1
|
Dahodwala H, Kaushik P, Tejwani V, Kuo CC, Menard P, Henry M, Voldborg BG, Lewis NE, Meleady P, Sharfstein ST. Increased mAb production in amplified CHO cell lines is associated with increased interaction of CREB1 with transgene promoter. CURRENT RESEARCH IN BIOTECHNOLOGY 2019; 1:49-57. [PMID: 32577618 PMCID: PMC7311070 DOI: 10.1016/j.crbiot.2019.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Most therapeutic monoclonal antibodies in biopharmaceutical processes are produced in Chinese hamster ovary (CHO) cells. Technological advances have rendered the selection procedure for higher producers a robust protocol. However, information on molecular mechanisms that impart the property of hyper-productivity in the final selected clones is currently lacking. In this study, an IgG-producing industrial cell line and its methotrexate (MTX)-amplified progeny cell line were analyzed using transcriptomic, proteomic, phosphoproteomic, and chromatin immunoprecipitation (ChIP) techniques. Computational prediction of transcription factor binding to the transgene cytomegalovirus (CMV) promoter by the Transcription Element Search System and upstream regulator analysis of the differential transcriptomic data suggested increased in vivo CMV promoter-cAMP response element binding protein (CREB1) interaction in the higher producing cell line. Differential nuclear proteomic analysis detected 1.3-fold less CREB1 in the nucleus of the high productivity cell line compared with the parental cell line. However, the differential abundance of multiple CREB1 phosphopeptides suggested an increase in CREB1 activity in the higher producing cell line, which was confirmed by increased association of the CMV promotor with CREB1 in the high producer cell line. Thus, we show here that the nuclear proteome and phosphoproteome have an important role in regulating final productivity of recombinant proteins from CHO cells, and that CREB1 may play a role in transcriptional enhancement. Moreover, CREB1 phosphosites may be potential targets for cell engineering for increased productivity.
Collapse
Affiliation(s)
- Hussain Dahodwala
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY, USA
| | - Prashant Kaushik
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Vijay Tejwani
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY, USA
| | - Chih-Chung Kuo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Patrice Menard
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Bjorn G Voldborg
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Nathan E Lewis
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.,Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Susan T Sharfstein
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY, USA
| |
Collapse
|
2
|
Steentoft C, Fuhrmann M, Battisti F, Van Coillie J, Madsen TD, Campos D, Halim A, Vakhrushev SY, Joshi HJ, Schreiber H, Mandel U, Narimatsu Y. A strategy for generating cancer-specific monoclonal antibodies to aberrant O-glycoproteins: identification of a novel dysadherin-Tn antibody. Glycobiology 2019; 29:307-319. [PMID: 30726901 PMCID: PMC6430981 DOI: 10.1093/glycob/cwz004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 12/25/2022] Open
Abstract
Successful application of potent antibody-based T-cell engaging immunotherapeutic strategies is currently limited mainly to hematological cancers. One major reason is the lack of well-characterized antigens on solid tumors with sufficient cancer specific expression. Aberrantly O-glycosylated proteins contain promising cancer-specific O-glycopeptide epitopes suitable for immunotherapeutic applications, but currently only few examples of such antibody epitopes have been identified. We previously showed that chimeric antigen receptor T-cells directed towards aberrantly O-glycosylated MUC1 can control malignant growth in a mouse model. Here, we present a discovery platform for the generation of cancer-specific monoclonal antibodies targeting aberrant O-glycoproteins. The strategy is based on cancer cell lines engineered to homogeneously express the truncated Tn O-glycoform, the so-called SimpleCells. We used SimpleCells of different cancer origin to elicit monoclonal antibodies with selectivity for aberrant O-glycoproteins. For validation we selected and characterized one monoclonal antibody (6C5) directed to a Tn-glycopeptide in dysadherin (FXYD5), known to be upregulated in cancer and promote metastasis. While dysadherin is widely expressed also in normal cells, we demonstrated that the 6C5 epitope is specifically expressed in cancer.
