1
|
Fahrni G, Saliba T, Racine D, Gulizia M, Tzimas G, Pozzessere C, Rotzinger DC. Trading off Iodine and Radiation Dose in Coronary Computed Tomography. J Cardiovasc Dev Dis 2025; 12:195. [PMID: 40422966 DOI: 10.3390/jcdd12050195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Revised: 05/08/2025] [Accepted: 05/17/2025] [Indexed: 05/28/2025] Open
Abstract
Coronary CT angiography (CCTA) has seen steady progress since its inception, becoming a key player in the non-invasive assessment of coronary artery disease (CAD). Advancements in CT technology, including iterative and deep-learning-based reconstruction, wide-area detectors, and dual-source systems, have helped mitigate early limitations, such as high radiation doses, motion artifacts, high iodine load, and non-diagnostic image quality. However, the adjustments between ionizing radiation and iodinated contrast material (CM) volumes remain a critical concern, especially due to the increasing use of CCTA in various indications. This review explores the balance between radiation and CM volumes, emphasizing patient-specific protocol optimization to improve diagnostic accuracy while minimizing risks. Radiation dose reduction strategies, such as low tube voltage protocols, prospective ECG-gating, and modern reconstruction algorithms, have significantly decreased radiation exposure, with some studies achieving sub-millisievert doses. Similarly, CM volume optimization, including adjustments in strategies for calculating CM volume, iodine concentration, and flow protocols, plays a role in managing risks such as contrast-associated acute kidney injury, particularly in patients with renal impairment. Emerging technologies, such as photon-counting CT and deep-learning reconstruction, promise further improvements in dose efficiency and image quality. This review summarizes current evidence, highlights the benefits and limitations of dose control approaches, and provides practical recommendations for practitioners. By tailoring protocols to patient characteristics, such as age, renal function, and body habitus, clinicians can achieve an optimal trade-off between diagnostic accuracy and patient safety, ensuring optimal operation of CT systems in clinical practice.
Collapse
Affiliation(s)
- Guillaume Fahrni
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, University of Lausanne, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - Thomas Saliba
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, University of Lausanne, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - Damien Racine
- Institute of Radiation Physics, Lausanne University Hospital, University of Lausanne, Rue du Grand-Pré 1 46, 1007 Lausanne, Switzerland
| | - Marianna Gulizia
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, University of Lausanne, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - Georgios Tzimas
- Department of Cardiology, Lausanne University Hospital, University of Lausanne, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - Chiara Pozzessere
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, University of Lausanne, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - David C Rotzinger
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, University of Lausanne, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| |
Collapse
|
2
|
Schwartz FR. Photon-counting CT for Chest Imaging-What Have We Learned So Far? J Comput Assist Tomogr 2025:00004728-990000000-00449. [PMID: 40249279 DOI: 10.1097/rct.0000000000001756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 03/10/2025] [Indexed: 04/19/2025]
Abstract
CT imaging has advanced significantly, with dual-energy CT (DECT) marking a milestone by using 2 energy spectra for enhanced tissue characterization. The latest innovation is photon-counting detectors (PCD), which offer superior spatial resolution, contrast-to-noise ratio (CNR), and potential for reduced radiation dose compared with traditional energy-integrating detectors (EID). Photon-counting CT (PCD-CT), which directly counts individual photons using semiconductors, has important implications for chest imaging, especially for complex disease processes that benefit from imaging at higher spatial resolution. PCD-CT achieves improved spatial resolution by eliminating the blurring effects associated with EID scintillators. Enhanced CNR is achieved through energy discrimination and selective use of photon energies, which also helps to minimize electronic noise. PCD-CT facilitates significant radiation dose reduction, particularly valuable for patients who receive regular follow-ups, like in lung cancer screening. In addition, PCD-CT provides spectral capabilities in every scan, unlike DECT, which requires preselecting a specific spectral scan mode. In chest imaging, PCD-CT shows promise in detecting and definitively characterizing infectious diseases, interstitial lung disease, malignancies, and vascular conditions at low radiation doses, offering higher diagnostic accuracy and patient safety. Despite these advancements, challenges remain in optimizing spectral imaging and integrating PCD-CT into routine clinical workflows, necessitating ongoing research and development.
