshu Pang
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Ruizhi Gao
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Rong Wen
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Dun Liu
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Quanquan Tang
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Changwen Liu
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Yun He
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Hong Yang
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, China.
| | - Yuquan Wu
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, China.
| |
Collapse
|
32
|
You J, Huang Y, Ouyang L, Zhang X, Chen P, Wu X, Jin Z, Shen H, Zhang L, Chen Q, Pei S, Zhang B, Zhang S. Automated and reusable deep learning (AutoRDL) framework for predicting response to neoadjuvant chemotherapy and axillary lymph node metastasis in breast cancer using ultrasound images: a retrospective, multicentre study. EClinicalMedicine 2024; 69:102499. [PMID: 38440400 PMCID: PMC10909626 DOI: 10.1016/j.eclinm.2024.102499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 03/06/2024] Open
Abstract
Background Previous deep learning models have been proposed to predict the pathological complete response (pCR) and axillary lymph node metastasis (ALNM) in breast cancer. Yet, the models often leveraged multiple frameworks, required manual annotation, and discarded low-quality images. We aimed to develop an automated and reusable deep learning (AutoRDL) framework for tumor detection and prediction of pCR and ALNM using ultrasound images with diverse qualities. Methods The AutoRDL framework includes a You Only Look Once version 5 (YOLOv5) network for tumor detection and a progressive multi-granularity (PMG) network for pCR and ALNM prediction. The training cohort and the internal validation cohort were recruited from Guangdong Provincial People's Hospital (GPPH) between November 2012 and May 2021. The two external validation cohorts were recruited from the First Affiliated Hospital of Kunming Medical University (KMUH), between January 2016 and December 2019, and Shunde Hospital of Southern Medical University (SHSMU) between January 2014 and July 2015. Prior to model training, super-resolution via iterative refinement (SR3) was employed to improve the spatial resolution of low-quality images from the KMUH. We developed three models for predicting pCR and ALNM: a clinical model using multivariable logistic regression analysis, an image model utilizing the PMG network, and a combined model that integrates both clinical and image data using the PMG network. Findings The YOLOv5 network demonstrated excellent accuracy in tumor detection, achieving average precisions of 0.880-0.921 during validation. In terms of pCR prediction, the combined modelpost-SR3 outperformed the combined modelpre-SR3, image modelpost-SR3, image modelpre-SR3, and clinical model (AUC: 0.833 vs 0.822 vs 0.806 vs 0.790 vs 0.712, all p < 0.05) in the external validation cohort (KMUH). Consistently, the combined modelpost-SR3 exhibited the highest accuracy in ALNM prediction, surpassing the combined modelpre-SR3, image modelpost-SR3, image modelpre-SR3, and clinical model (AUC: 0.825 vs 0.806 vs 0.802 vs 0.787 vs 0.703, all p < 0.05) in the external validation cohort 1 (KMUH). In the external validation cohort 2 (SHSMU), the combined model also showed superiority over the clinical and image models (0.819 vs 0.712 vs 0.806, both p < 0.05). Interpretation Our proposed AutoRDL framework is feasible in automatically predicting pCR and ALNM in real-world settings, which has the potential to assist clinicians in optimizing individualized treatment options for patients. Funding National Key Research and Development Program of China (2023YFF1204600); National Natural Science Foundation of China (82227802, 82302306); Clinical Frontier Technology Program of the First Affiliated Hospital of Jinan University, China (JNU1AF-CFTP-2022-a01201); Science and Technology Projects in Guangzhou (202201020022, 2023A03J1036, 2023A03J1038); Science and Technology Youth Talent Nurturing Program of Jinan University (21623209); and Postdoctoral Science Foundation of China (2022M721349).
Collapse
Affiliation(s)
- Jingjing You
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yue Huang
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lizhu Ouyang
- Department of Ultrasound, Shunde Hospital of Southern Medical University, Foshan, Guangdong, China
| | - Xiao Zhang
- School of Information Science and Technology, Northwest University, Xi’an, China
| | - Pei Chen
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Xuewei Wu
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Zhe Jin
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Hui Shen
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Lu Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Qiuying Chen
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Shufang Pei
- Department of Ultrasound, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong, China
| | - Bin Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Shuixing Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
33
|
He M, Chen ZF, Liu S, Chen Y, Zhang H, Zhang L, Zhao J, Yang J, Zhang XT, Shen L, Gao JB, Dong B, Tang L. Deep learning model based on multi-lesion and time series CT images for predicting the benefits from anti-HER2 targeted therapy in stage IV gastric cancer. Insights Imaging 2024; 15:59. [PMID: 38411839 PMCID: PMC10899559 DOI: 10.1186/s13244-024-01639-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/31/2024] [Indexed: 02/28/2024] Open
Abstract
OBJECTIVE To develop and validate a deep learning model based on multi-lesion and time series CT images in predicting overall survival (OS) in patients with stage IV gastric cancer (GC) receiving anti-HER2 targeted therapy. METHODS A total of 207 patients were enrolled in this multicenter study, with 137 patients for retrospective training and internal validation, 33 patients for prospective validation, and 37 patients for external validation. All patients received anti-HER2 targeted therapy and underwent pre- and post-treatment CT scans (baseline and at least one follow-up). The proposed deep learning model evaluated the multiple lesions in time series CT images to predict risk probabilities. We further evaluated and validated the risk score of the nomogram combining a two-follow-up lesion-based deep learning model (LDLM-2F), tumor markers, and clinical information for predicting the benefits from treatment (Nomo-LDLM-2F). RESULTS In the internal validation and prospective cohorts, the one-year AUCs for Nomo-LDLM-2F using the time series medical images and tumor markers were 0.894 (0.728-1.000) and 0.809 (0.561-1.000), respectively. In the external validation cohort, the one-year AUC of Nomo-LDLM-2F without tumor markers was 0.771 (0.510-1.000). Patients with a low Nomo-LDLM-2F score derived survival benefits from anti-HER2 targeted therapy significantly compared to those with a high Nomo-LDLM-2F score (all p < 0.05). CONCLUSION The Nomo-LDLM-2F score derived from multi-lesion and time series CT images holds promise for the effective readout of OS probability in patients with HER2-positive stage IV GC receiving anti-HER2 therapy. CRITICAL RELEVANCE STATEMENT The deep learning model using baseline and early follow-up CT images aims to predict OS in patients with stage IV gastric cancer receiving anti-HER2 targeted therapy. This model highlights the spatiotemporal heterogeneity of stage IV GC, assisting clinicians in the early evaluation of the efficacy of anti-HER2 therapy. KEY POINTS • Multi-lesion and time series model revealed the spatiotemporal heterogeneity in anti-HER2 therapy. • The Nomo-LDLM-2F score was a valuable prognostic marker for anti-HER2 therapy. • CT-based deep learning model incorporating time-series tumor markers improved performance.