Collapse
Affiliation(s)
- Catharina Steentoft
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Max Fuhrmann
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Federico Battisti
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena 324 Rome, Italy
| | - Julie Van Coillie
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Thomas D Madsen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Diana Campos
- Instituto de Investigação e Inovação e Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Rua Júlio Amaral de Carvalho 45, Porto, Portugal
| | - Adnan Halim
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Hiren J Joshi
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Hans Schreiber
- Department of Pathology, Committee on Immunology, Committee on Cancer Biology, The University of Chicago, 5841 S. Maryland Avenue, Chicago, IL, USA
| | - Ulla Mandel
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| |
Collapse
|
3
|
Smirnov NA, Akopov SB, Didych DA, Nikolaev LG. In trans promoter activation by enhancers in transient transfection. Gene 2017; 603:15-20. [PMID: 27956170 DOI: 10.1016/j.gene.2016.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 11/15/2016] [Accepted: 12/08/2016] [Indexed: 11/16/2022]
Abstract
Earlier, it was reported that the strong cytomegalovirus enhancer can activate the cytomegalovirus promoter in trans, i.e. as a separate plasmid co-transfected with a promoter-reporter gene construct. Here we demonstrate that the ability of enhancers to activate promoters in trans in transient transfection experiments is a property of not only viral regulatory elements but also of various genomic enhancers and promoters. Enhancer-promoter activation in trans is promoter- and cell type-specific, and accompanied by physical interaction between promoter and enhancer as revealed by chromosome conformation capture assays. Thus, promoter activation in transient co-transfection of promoters and enhancers shares a number of important traits with long-distance promoter activation by enhancers in living cells and may therefore serve as a model of this fundamental cellular process.
Collapse
Affiliation(s)
- N A Smirnov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - S B Akopov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - D A Didych
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - L G Nikolaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia.
| |
Collapse
|
4
|
Smirnov NA, Didych DA, Akopov SB, Nikolaev LG, Sverdlov ED. Assay of insulator enhancer-blocking activity with the use of transient transfection. BIOCHEMISTRY (MOSCOW) 2013; 78:895-903. [PMID: 24228877 DOI: 10.1134/s0006297913080051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We used a transient transfection of cultured cells with linearized plasmids to analyze the enhancer-blocking activity of potential insulators including the standard cHS4 chicken beta-globin insulator and several DNA fragments selected from the human genome sequence. About 60-80% of the potential insulators do reveal the enhancer-blocking activity when probed by the transient transfection assay. The activity of different sequences is characterized by certain tissue specificity and by dependence on the orientation of the fragments relative to the promoter. Thus, the transfection model may be used for quantitative analysis of the enhancer-blocking activity of the potential insulators.
Collapse
Affiliation(s)
- N A Smirnov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | | | | | | | | |
Collapse
|
5
|
Didych DA, Kotova ES, Akopov SB, Nikolaev LG, Sverdlov ED. DNA fragments binding CTCF in vitro and in vivo are capable of blocking enhancer activity. BMC Res Notes 2012; 5:178. [PMID: 22480385 PMCID: PMC3369819 DOI: 10.1186/1756-0500-5-178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 04/05/2012] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Earlier we identified ten 100-300-bp long CTCF-binding DNA fragments selected earlier from a 1-Mb human chromosome 19 region. Here the positive-negative selection technique was used to check the ability of CTCF-binding human genomic fragments to block enhancer-promoter interaction when inserted into the genome. RESULTS Ten CTCF-binding DNA fragments were inserted between the CMV enhancer and CMV minimal promoter driving the herpes simplex virus thymidine kinase (HSV-tk) gene in a vector expressing also the neoR gene under a separate promoter. The constructs were then integrated into the genome of CHO cells, and the cells resistant to neomycin and ganciclovir (positive-negative selection) were picked up, and their DNAs were PCR analyzed to confirm the presence of the fragments between the enhancer and promoter in both orientations. CONCLUSIONS We demonstrated that all sequences identified by their CTCF binding both in vitro and in vivo had enhancer-blocking activity when inserted between the CMV minimal promoter and enhancer in stably transfected CHO cells.
Collapse
Affiliation(s)
- Dmitry A Didych
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow 117997, Russia
| | | | | | | | | |
Collapse
|
6
|
Unique functions of repetitive transcriptomes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 285:115-88. [PMID: 21035099 DOI: 10.1016/b978-0-12-381047-2.00003-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Repetitive sequences occupy a huge fraction of essentially every eukaryotic genome. Repetitive sequences cover more than 50% of mammalian genomic DNAs, whereas gene exons and protein-coding sequences occupy only ~3% and 1%, respectively. Numerous genomic repeats include genes themselves. They generally encode "selfish" proteins necessary for the proliferation of transposable elements (TEs) in the host genome. The major part of evolutionary "older" TEs accumulated mutations over time and fails to encode functional proteins. However, repeats have important functions also on the RNA level. Repetitive transcripts may serve as multifunctional RNAs by participating in the antisense regulation of gene activity and by competing with the host-encoded transcripts for cellular factors. In addition, genomic repeats include regulatory sequences like promoters, enhancers, splice sites, polyadenylation signals, and insulators, which actively reshape cellular transcriptomes. TE expression is tightly controlled by the host cells, and some mechanisms of this regulation were recently decoded. Finally, capacity of TEs to proliferate in the host genome led to the development of multiple biotechnological applications.