Collapse
|
3
|
Centen JR, Greuter MJW, Prokop M. Detectability of Iodine in Mediastinal Lesions on Photon Counting CT: A Phantom Study. Diagnostics (Basel) 2025; 15:696. [PMID: 40150039 PMCID: PMC11941654 DOI: 10.3390/diagnostics15060696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/23/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: To evaluate the detectability of iodine in mediastinal lesions with photon counting CT (PCCT) compared to conventional CT (CCT) in a phantom study. Methods: Mediastinal lesions were simulated by five cylindrical inserts with diameters from 1 to 12 mm within a 10 cm solid water phantom that was placed in the mediastinal area of an anthropomorphic chest phantom with fat ring (QRM-thorax, QRM L-ring, 30 cm × 40 cm cross-section). Inserts were filled with iodine contrast at concentrations of 0.238 to 27.5 mg/mL. A clinical chest protocol at 120 kV on a high-end CCT (Somatom Force, Siemens Healthineers) was compared to the same protocol on a PCCT (Naeotom Alpha, Siemens Healthineers). Images reconstructed with a soft tissue kernel at 1 mm thickness and a 512 matrix served as a reference. For PCCT, we studied the result of reconstructing virtual mono-energetic images (VMIs) at 40, 50, 60 and 70 keV, reducing exposure dose up by 66%, reducing slice thickness to 0.4 and 0.2 mm, and increasing matrix size from 512 to 768 and 1024. Two observers with similar experience independently determined the smallest insert size for which iodine enhancement could still be detected. Consensus was reached when detectability thresholds differed between observers. Results: CTDIvol on PCCT and CCT was 3.80 ± 0.12 and 3.60 ± 0.01 mGy, respectively. PCCT was substantially more sensitive than CCT for detection of iodine in small mediastinal lesions: to detect a 3 mm lesion, 11.2 mg/mL iodine was needed with CCT, while only 1.43 mg/mL was required at 40 keV and 50 keV with PCCT. Moreover, dose reduced by 66% resulted in a comparable detection of iodine between PCCT and CCT for all lesions, except 3 mm. Detection increased from 11.2 mg/mL on CCT to 4.54 mg/mL on PCCT. A matrix size of 1024 reduced this detection threshold further, to 0.238 mg/mL at 40 and 50 keV. For 5 mm lesions, this detection threshold of 0.238 mg/mL was already achieved with a 512 matrix. Very small, 1 mm lesions did not profit from PCCT except if reconstructed with a 1024 matrix, which reduced the detection threshold from 27.5 mg/mL to 11.2 mg/mL. Reduced slice thickness decreased iodine detection of 3-12 mm lesions but not for 1 mm lesions. Conclusions: Iodine detectability with PCCT is at least equal to CCT for simulated mediastinal lesions of 1-12 mm, even at a dose reduction of 66%. Iodine detectability further profits from virtual monoenergetic images of 40 and 50 keV and increased reconstruction matrix.
Collapse
Affiliation(s)
- Joric R. Centen
- Department of Radiology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (J.R.C.); (M.P.)
| | - Marcel J. W. Greuter
- Department of Radiology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (J.R.C.); (M.P.)
| | - Mathias Prokop
- Department of Radiology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (J.R.C.); (M.P.)
- Department of Medical Imaging, Radboud University Nijmegen Medical Centre, 6525 XZ Nijmegen, The Netherlands
| |
Collapse
|
4
|
Schwartz FR, Sodickson AD, Pickhardt PJ, Sahani DV, Lev MH, Gupta R. Photon-Counting CT: Technology, Current and Potential Future Clinical Applications, and Overview of Approved Systems and Those in Various Stages of Research and Development. Radiology 2025; 314:e240662. [PMID: 40067107 PMCID: PMC11950899 DOI: 10.1148/radiol.240662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 03/30/2025]
Abstract
Photon-counting CT (PCCT) has emerged as a transformative technology, with the potential to herald a new era of clinical capabilities. This review provides an overview of the current status and potential future developments of PCCT, including basic physics principles and technical implementation by different vendors, with special attention to applications that have not, to date, been emphasized in the literature. The technologic underpinnings that distinguish PCCT scanners from traditional energy-integrating detector (EID) CT scanners with dual-energy capability are discussed. The inherent challenges of PCCT and the innovative breakthroughs that have enabled key PCCT features, such as enhanced image resolution, material discrimination, and radiation dose efficiency, are reviewed. Two categories of clinical applications are considered: (a) applications that are possible with current-generation EID CT but may be improved with the higher spatial, temporal, and contrast resolution of PCCT (eg, CT angiographic vasculitis imaging with high spatial, contrast, and temporal resolution and ultra-high-spatial-resolution "opportunistic" osseous imaging) and (b) potential future applications that are not currently feasible with EID CT but that may become possible and practical with PCCT (eg, reduced need for serial follow-up imaging with advanced CT or MRI because of more complete, definitive imaging evaluation with PCCT at first presentation).