Collapse
Affiliation(s)
- Meng He
- Department of Radiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Zi-Fan Chen
- Center for Data Science, Peking University, Beijing, China
| | - Song Liu
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321, Zhongshan Road, Nanjing CityJiangsu Province, 210008, China
| | - Yang Chen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li Zhang
- Center for Data Science, Peking University, Beijing, China
| | - Jie Zhao
- National Engineering Laboratory for Big Data Analysis and Applications, Peking University, Beijing, China
- Peking University Changsha Institute for Computing and Digital Economy, Changsha, China
| | - Jie Yang
- Department of Radiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiao-Tian Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China.
| | - Jian-Bo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Bin Dong
- Peking University Changsha Institute for Computing and Digital Economy, Changsha, China.
- Beijing International Center for Mathematical Research, Peking University, Beijing, China.
- Center for Machine Learning Research, Peking University, Beijing, China.
| | - Lei Tang
- Department of Radiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China.
| |
Collapse
|
34
|
Wu X, Li W, Tu H. Big data and artificial intelligence in cancer research. Trends Cancer 2024; 10:147-160. [PMID: 37977902 DOI: 10.1016/j.trecan.2023.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
The field of oncology has witnessed an extraordinary surge in the application of big data and artificial intelligence (AI). AI development has made multiscale and multimodal data fusion and analysis possible. A new era of extracting information from complex big data is rapidly evolving. However, challenges related to efficient data curation, in-depth analysis, and utilization remain. We provide a comprehensive overview of the current state of the art in big data and computational analysis, highlighting key applications, challenges, and future opportunities in cancer research. By sketching the current landscape, we seek to foster a deeper understanding and facilitate the advancement of big data utilization in oncology, call for interdisciplinary collaborations, ultimately contributing to improved patient outcomes and a profound understanding of cancer.
Collapse
Affiliation(s)
- Xifeng Wu
- Department of Big Data in Health Science, School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; National Institute for Data Science in Health and Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Wenyuan Li
- Department of Big Data in Health Science, School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Huakang Tu
- Department of Big Data in Health Science, School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
35
|
Zhang J, Deng J, Huang J, Mei L, Liao N, Yao F, Lei C, Sun S, Zhang Y. Monitoring response to neoadjuvant therapy for breast cancer in all treatment phases using an ultrasound deep learning model. Front Oncol 2024; 14:1255618. [PMID: 38327750 PMCID: PMC10847543 DOI: 10.3389/fonc.2024.1255618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Purpose The aim of this study was to investigate the value of a deep learning model (DLM) based on breast tumor ultrasound image segmentation in predicting pathological response to neoadjuvant chemotherapy (NAC) in breast cancer. Methods The dataset contains a total of 1393 ultrasound images of 913 patients from Renmin Hospital of Wuhan University, of which 956 ultrasound images of 856 patients were used as the training set, and 437 ultrasound images of 57 patients underwent NAC were used as the test set. A U-Net-based end-to-end DLM was developed for automatically tumor segmentation and area calculation. The predictive abilities of the DLM, manual segmentation model (MSM), and two traditional ultrasound measurement methods (longest axis model [LAM] and dual-axis model [DAM]) for pathological complete response (pCR) were compared using changes in tumor size ratios to develop receiver operating characteristic curves. Results The average intersection over union value of the DLM was 0.856. The early-stage ultrasound-predicted area under curve (AUC) values of pCR were not significantly different from those of the intermediate and late stages (p< 0.05). The AUCs for MSM, DLM, LAM and DAM were 0.840, 0.756, 0.778 and 0.796, respectively. There was no significant difference in AUC values of the predictive ability of the four models. Conclusion Ultrasonography was predictive of pCR in the early stages of NAC. DLM have a similar predictive value to conventional ultrasound for pCR, with an add benefit in effectively improving workflow.
