1
|
Wang K, Karalis JD, Elamir A, Bifolco A, Wachsmann M, Capretti G, Spaggiari P, Enrico S, Balasubramanian K, Fatimah N, Pontecorvi G, Nebbia M, Yopp A, Kaza R, Pedrosa I, Zeh H, Polanco P, Zerbi A, Wang J, Aguilera T, Ligorio M. Delta Radiomic Features Predict Resection Margin Status and Overall Survival in Neoadjuvant-Treated Pancreatic Cancer Patients. Ann Surg Oncol 2024; 31:2608-2620. [PMID: 38151623 PMCID: PMC10908610 DOI: 10.1245/s10434-023-14805-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Neoadjuvant therapy (NAT) emerged as the standard of care for patients with pancreatic ductal adenocarcinoma (PDAC) who undergo surgery; however, surgery is morbid, and tools to predict resection margin status (RMS) and prognosis in the preoperative setting are needed. Radiomic models, specifically delta radiomic features (DRFs), may provide insight into treatment dynamics to improve preoperative predictions. METHODS We retrospectively collected clinical, pathological, and surgical data (patients with resectable, borderline, locally advanced, and metastatic disease), and pre/post-NAT contrast-enhanced computed tomography (CT) scans from PDAC patients at the University of Texas Southwestern Medical Center (UTSW; discovery) and Humanitas Hospital (validation cohort). Gross tumor volume was contoured from CT scans, and 257 radiomics features were extracted. DRFs were calculated by direct subtraction of pre/post-NAT radiomic features. Cox proportional models and binary prediction models, including/excluding clinical variables, were constructed to predict overall survival (OS), disease-free survival (DFS), and RMS. RESULTS The discovery and validation cohorts comprised 58 and 31 patients, respectively. Both cohorts had similar clinical characteristics, apart from differences in NAT (FOLFIRINOX vs. gemcitabine/nab-paclitaxel; p < 0.05) and type of surgery resections (pancreatoduodenectomy, distal or total pancreatectomy; p < 0.05). The model that combined clinical variables (pre-NAT carbohydrate antigen (CA) 19-9, the change in CA19-9 after NAT (∆CA19-9), and resectability status) and DRFs outperformed the clinical feature-based models and other radiomics feature-based models in predicting OS (UTSW: 0.73; Humanitas: 0.66), DFS (UTSW: 0.75; Humanitas: 0.64), and RMS (UTSW 0.73; Humanitas: 0.69). CONCLUSIONS Our externally validated, predictive/prognostic delta-radiomics models, which incorporate clinical variables, show promise in predicting the risk of predicting RMS in NAT-treated PDAC patients and their OS or DFS.
Collapse
Affiliation(s)
- Kai Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John D Karalis
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ahmed Elamir
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alessandro Bifolco
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Megan Wachsmann
- Department of Pathology, Veterans Affairs North Texas Health Care System, Dallas, TX, USA
| | - Giovanni Capretti
- Pancreatic Surgery Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Paola Spaggiari
- Department of Pathology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Sebastian Enrico
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Nafeesah Fatimah
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Giada Pontecorvi
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Martina Nebbia
- Pancreatic Surgery Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Adam Yopp
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ravi Kaza
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ivan Pedrosa
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Herbert Zeh
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Patricio Polanco
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alessandro Zerbi
- Pancreatic Surgery Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Jing Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Todd Aguilera
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Matteo Ligorio
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Kang J, Lafata K, Kim E, Yao C, Lin F, Rattay T, Nori H, Katsoulakis E, Lee CI. Artificial intelligence across oncology specialties: current applications and emerging tools. BMJ ONCOLOGY 2024; 3:e000134. [PMID: 39886165 PMCID: PMC11203066 DOI: 10.1136/bmjonc-2023-000134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2025]
Abstract
Oncology is becoming increasingly personalised through advancements in precision in diagnostics and therapeutics, with more and more data available on both ends to create individualised plans. The depth and breadth of data are outpacing our natural ability to interpret it. Artificial intelligence (AI) provides a solution to ingest and digest this data deluge to improve detection, prediction and skill development. In this review, we provide multidisciplinary perspectives on oncology applications touched by AI-imaging, pathology, patient triage, radiotherapy, genomics-driven therapy and surgery-and integration with existing tools-natural language processing, digital twins and clinical informatics.
Collapse
Affiliation(s)
- John Kang
- Department of Radiation Oncology, University of Washington, Seattle, Washington, USA
| | - Kyle Lafata
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
- Department of Radiology, Duke University, Durham, North Carolina, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina, USA
| | - Ellen Kim
- Department of Radiation Oncology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Christopher Yao
- Department of Otolaryngology-Head & Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Frank Lin
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- NHMRC Clinical Trials Centre, Camperdown, New South Wales, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Tim Rattay
- Department of Genetics and Genome Biology, University of Leicester Cancer Research Centre, Leicester, UK
| | - Harsha Nori
- Microsoft Research, Redmond, Washington, USA
| | - Evangelia Katsoulakis
- Department of Radiation Oncology, University of South Florida, Tampa, Florida, USA
- Veterans Affairs Informatics and Computing Infrastructure, Salt Lake City, Utah, USA
| | | |
Collapse
|
3
|
Pacella G, Brunese MC, D’Imperio E, Rotondo M, Scacchi A, Carbone M, Guerra G. Pancreatic Ductal Adenocarcinoma: Update of CT-Based Radiomics Applications in the Pre-Surgical Prediction of the Risk of Post-Operative Fistula, Resectability Status and Prognosis. J Clin Med 2023; 12:7380. [PMID: 38068432 PMCID: PMC10707069 DOI: 10.3390/jcm12237380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is the seventh leading cause of cancer-related deaths worldwide. Surgical resection is the main driver to improving survival in resectable tumors, while neoadjuvant treatment based on chemotherapy (and radiotherapy) is the best option-treatment for a non-primally resectable disease. CT-based imaging has a central role in detecting, staging, and managing PDAC. As several authors have proposed radiomics for risk stratification in patients undergoing surgery for PADC, in this narrative review, we have explored the actual fields of interest of radiomics tools in PDAC built on pre-surgical imaging and clinical variables, to obtain more objective and reliable predictors. METHODS The PubMed database was searched for papers published in the English language no earlier than January 2018. RESULTS We found 301 studies, and 11 satisfied our research criteria. Of those included, four were on resectability status prediction, three on preoperative pancreatic fistula (POPF) prediction, and four on survival prediction. Most of the studies were retrospective. CONCLUSIONS It is possible to conclude that many performing models have been developed to get predictive information in pre-surgical evaluation. However, all the studies were retrospective, lacking further external validation in prospective and multicentric cohorts. Furthermore, the radiomics models and the expression of results should be standardized and automatized to be applicable in clinical practice.
Collapse
Affiliation(s)
- Giulia Pacella
- Department of Medicine and Health Science “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (G.P.)
| | - Maria Chiara Brunese
- Department of Medicine and Health Science “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (G.P.)
| | | | - Marco Rotondo
- Department of Medicine and Health Science “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (G.P.)
| | - Andrea Scacchi
- General Surgery Unit, University of Milano-Bicocca, 20126 Milan, Italy
| | - Mattia Carbone
- San Giovanni di Dio e Ruggi d’Aragona Hospital, 84131 Salerno, Italy;
| | - Germano Guerra
- Department of Medicine and Health Science “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (G.P.)
| |
Collapse
|