Collapse
Affiliation(s)
- Fides R. Schwartz
- From the Department of Radiology, Brigham and Women’s
Hospital, Boston, Mass (F.R.S., A.D.S.); Department of Radiology, University of
Wisconsin School of Medicine and Public Health, Madison, Wis (P.J.P.);
Department of Radiology, University of Washington Medicine, Seattle, Wash
(D.V.S.); and Department of Radiology, Massachusetts General Hospital, 55 Fruit
St, Boston, MA 02114 (M.H.L., R.G.)
| | - Aaron D. Sodickson
- From the Department of Radiology, Brigham and Women’s
Hospital, Boston, Mass (F.R.S., A.D.S.); Department of Radiology, University of
Wisconsin School of Medicine and Public Health, Madison, Wis (P.J.P.);
Department of Radiology, University of Washington Medicine, Seattle, Wash
(D.V.S.); and Department of Radiology, Massachusetts General Hospital, 55 Fruit
St, Boston, MA 02114 (M.H.L., R.G.)
| | - Perry J. Pickhardt
- From the Department of Radiology, Brigham and Women’s
Hospital, Boston, Mass (F.R.S., A.D.S.); Department of Radiology, University of
Wisconsin School of Medicine and Public Health, Madison, Wis (P.J.P.);
Department of Radiology, University of Washington Medicine, Seattle, Wash
(D.V.S.); and Department of Radiology, Massachusetts General Hospital, 55 Fruit
St, Boston, MA 02114 (M.H.L., R.G.)
| | - Dushyant V. Sahani
- From the Department of Radiology, Brigham and Women’s
Hospital, Boston, Mass (F.R.S., A.D.S.); Department of Radiology, University of
Wisconsin School of Medicine and Public Health, Madison, Wis (P.J.P.);
Department of Radiology, University of Washington Medicine, Seattle, Wash
(D.V.S.); and Department of Radiology, Massachusetts General Hospital, 55 Fruit
St, Boston, MA 02114 (M.H.L., R.G.)
| | - Michael H. Lev
- From the Department of Radiology, Brigham and Women’s
Hospital, Boston, Mass (F.R.S., A.D.S.); Department of Radiology, University of
Wisconsin School of Medicine and Public Health, Madison, Wis (P.J.P.);
Department of Radiology, University of Washington Medicine, Seattle, Wash
(D.V.S.); and Department of Radiology, Massachusetts General Hospital, 55 Fruit
St, Boston, MA 02114 (M.H.L., R.G.)
| | - Rajiv Gupta
- From the Department of Radiology, Brigham and Women’s
Hospital, Boston, Mass (F.R.S., A.D.S.); Department of Radiology, University of
Wisconsin School of Medicine and Public Health, Madison, Wis (P.J.P.);
Department of Radiology, University of Washington Medicine, Seattle, Wash
(D.V.S.); and Department of Radiology, Massachusetts General Hospital, 55 Fruit
St, Boston, MA 02114 (M.H.L., R.G.)