Collapse
Affiliation(s)
- Jingwen Zhang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingwen Deng
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jin Huang
- The Institute of Technological Sciences, Wuhan University, Wuhan, China
| | - Liye Mei
- School of Computer Science, Hubei University of Technology, Wuhan, China
| | - Ni Liao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Feng Yao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Cheng Lei
- The Institute of Technological Sciences, Wuhan University, Wuhan, China
- Suzhou Institute of Wuhan University, Suzhou, China
- Shenzhen Institute of Wuhan University, Shenzhen, China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yimin Zhang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
36
|
Zhang MQ, Liu XP, Du Y, Zha HL, Zha XM, Wang J, Liu XA, Wang SJ, Zou QG, Zhang JL, Li CY. Prediction of pathological complete response of breast cancer patients who received neoadjuvant chemotherapy with a nomogram based on clinicopathologic variables, ultrasound, and MRI. Br J Radiol 2024; 97:228-236. [PMID: 38263817 PMCID: PMC11027305 DOI: 10.1093/bjr/tqad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/01/2023] [Accepted: 10/31/2023] [Indexed: 01/25/2024] Open
Abstract
OBJECTIVE To establish a nomogram for predicting the pathologic complete response (pCR) in breast cancer (BC) patients after NAC by applying magnetic resonance imaging (MRI) and ultrasound (US). METHODS A total of 607 LABC women who underwent NAC before surgery between January 2016 and June 2022 were retrospectively enrolled, and then were randomly divided into the training (n = 425) and test set (n = 182) with the ratio of 7:3. MRI and US variables were collected before and after NAC, as well as the clinicopathologic features. Univariate and multivariate logistic regression analyses were applied to confirm the potentially associated predictors of pCR. Finally, a nomogram was developed in the training set with its performance evaluated by the area under the receiver operating characteristics curve (ROC) and validated in the test set. RESULTS Of the 607 patients, 108 (25.4%) achieved pCR. Hormone receptor negativity (odds ratio [OR], 0.3; P < .001), human epidermal growth factor receptor 2 positivity (OR, 2.7; P = .001), small tumour size at post-NAC US (OR, 1.0; P = .031), tumour size reduction ≥50% at MRI (OR, 9.8; P < .001), absence of enhancement in the tumour bed at post-NAC MRI (OR, 8.1; P = .003), and the increase of ADC value after NAC (OR, 0.3; P = .035) were all significantly associated with pCR. Incorporating the above variables, the nomogram showed a satisfactory performance with an AUC of 0.884. CONCLUSION A nomogram including clinicopathologic variables and MRI and US characteristics shows preferable performance in predicting pCR. ADVANCES IN KNOWLEDGE A nomogram incorporating MRI and US with clinicopathologic variables was developed to provide a brief and concise approach in predicting pCR to assist clinicians in making treatment decisions early.
Collapse
Affiliation(s)
- Man-Qi Zhang
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xin-Pei Liu
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yu Du
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hai-Ling Zha
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiao-Ming Zha
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jue Wang
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiao-An Liu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shou-Ju Wang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qi-Gui Zou
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jiu-Lou Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Cui-Ying Li
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
37
|
Guo R, Yu Y, Huang Y, Lin M, Liao Y, Hu Y, Li Q, Peng C, Zhou J. A nomogram model combining ultrasound-based radiomics features and clinicopathological factors to identify germline BRCA1/2 mutation in invasive breast cancer patients. Heliyon 2024; 10:e23383. [PMID: 38169922 PMCID: PMC10758804 DOI: 10.1016/j.heliyon.2023.e23383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/18/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
Objective BRCA1/2 status is a key to personalized therapy for invasive breast cancer patients. This study aimed to explore the association between ultrasound radiomics features and germline BRCA1/2 mutation in patients with invasive breast cancer. Materials and methods In this retrospective study, 100 lesions in 92 BRCA1/2-mutated patients and 390 lesions in 357 non-BRCA1/2-mutated patients were included and randomly assigned as training and validation datasets in a ratio of 7:3. Gray-scale ultrasound images of the largest plane of the lesions were used for feature extraction. Maximum relevance minimum redundancy (mRMR) algorithm and multivariate logistic least absolute shrinkage and selection operator (LASSO) regression were used to select features. The multivariate logistic regression method was used to construct predictive models based on clinicopathological factors, radiomics features, or a combination of them. Results In the clinical model, age at first diagnosis, family history of BRCA1/2-related malignancies, HER2 status, and Ki-67 level were found to be independent predictors for BRCA1/2 mutation. In the radiomics model, 10 significant features were selected from the 1032 radiomics features extracted from US images. The AUCs of the radiomics model were not inferior to those of the clinical model in both training dataset [0.712 (95% CI, 0.647-0.776) vs 0.768 (95% CI, 0.704-0.835); p = 0.429] and validation dataset [0.705 (95% CI, 0.597-0.808) vs 0.723 (95% CI, 0.625-0.828); p = 0.820]. The AUCs of the nomogram model combining clinical and radiomics features were 0.804 (95% CI, 0.748-0.861) in the training dataset and 0.811 (95% CI, 0.724-0.894) in the validation dataset, which were proved significantly higher than those of the clinical model alone by DeLong's test (p = 0.041; p = 0.007). To be noted, the negative predictive values (NPVs) of the nomogram model reached a favorable 0.93 in both datasets. Conclusion This machine nomogram model combining ultrasound-based radiomics and clinical features exhibited a promising performance in identifying germline BRCA1/2 mutation in patients with invasive breast cancer and may help avoid unnecessary gene tests in clinical practice.
Collapse
Affiliation(s)
| | | | - Yini Huang
- Department of Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Min Lin
- Department of Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Ying Liao
- Department of Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Yixin Hu
- Department of Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Qing Li
- Department of Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Chuan Peng
- Department of Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Jianhua Zhou
- Department of Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651 Dongfeng Road East, Guangzhou, 510060, PR China
| |
Collapse
|
38
|
Fruchtman Brot H, Mango VL. Artificial intelligence in breast ultrasound: application in clinical practice. Ultrasonography 2024; 43:3-14. [PMID: 38109894 PMCID: PMC10766882 DOI: 10.14366/usg.23116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/14/2023] [Accepted: 08/29/2023] [Indexed: 12/20/2023] Open
Abstract
Ultrasound (US) is a widely accessible and extensively used tool for breast imaging. It is commonly used as an additional screening tool, especially for women with dense breast tissue. Advances in artificial intelligence (AI) have led to the development of various AI systems that assist radiologists in identifying and diagnosing breast lesions using US. This article provides an overview of the background and supporting evidence for the use of AI in hand held breast US. It discusses the impact of AI on clinical workflow, covering breast cancer detection, diagnosis, prediction of molecular subtypes, evaluation of axillary lymph node status, and response to neoadjuvant chemotherapy. Additionally, the article highlights the potential significance of AI in breast US for low and middle income countries.
Collapse
|
39
|
Ge L, Wu J, Jin Y, Xu D, Wang Z. Noninvasive Assessment of Tumor Histological Grade in Invasive Breast Carcinoma Based on Ultrasound Radiomics and Clinical Characteristics: A Multicenter Study. Technol Cancer Res Treat 2024; 23:15330338241257424. [PMID: 38780506 PMCID: PMC11119369 DOI: 10.1177/15330338241257424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/16/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Rationale and Objectives: We aimed to develop and validate prediction models for histological grade of invasive breast carcinoma (BC) based on ultrasound radiomics features and clinical characteristics. Materials and Methods: A number of 383 patients with invasive BC were retrospectively enrolled and divided into a training set (207 patients), internal validation set (90 patients), and external validation set (86 patients). Ultrasound radiomics features were extracted from all the eligible patients. The Boruta method was used to identify the most useful features. Seven classifiers were adopted to developed prediction models. The output of the classifier with best performance was labeled as the radiomics score (Rad-score) and the classifier was selected as the Rad-score model. A combined model combining clinical factors and Rad-score was developed. The performance of the models was evaluated using receiver operating characteristic curve. Results: Seven radiomics features were selected from 788 candidate features. The logistic regression model performing best among the 7 classifiers in the internal and external validation sets was considered as Rad-score model, with areas under the receiver operating characteristic curve (AUC) values of 0.731 and 0.738. The tumor size was screened out as the risk factor and the combined model was developed, with AUC values of 0.721 and 0.737 in the internal and external validation sets. Furthermore, the 10-fold cross-validation demonstrated that the 2 models above were reliable and stable. Conclusion: The Rad-score model and combined model were able to predict histological grade of invasive BC, which may enable tailored therapeutic strategies for patients with BC in routine clinical use.
Collapse
Affiliation(s)
- Lifang Ge
- Department of Ultrasonography, Dongyang People's Hospital, Dongyang, Zhejiang, China
| | - Jiangfeng Wu
- Department of Ultrasonography, Dongyang People's Hospital, Dongyang, Zhejiang, China
| | - Yun Jin
- Department of Ultrasonography, Dongyang People's Hospital, Dongyang, Zhejiang, China
| | - Dong Xu
- Department of Ultrasonography, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, China
| | - Zhengping Wang
- Department of Ultrasonography, Dongyang People's Hospital, Dongyang, Zhejiang, China
| |
Collapse
|
40
|
Li JW, Sheng DL, Chen JG, You C, Liu S, Xu HX, Chang C. Artificial intelligence in breast imaging: potentials and challenges. Phys Med Biol 2023; 68:23TR01. [PMID: 37722385 DOI: 10.1088/1361-6560/acfade] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 09/18/2023] [Indexed: 09/20/2023]
Abstract
Breast cancer, which is the most common type of malignant tumor among humans, is a leading cause of death in females. Standard treatment strategies, including neoadjuvant chemotherapy, surgery, postoperative chemotherapy, targeted therapy, endocrine therapy, and radiotherapy, are tailored for individual patients. Such personalized therapies have tremendously reduced the threat of breast cancer in females. Furthermore, early imaging screening plays an important role in reducing the treatment cycle and improving breast cancer prognosis. The recent innovative revolution in artificial intelligence (AI) has aided radiologists in the early and accurate diagnosis of breast cancer. In this review, we introduce the necessity of incorporating AI into breast imaging and the applications of AI in mammography, ultrasonography, magnetic resonance imaging, and positron emission tomography/computed tomography based on published articles since 1994. Moreover, the challenges of AI in breast imaging are discussed.
Collapse
Affiliation(s)
- Jia-Wei Li
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Dan-Li Sheng
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Jian-Gang Chen
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication & Electronic Engineering, East China Normal University, People's Republic of China
| | - Chao You
- Department of Radiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Shuai Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Hui-Xiong Xu
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, People's Republic of China
| | - Cai Chang
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| |
Collapse
|
41
|
Elsayed B, Alksas A, Shehata M, Mahmoud A, Zaky M, Alghandour R, Abdelwahab K, Abdelkhalek M, Ghazal M, Contractor S, El-Din Moustafa H, El-Baz A. Exploring Neoadjuvant Chemotherapy, Predictive Models, Radiomic, and Pathological Markers in Breast Cancer: A Comprehensive Review. Cancers (Basel) 2023; 15:5288. [PMID: 37958461 PMCID: PMC10648987 DOI: 10.3390/cancers15215288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Breast cancer retains its position as the most prevalent form of malignancy among females on a global scale. The careful selection of appropriate treatment for each patient holds paramount importance in effectively managing breast cancer. Neoadjuvant chemotherapy (NACT) plays a pivotal role in the comprehensive treatment of this disease. Administering chemotherapy before surgery, NACT becomes a powerful tool in reducing tumor size, potentially enabling fewer invasive surgical procedures and even rendering initially inoperable tumors amenable to surgery. However, a significant challenge lies in the varying responses exhibited by different patients towards NACT. To address this challenge, researchers have focused on developing prediction models that can identify those who would benefit from NACT and those who would not. Such models have the potential to reduce treatment costs and contribute to a more efficient and accurate management of breast cancer. Therefore, this review has two objectives: first, to identify the most effective radiomic markers correlated with NACT response, and second, to explore whether integrating radiomic markers extracted from radiological images with pathological markers can enhance the predictive accuracy of NACT response. This review will delve into addressing these research questions and also shed light on the emerging research direction of leveraging artificial intelligence techniques for predicting NACT response, thereby shaping the future landscape of breast cancer treatment.
Collapse
Affiliation(s)
- Basma Elsayed
- Biomedical Engineering Program, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt;
| | - Ahmed Alksas
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA; (A.A.); (M.S.); (A.M.)
| | - Mohamed Shehata
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA; (A.A.); (M.S.); (A.M.)
| | - Ali Mahmoud
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA; (A.A.); (M.S.); (A.M.)
| | - Mona Zaky
- Diagnostic Radiology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Reham Alghandour
- Medical Oncology Department, Mansoura Oncology Center, Mansoura University, Mansoura 35516, Egypt;
| | - Khaled Abdelwahab
- Surgical Oncology Department, Mansoura Oncology Center, Mansoura University, Mansoura 35516, Egypt; (K.A.); (M.A.)
| | - Mohamed Abdelkhalek
- Surgical Oncology Department, Mansoura Oncology Center, Mansoura University, Mansoura 35516, Egypt; (K.A.); (M.A.)