| |
Collapse
|
5
|
Wang M, Zhang X, Li J, Dong H, Xu Z, Yan F, Yang W. Quantification accuracy in photon-counting detector CT for coronary artery calcium score: a pilot study. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2024; 40:2181-2191. [PMID: 39110320 DOI: 10.1007/s10554-024-03209-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/24/2024] [Indexed: 10/25/2024]
Abstract
To validate the accuracy of coronary artery calcium score (CACS) using photon-counting detector (PCD) CT under various scanning settings and explore the optimized scanning settings considering both the accuracy and the radiation dose. A CACS phantom containing six hollow cylindrical hydroxyapatite calcifications of two sizes with three densities and 12 patients underwent CACS scans. For PCD-CT, two scanning modes (sequence and flash [high-pitch spiral mode]) and five tube voltages (90kV, 120kV, 140kV, Sn100kV, and Sn140kV) at different image quality (IQ) levels were set for phantom, and patients were scanned with 120kV at IQ19 using flash mode. All acquisitions from PCD-CT were reconstructed at 70keV. Acquisitions in sequence mode at 120kV on an energy-integrating detector CT (EID-CT) was used as the reference. Agatston, mass, and volume scores were calculated. The CACS from PCD-CT exhibited excellent agreements with the reference (all intraclass correlation coefficient [ICC] > 0.99). The root mean square error (RMSE) between the Agatston score acquired from PCD-CT and the reference (5.4-11.5) was small. A radiation dose reduction (16-75%) from PCD-CT compared with the reference was obtained in all protocols using flash mode, albeit with IQ20 only at sequence mode (22-44%). For the patients, ICC ( all ICC > 0.98) and Bland-Altman analysis of CACS all showed high agreements between PCD-CT and the reference, without reclassifying CACS categories(P = 0.317). PCD-CT yields repeatable and accurate CACS across diverse scanning protocols according to our pilot study. Sn100kV, 90kV, and 120kV using flash mode at IQ20 are recommended for clinical applications considering both accuracy and radiation dose.
Collapse
Affiliation(s)
- Mengzhen Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai, 200025, China
| | - Xu Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai, 200025, China
| | - Jiqang Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai, 200025, China
| | - Haipeng Dong
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai, 200025, China
| | - Zhihan Xu
- Siemens Healthineers CT Collaboration, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai, 200025, China
| | - Wenjie Yang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai, 200025, China.
| |
Collapse
|
6
|
Cui M, Bao S, Li J, Dong H, Xu Z, Yan F, Yang W. CT radiomic features reproducibility of virtual non-contrast series derived from photon-counting CCTA datasets using a novel calcium-preserving reconstruction algorithm compared with standard non-contrast series: focusing on epicardial adipose tissue. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2024; 40:1257-1267. [PMID: 38587689 DOI: 10.1007/s10554-024-03096-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
PURPOSE We aimed to evaluate the reproducibility of computed tomography (CT) radiomic features (RFs) about Epicardial Adipose Tissue (EAT). The features derived from coronary photon-counting computed tomography (PCCT) angiography datasets using the PureCalcium (VNCPC) and conventional virtual non-contrast (VNCConv) algorithm were compared with true non-contrast (TNC) series. METHODS RFs of EAT from 52 patients who underwent PCCT were quantified using VNCPC, VNCConv, and TNC series. The agreement of EAT volume (EATV) and EAT density (EATD) was evaluated using Pearson's correlation coefficient and Bland-Altman analysis. A total of 1530 RFs were included. They are divided into 17 feature categories, each containing 90 RFs. The intraclass correlation coefficients (ICCs) and concordance correlation coefficients (CCCs) were calculated to assess the reproducibility of RFs. The cutoff value considered indicative of reproducible features was > 0.75. RESULTS the VNCPC and VNCConv tended to underestimate EATVs and overestimate EATDs. Both EATV and EATD of VNCPC series showed higher correlation and agreement with TNC than VNCConv series. All types of RFs from VNCPC series showed greater reproducibility than VNCConv series. Across all image filters, the Square filter exhibited the highest level of reproducibility (ICC = 67/90, 74.4%; CCC = 67/90, 74.4%). GLDM_GrayLevelNonUniformity feature had the highest reproducibility in the original image (ICC = 0.957, CCC = 0.958), exhibiting a high degree of reproducibility across all image filters. CONCLUSION The accuracy evaluation of EATV and EATD and the reproducibility of RFs from VNCPC series make it an excellent substitute for TNC series exceeding VNCConv series.