| | - Mohammed Ghazal
- Electrical, Computer, and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates;
| | - Sohail Contractor
- Department of Radiology, University of Louisville, Louisville, KY 40202, USA;
| | | | - Ayman El-Baz
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA; (A.A.); (M.S.); (A.M.)
| |
Collapse
|
42
|
Long B, Zhang H, Zhang H, Chen W, Sun Y, Tang R, Lin Y, Fu Q, Yang X, Cui L, Wang K. Deep learning models of ultrasonography significantly improved the differential diagnosis performance for superficial soft-tissue masses: a retrospective multicenter study. BMC Med 2023; 21:405. [PMID: 37880716 PMCID: PMC10601110 DOI: 10.1186/s12916-023-03099-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/29/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Most of superficial soft-tissue masses are benign tumors, and very few are malignant tumors. However, persistent growth, of both benign and malignant tumors, can be painful and even life-threatening. It is necessary to improve the differential diagnosis performance for superficial soft-tissue masses by using deep learning models. This study aimed to propose a new ultrasonic deep learning model (DLM) system for the differential diagnosis of superficial soft-tissue masses. METHODS Between January 2015 and December 2022, data for 1615 patients with superficial soft-tissue masses were retrospectively collected. Two experienced radiologists (radiologists 1 and 2 with 8 and 30 years' experience, respectively) analyzed the ultrasound images of each superficial soft-tissue mass and made a diagnosis of malignant mass or one of the five most common benign masses. After referring to the DLM results, they re-evaluated the diagnoses. The diagnostic performance and concerns of the radiologists were analyzed before and after referring to the results of the DLM results. RESULTS In the validation cohort, DLM-1 was trained to distinguish between benign and malignant masses, with an AUC of 0.992 (95% CI: 0.980, 1.0) and an ACC of 0.987 (95% CI: 0.968, 1.0). DLM-2 was trained to classify the five most common benign masses (lipomyoma, hemangioma, neurinoma, epidermal cyst, and calcifying epithelioma) with AUCs of 0.986, 0.993, 0.944, 0.973, and 0.903, respectively. In addition, under the condition of the DLM-assisted diagnosis, the radiologists greatly improved their accuracy of differential diagnosis between benign and malignant tumors. CONCLUSIONS The proposed DLM system has high clinical application value in the differential diagnosis of superficial soft-tissue masses.
Collapse
Affiliation(s)
- Bin Long
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
- Department of Diagnostic Ultrasound, Peking University Third Hospital, Beijing, China
| | - Haoyan Zhang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Han Zhang
- Department of Ultrasound, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wen Chen
- Department of Diagnostic Ultrasound, Peking University Third Hospital, Beijing, China
| | - Yang Sun
- Department of Diagnostic Ultrasound, Peking University Third Hospital, Beijing, China
| | - Rui Tang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
- Department of Diagnostic Ultrasound, Peking University Third Hospital, Beijing, China
| | - Yuxuan Lin
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qiang Fu
- Department of Ultrasound, Beijing Civil Aviation General Hospital, Beijing, China
| | - Xin Yang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Ligang Cui
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China.
- Department of Diagnostic Ultrasound, Peking University Third Hospital, Beijing, China.
| | - Kun Wang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
43
|
Zhang J, Teng X, Zhang X, Lam SK, Lin Z, Liang Y, Yu H, Siu SWK, Chang ATY, Zhang H, Kong FM, Yang R, Cai J. Comparing effectiveness of image perturbation and test retest imaging in improving radiomic model reliability. Sci Rep 2023; 13:18263. [PMID: 37880324 PMCID: PMC10600245 DOI: 10.1038/s41598-023-45477-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023] Open
Abstract
Image perturbation is a promising technique to assess radiomic feature repeatability, but whether it can achieve the same effect as test-retest imaging on model reliability is unknown. This study aimed to compare radiomic model reliability based on repeatable features determined by the two methods using four different classifiers. A 191-patient public breast cancer dataset with 71 test-retest scans was used with pre-determined 117 training and 74 testing samples. We collected apparent diffusion coefficient images and manual tumor segmentations for radiomic feature extraction. Random translations, rotations, and contour randomizations were performed on the training images, and intra-class correlation coefficient (ICC) was used to filter high repeatable features. We evaluated model reliability in both internal generalizability and robustness, which were quantified by training and testing AUC and prediction ICC. Higher testing performance was found at higher feature ICC thresholds, but it dropped significantly at ICC = 0.95 for the test-retest model. Similar optimal reliability can be achieved with testing AUC = 0.7-0.8 and prediction ICC > 0.9 at the ICC threshold of 0.9. It is recommended to include feature repeatability analysis using image perturbation in any radiomic study when test-retest is not feasible, but care should be taken when deciding the optimal feature repeatability criteria.
Collapse
Affiliation(s)
- Jiang Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Y920, Lee Shau Kee Building, Hung Hom, Kowloon, Hong Kong, China
| | - Xinzhi Teng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Y920, Lee Shau Kee Building, Hung Hom, Kowloon, Hong Kong, China
| | - Xinyu Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Y920, Lee Shau Kee Building, Hung Hom, Kowloon, Hong Kong, China
| | - Sai-Kit Lam
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zhongshi Lin
- Shenzhen Institute for Drug Control (Shenzhen Testing Center of Medical Devices), Shenzhen, China
| | - Yongyi Liang
- Shenzhen Institute for Drug Control (Shenzhen Testing Center of Medical Devices), Shenzhen, China
| | - Hao Yu
- Institute of Biomedical and Health Engineering, Chinese Academy of Sciences Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Steven Wai Kwan Siu
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Amy Tien Yee Chang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Hua Zhang
- Beijing Linking Medical Technology Co., Ltd., Beijing, China
| | - Feng-Ming Kong
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Ruijie Yang
- Department of Radiation Oncology, Cancer Center, Peking University Third Hospital, Beijing, China
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Y920, Lee Shau Kee Building, Hung Hom, Kowloon, Hong Kong, China.
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, China.
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
44
|
You C, Shen Y, Sun S, Zhou J, Li J, Su G, Michalopoulou E, Peng W, Gu Y, Guo W, Cao H. Artificial intelligence in breast imaging: Current situation and clinical challenges. EXPLORATION (BEIJING, CHINA) 2023; 3:20230007. [PMID: 37933287 PMCID: PMC10582610 DOI: 10.1002/exp.20230007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/30/2023] [Indexed: 11/08/2023]
Abstract
Breast cancer ranks among the most prevalent malignant tumours and is the primary contributor to cancer-related deaths in women. Breast imaging is essential for screening, diagnosis, and therapeutic surveillance. With the increasing demand for precision medicine, the heterogeneous nature of breast cancer makes it necessary to deeply mine and rationally utilize the tremendous amount of breast imaging information. With the rapid advancement of computer science, artificial intelligence (AI) has been noted to have great advantages in processing and mining of image information. Therefore, a growing number of scholars have started to focus on and research the utility of AI in breast imaging. Here, an overview of breast imaging databases and recent advances in AI research are provided, the challenges and problems in this field are discussed, and then constructive advice is further provided for ongoing scientific developments from the perspective of the National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Chao You
- Department of RadiologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yiyuan Shen
- Department of RadiologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Shiyun Sun
- Department of RadiologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Jiayin Zhou
- Department of RadiologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Jiawei Li
- Department of RadiologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Guanhua Su
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Department of Breast SurgeryKey Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghaiChina
| | | | - Weijun Peng
- Department of RadiologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yajia Gu
- Department of RadiologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Weisheng Guo
- Department of Minimally Invasive Interventional RadiologyKey Laboratory of Molecular Target and Clinical PharmacologySchool of Pharmaceutical Sciences and The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Heqi Cao
- Department of Health SciencesNational Natural Science Foundation of ChinaBeijingChina
| |
Collapse
|
45
|
Wu P, Jiang Y, Xing H, Song W, Cui X, Wu XL, Xu G. Multimodality deep learning radiomics nomogram for preoperative prediction of malignancy of breast cancer: a multicenter study. Phys Med Biol 2023; 68:175023. [PMID: 37524093 DOI: 10.1088/1361-6560/acec2d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Background. Breast cancer is the most prevalent cancer diagnosed in women worldwide. Accurately and efficiently stratifying the risk is an essential step in achieving precision medicine prior to treatment. This study aimed to construct and validate a nomogram based on radiomics and deep learning for preoperative prediction of the malignancy of breast cancer (MBC).Methods. The clinical and ultrasound imaging data, including brightness mode (B-mode) and color Doppler flow imaging, of 611 breast cancer patients from multiple hospitals in China were retrospectively analyzed. Patients were divided into one primary cohort (PC), one validation cohort (VC) and two test cohorts (TC1 and TC2). A multimodality deep learning radiomics nomogram (DLRN) was constructed for predicting the MBC. The performance of the proposed DLRN was comprehensively assessed and compared with three unimodal models via the calibration curve, the area under the curve (AUC) of receiver operating characteristics and the decision curve analysis.Results. The DLRN discriminated well between the MBC in all cohorts [overall AUC (95% confidence interval): 0.983 (0.973-0.993), 0.972 (0.952-0.993), 0.897 (0.823-0.971), and 0.993 (0.977-1.000) on the PC, VC, test cohorts1 (TC1) and test cohorts2 TC2 respectively]. In addition, the DLRN performed significantly better than three unimodal models and had good clinical utility.Conclusion. The DLRN demonstrates good discriminatory ability in the preoperative prediction of MBC, can better reveal the potential associations between clinical characteristics, ultrasound imaging features and disease pathology, and can facilitate the development of computer-aided diagnosis systems for breast cancer patients. Our code is available publicly in the repository athttps://github.com/wupeiyan/MDLRN.
Collapse
Affiliation(s)
- Peiyan Wu
- School of Computer Science and Engineering, Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, People's Republic of China
| | - Yan Jiang
- School of Computer Science and Engineering, Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, People's Republic of China
| | - Hanshuo Xing
- School of Computer Science and Engineering, Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, People's Republic of China
| | - Wenbo Song
- School of Computer Science and Engineering, Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, People's Republic of China
| | - Xinwu Cui
- Department of Medical Ultrasound, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xing Long Wu
- School of Computer Science and Engineering, Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, People's Republic of China
| | - Guoping Xu
- School of Computer Science and Engineering, Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, People's Republic of China
| |
Collapse
|
46
|
Jiang W, Deng X, Zhu T, Fang J, Li J. ABVS-Based Radiomics for Early Predicting the Efficacy of Neoadjuvant Chemotherapy in Patients with Breast Cancers. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:625-636. [PMID: 37600669 PMCID: PMC10439736 DOI: 10.2147/bctt.s418376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
Background Neoadjuvant chemotherapy (NAC) plays a significant role in breast cancer (BC) management; however, its efficacy varies among patients. Current evaluation methods may lead to delayed treatment alterations, and traditional imaging modalities often yield inaccurate results. Radiomics, an emerging field in medical imaging, offers potential for improved tumor characterization and personalized medicine. Nevertheless, its application in early and accurately predicting NAC response remains underinvestigated. Objective This study aims to develop an automated breast volume scanner (ABVS)-based radiomics model to facilitate early detection of suboptimal NAC response, ultimately promoting personalized therapeutic approaches for BC patients. Methods This retrospective study involved 248 BC patients receiving NAC. Standard guidelines were followed, and patients were classified as responders or non-responders based on treatment outcomes. ABVS images were obtained before and during NAC, and radiomics features were extracted using the PyRadiomics toolkit. Inter-observer consistency and hierarchical feature