Collapse
Affiliation(s)
- MengXu Cui
- Department of Radiology, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - ShouYu Bao
- Department of Radiology, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - JiQiang Li
- Department of Radiology, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - HaiPeng Dong
- Department of Radiology, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - ZhiHan Xu
- Siemens Healthineers CT Collaboration, Erlangen, Germany
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjie Yang
- Department of Radiology, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
7
|
Flohr T, Schmidt B, Ulzheimer S, Alkadhi H. Cardiac imaging with photon counting CT. Br J Radiol 2023; 96:20230407. [PMID: 37750856 PMCID: PMC10646663 DOI: 10.1259/bjr.20230407] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/27/2023] Open
Abstract
CT of the heart, in particular ECG-controlled coronary CT angiography (cCTA), has become clinical routine due to rapid technical progress with ever new generations of CT equipment. Recently, CT scanners with photon-counting detectors (PCD) have been introduced which have the potential to address some of the remaining challenges for cardiac CT, such as limited spatial resolution and lack of high-quality spectral data. In this review article, we briefly discuss the technical principles of photon-counting detector CT, and we give an overview on how the improved spatial resolution of photon-counting detector CT and the routine availability of spectral data can benefit cardiac applications. We focus on coronary artery calcium scoring, cCTA, and on the evaluation of the myocardium.
Collapse
Affiliation(s)
- Thomas Flohr
- Siemens Healthcare GmbH, Computed Tomography, Forchheim, Germany
| | - Bernhard Schmidt
- Siemens Healthcare GmbH, Computed Tomography, Forchheim, Germany
| | - Stefan Ulzheimer
- Siemens Healthcare GmbH, Computed Tomography, Forchheim, Germany
| | - Hatem Alkadhi
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Marsh JF, VanMeter PD, Rajendran K, Leng S, McCollough CH. Ex vivo coronary calcium volume quantification using a high-spatial-resolution clinical photon-counting-detector computed tomography. J Med Imaging (Bellingham) 2023; 10:043501. [PMID: 37408984 PMCID: PMC10319293 DOI: 10.1117/1.jmi.10.4.043501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/17/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Purpose Coronary artery calcification (CAC) is an important indicator of coronary disease. Accurate volume quantification of CAC is challenging using computed tomography (CT) due to calcium blooming, which is a consequence of limited spatial resolution. Ex vivo coronary specimens were scanned on an ultra-high-resolution (UHR) clinical photon-counting detector (PCD) CT scanner, and the accuracy of CAC volume estimation was compared with a state-of-the-art conventional energy-integrating detector (EID) CT, a previous-generation investigational PCD-CT, and micro-CT. Approach CAC specimens (n = 13 ) were scanned on EID-CT and PCD-CT using matched parameters (120 kV, 9.3 mGy CTDI vol ). EID-CT images were reconstructed using our institutional routine clinical protocol for CAC quantification. UHR PCD-CT data were reconstructed using a sharper kernel. An image-based denoising algorithm was applied to the PCD-CT images to achieve similar noise levels as EID-CT. Micro-CT images served as the volume reference standard. Calcification images were segmented, and their volume estimates were compared. The CT data were further compared with previous work using an investigational PCD-CT. Results Compared with micro-CT, CT volume estimates had a mean absolute percent error of 24.1 % ± 25.6 % for clinical PCD-CT, 60.1 % ± 48.2 % for EID-CT, and 51.1 % ± 41.7 % for previous-generation PCD-CT. Clinical PCD-CT absolute percent error was significantly (p < 0.01 ) lower than both EID-CT and previous generation PCD-CT. The mean calcification CT number and contrast-to-noise ratio were both significantly (p < 0.01 ) higher in clinical PCD-CT relative to EID-CT. Conclusions UHR clinical PCD-CT showed reduced calcium blooming artifacts and further enabled improved accuracy of CAC quantification beyond that of conventional EID-CT and previous generation PCD-CT systems.
Collapse
Affiliation(s)
- Jeffrey F. Marsh
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| | | | - Kishore Rajendran
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| | - Shuai Leng
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| | | |
Collapse
|
9
|
Sardanelli F, Monti CB. CT features of acute aortic syndromes: A groundwork for AI and the future of photon-counting technology. Int J Cardiol 2023:S0167-5273(23)00710-6. [PMID: 37201614 DOI: 10.1016/j.ijcard.2023.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Affiliation(s)
- Francesco Sardanelli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy; Unit of Radiology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy.
| | - Caterina B Monti
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|