selection were assessed. Three machine learning classifiers, logistic regression, support vector machine, and random forest, were trained and validated using a five-fold cross-validation with three repetitions. Model performance was comprehensively evaluated based on discrimination, calibration, and clinical utility. Results Of the 248 BC patients, 157 (63.3%) were responders, and 91 (36.7%) were non-responders. Radiomics feature selection revealed 7 pre-NAC and 6 post-NAC ABVS features, with higher weights for post-NAC features (min >0.05) than pre-NAC (max <0.03). The three post-NAC classifiers demonstrated AUCs of approximately 0.9, indicating excellent discrimination. DCA curves revealed a substantial net benefit when the threshold probability exceeded 40%. Conversely, the three pre-NAC classifiers had AUCs between 0.7 and 0.8, suggesting moderate discrimination and limited clinical utility based on their DCA curves. Conclusion The ABVS-based radiomics model effectively predicted suboptimal NAC responses in BC patients, with early post-NAC classifiers outperforming pre-NAC classifiers in discrimination and clinical utility. It could enhance personalized treatment and improve patient outcomes in BC management.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Ultrasound, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, Guangdong province, People’s Republic of China
| | - Xiaofei Deng
- Department of Ultrasound, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, Guangdong province, People’s Republic of China
| | - Ting Zhu
- Department of Ultrasound, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, Guangdong province, People’s Republic of China
| | - Jing Fang
- Department of Ultrasound, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, Guangdong province, People’s Republic of China
| | - Jinyao Li
- Department of Ultrasound, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, Guangdong province, People’s Republic of China
| |
Collapse
|
47
|
Yu FH, Miao SM, Li CY, Hang J, Deng J, Ye XH, Liu Y. Pretreatment ultrasound-based deep learning radiomics model for the early prediction of pathologic response to neoadjuvant chemotherapy in breast cancer. Eur Radiol 2023; 33:5634-5644. [PMID: 36976336 DOI: 10.1007/s00330-023-09555-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 02/09/2023] [Accepted: 02/19/2023] [Indexed: 03/29/2023]
Abstract
OBJECTIVES To investigate the predictive performance of the deep learning radiomics (DLR) model integrating pretreatment ultrasound imaging features and clinical characteristics for evaluating therapeutic response after neoadjuvant chemotherapy (NAC) in patients with breast cancer. METHODS A total of 603 patients who underwent NAC were retrospectively included between January 2018 and June 2021 from three different institutions. Four different deep convolutional neural networks (DCNNs) were trained by pretreatment ultrasound images using annotated training dataset (n = 420) and validated in a testing cohort (n = 183). Comparing the predictive performance of these models, the best one was selected for image-only model structure. Furthermore, the integrated DLR model was constructed based on the image-only model combined with independent clinical-pathologic variables. Areas under the curve (AUCs) of these models and two radiologists were compared by using the DeLong method. RESULTS As the optimal basic model, Resnet50 achieved an AUC and accuracy of 0.879 and 82.5% in the validation set. The integrated DLR model, yielding the highest classification performance in predicting response to NAC (AUC 0.962 and 0.939 in the training and validation cohort), outperformed the image-only model and the clinical model and also performed better than two radiologists' prediction (all p < 0.05). In addition, predictive efficacy of the radiologists was improved under the assistance of the DLR model significantly. CONCLUSION The pretreatment US-based DLR model could hold promise as a clinical guidance for predicting NAC response of patients with breast cancer, thereby providing benefit of timely treatment strategy adjustment to potential poor NAC responders. KEY POINTS • Multicenter retrospective study showed that deep learning radiomics (DLR) model based on pretreatment ultrasound image and clinical parameter achieved satisfactory prediction of tumor response to neoadjuvant chemotherapy (NAC) in breast cancer. • The integrated DLR model could become an effective tool to guide clinicians in identifying potential poor pathological responders before chemotherapy. • The predictive efficacy of the radiologists was improved under the assistance of the DLR model.
Collapse
Affiliation(s)
- Fei-Hong Yu
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shu-Mei Miao
- Department of Information, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Cui-Ying Li
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Hang
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Deng
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin-Hua Ye
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yun Liu
- Department of Information, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
48
|
Zhou Z, Adrada BE, Candelaria RP, Elshafeey NA, Boge M, Mohamed RM, Pashapoor S, Sun J, Xu Z, Panthi B, Son JB, Guirguis MS, Patel MM, Whitman GJ, Moseley TW, Scoggins ME, White JB, Litton JK, Valero V, Hunt KK, Tripathy D, Yang W, Wei P, Yam C, Pagel MD, Rauch GM, Ma J. Predicting pathological complete response to neoadjuvant systemic therapy for triple-negative breast cancers using deep learning on multiparametric MRIs. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083160 PMCID: PMC11784362 DOI: 10.1109/embc40787.2023.10340987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
We trained and validated a deep learning model that can predict the treatment response to neoadjuvant systemic therapy (NAST) for patients with triple negative breast cancer (TNBC). Dynamic contrast enhanced (DCE) MRI and diffusion-weighted imaging (DWI) of the pre-treatment (baseline) and after four cycles (C4) of doxorubicin/cyclophosphamide treatment were used as inputs to the model for prediction of pathologic complete response (pCR). Based on the standard pCR definition that includes disease status in either breast or axilla, the model achieved areas under the receiver operating characteristic curves (AUCs) of 0.96 ± 0.05, 0.78 ± 0.09, 0.88 ± 0.02, and 0.76 ± 0.03, for the training, validation, testing, and prospective testing groups, respectively. For the pCR status of breast only, the retrained model achieved prediction AUCs of 0.97 ± 0.04, 0.82 ± 0.10, 0.86 ± 0.03, and 0.83 ± 0.02, for the training, validation, testing, and prospective testing groups, respectively. Thus, the developed deep learning model is highly promising for predicting the treatment response to NAST of TNBC.Clinical Relevance- Deep learning based on serial and multiparametric MRIs can potentially distinguish TNBC patients with pCR from non-pCR at the early stage of neoadjuvant systemic therapy, potentially enabling more personalized treatment of TNBC patients.
Collapse
|
49
|
Wang X, Hua H, Han J, Zhong X, Liu J, Chen J. Evaluation of Multiparametric MRI Radiomics-Based Nomogram in Prediction of Response to Neoadjuvant Chemotherapy in Breast Cancer: A Two-Center study. Clin Breast Cancer 2023:S1526-8209(23)00134-9. [PMID: 37321954 DOI: 10.1016/j.clbc.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 06/17/2023]
Abstract
INTRODUCTION This study evaluated the performance of primary foci of breast cancer on multiparametric magnetic resonance imaging (MRI) contributing to establish and validate radiomics-based nomograms for predicting the different pathological outcome of breast cancer patients after neoadjuvant chemotherapy (NAC). MATERIALS AND METHODS Retrospectively collected 387 patients with locally advanced breast cancer, all treated with NAC and received breast dynamic contrast-enhanced MRI (DCE-MRI) before NAC. Radiomics signatures were extracted from region of interest (ROI) on multiparametric MRI to build rad score. Clinical-pathologic data and radiological features established the clinical model. The comprehensive model featured rad-score, predictive clinical-pathologic data and radiological features, which was ultimately displayed as a nomogram. Patients were grouped in 2 different ways in accordance with the Miller-Payne (MP) grading of surgical specimens. The first grouping method: 181 patients with pathological reaction grades Ⅳ∼Ⅴ were included in the significant remission group, while 206 patients with pathological reaction grades Ⅰ∼Ⅲ were included in the nonsignificant remission group. The second grouping method: 117 patients with pathological complete response (pCR) were assigned to the pCR group, and 270 patients who failed to meet pCR were assigned to in the non-pCR group. Two combined nomograms are created from 2 grouped data for predicting different pathological responses to NAC. The area under the curves (AUC) of the receiver operating characteristic curves (ROC) were used to evaluate the performance of each model. While decision curve analysis (DCA) and calibration curves were used for estimating the clinical application value of the nomogram. RESULTS Two combined nomograms embodying rad score and clinical-pathologic data outperformed, showing good calibrations for predicting response to NAC. The combined nomogram predicting pCR showed the best performance with the AUC values of 0.97, 0.90 and 0.86 in the training, testing, and external validation cohorts respectively. The AUC values of another combined nomogram predicting significant remission: 0.98, 0.88 0.80 in the training, testing and external validation cohorts. DCA showed the comprehensive model nomogram obtained the most clinical benefit. CONCLUSIONS The combined nomogram could preoperatively predict significant remission or even pCR to NAC in breast cancer based on multiparametric MRI and clinical-pathologic data.
Collapse
Affiliation(s)
- Xiaolin Wang
- Department of Breast Imaging, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Hua
- Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Junqi Han
- Department of Breast Imaging, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xin Zhong
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingjing Liu
- Department of Breast Imaging, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingjing Chen
- Department of Breast Imaging, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
50
|
Shi Z, Ma Y, Ma X, Jin A, Zhou J, Li N, Sheng D, Chang C, Chen J, Li J. Differentiation between Phyllodes Tumors and Fibroadenomas through Breast Ultrasound: Deep-Learning Model Outperforms Ultrasound Physicians. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23115099. [PMID: 37299826 DOI: 10.3390/s23115099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/14/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023]
Abstract
The preoperative differentiation of breast phyllodes tumors (PTs) from fibroadenomas (FAs) plays a critical role in identifying an appropriate surgical treatment. Although several imaging modalities are available, reliable differentiation between PT and FA remains a great challenge for radiologists in clinical work. Artificial intelligence (AI)-assisted diagnosis has shown promise in distinguishing PT from FA. However, a very small sample size was adopted in previous studies. In this work, we retrospectively enrolled 656 breast tumors (372 FAs and 284 PTs) with 1945 ultrasound images in total. Two experienced ultrasound physicians independently evaluated the ultrasound images. Meanwhile, three deep-learning models (i.e., ResNet, VGG, and GoogLeNet) were applied to classify FAs and PTs. The robustness of the models was evaluated by fivefold cross validation. The performance of each model was assessed by using the receiver operating characteristic (ROC) curve. The area under the curve (AUC), accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were also calculated. Among the three models, the ResNet model yielded the highest AUC value, of 0.91, with an accuracy value of 95.3%, a sensitivity value of 96.2%, and a specificity value of 94.7% in the testing data set. In contrast, the two physicians yielded an average AUC value of 0.69, an accuracy value of 70.7%, a sensitivity value of 54.4%, and a specificity value of 53.2%. Our findings indicate that the diagnostic performance of deep learning is better than that of physicians in the distinction of PTs from FAs. This further suggests that AI is a valuable tool for aiding clinical diagnosis, thereby advancing precision therapy.
Collapse
Affiliation(s)
- Zhaoting Shi
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270, Dong'an Road, Xuhui District, Shanghai 200032, China
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Xuhui District, Shanghai 200032, China
| | - Yebo Ma
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, No. 500, Dongchuan Road, Shanghai 200241, China
| | - Xiaowen Ma
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270, Dong'an Road, Xuhui District, Shanghai 200032, China
- Department of Radiology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Xuhui District, Shanghai 200032, China
| | - Anqi Jin
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270, Dong'an Road, Xuhui District, Shanghai 200032, China
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Xuhui District, Shanghai 200032, China
| | - Jin Zhou
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270, Dong'an Road, Xuhui District, Shanghai 200032, China
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Xuhui District, Shanghai 200032, China
| | - Na Li
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270, Dong'an Road, Xuhui District, Shanghai 200032, China
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Xuhui District, Shanghai 200032, China
| | - Danli Sheng
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270, Dong'an Road, Xuhui District, Shanghai 200032, China
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Xuhui District, Shanghai 200032, China
| | - Cai Chang
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270, Dong'an Road, Xuhui District, Shanghai 200032, China
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Xuhui District, Shanghai 200032, China
| | - Jiangang Chen
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, No. 500, Dongchuan Road, Shanghai 200241, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, No. 1200, Cailun Road, Pudong District, Shanghai 201203, China
| | - Jiawei Li
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270, Dong'an Road, Xuhui District, Shanghai 200032, China
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Xuhui District, Shanghai 200032, China
| |
Collapse
|