Collapse
|
7
|
Moltó E, Fernández A, Montoliu L. Boundaries in vertebrate genomes: different solutions to adequately insulate gene expression domains. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2009; 8:283-96. [PMID: 19752046 DOI: 10.1093/bfgp/elp031] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gene expression domains are normally not arranged in vertebrate genomes according to their expression patterns. Instead, it is not unusual to find genes expressed in different cell types, or in different developmental stages, sharing a particular region of a chromosome. Therefore, the existence of boundaries, or insulators, as non-coding gene regulatory elements, is instrumental for the adequate organization and function of vertebrate genomes. Through the evolution and natural selection at the molecular level, and according to available DNA sequences surrounding a locus, previously existing or recently mobilized, different elements have been recruited to serve as boundaries, depending on their suitability to properly insulate gene expression domains. In this regard, several gene regulatory elements, including scaffold/matrix-attachment regions, members of families of DNA repetitive elements (such as LINEs or SINEs), target sites for the zinc-finger multipurpose nuclear factor CTCF, enhancers and locus control regions, have been reported to show functional activities as insulators. In this review, we will address how such a variety of apparently different genomic sequences converge in a similar function, namely, to adequately insulate a gene expression domain, thereby allowing the locus to be expressed according to their own gene regulatory elements without interfering itself and being interfered by surrounding loci. The identification and characterization of genomic boundaries is not only interesting as a theoretical exercise for better understanding how vertebrate genomes are organized, but also allows devising new and improved gene transfer strategies to ensure the expression of heterologous DNA constructs in ectopic genomic locations.
Collapse
Affiliation(s)
- Eduardo Moltó
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Department of Molecular and Cellular Biology, Campus de Cantoblanco, C/Darwin 3, 28049 Madrid, Spain
| | | | | |
Collapse
|
8
|
Gogvadze E, Buzdin A. Retroelements and their impact on genome evolution and functioning. Cell Mol Life Sci 2009; 66:3727-42. [PMID: 19649766 PMCID: PMC11115525 DOI: 10.1007/s00018-009-0107-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 06/11/2009] [Accepted: 07/14/2009] [Indexed: 12/31/2022]
Abstract
Retroelements comprise a considerable fraction of eukaryotic genomes. Since their initial discovery by Barbara McClintock in maize DNA, retroelements have been found in genomes of almost all organisms. First considered as a "junk DNA" or genomic parasites, they were shown to influence genome functioning and to promote genetic innovations. For this reason, they were suggested as an important creative force in the genome evolution and adaptation of an organism to altered environmental conditions. In this review, we summarize the up-to-date knowledge of different ways of retroelement involvement in structural and functional evolution of genes and genomes, as well as the mechanisms generated by cells to control their retrotransposition.
Collapse
Affiliation(s)
- Elena Gogvadze
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya st, 117997 Moscow, Russia.
| | | |
Collapse
|
9
|
Didych DA, Akopov SB, Snezhkov EV, Skaptsova NV, Nikolaev LG, Sverdlov ED. Identification and mapping of ten new potential insulators in the FXYD5-COX7A1 region of human chromosome 19q13.12. BIOCHEMISTRY (MOSCOW) 2009; 74:728-33. [PMID: 19747092 DOI: 10.1134/s0006297909070049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A positive-negative selection system revealed 10 potential insulators able to block enhancer interaction with promoter in the 10(6) bp human chromosome 19 region between genes FXYD5 and COX7A1. Relative positions of insulators and genes are in accord with the hypothesis that insulators subdivide genomic DNA into independently regulated loop domains.
Collapse
Affiliation(s)
- D A Didych
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | | | | | | | | | | |
Collapse
|
10
|
Soshnev AA, Li X, Wehling MD, Geyer PK. Context differences reveal insulator and activator functions of a Su(Hw) binding region. PLoS Genet 2008; 4:e1000159. [PMID: 18704163 PMCID: PMC2493044 DOI: 10.1371/journal.pgen.1000159] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 07/10/2008] [Indexed: 11/19/2022] Open
Abstract
Insulators are DNA elements that divide chromosomes into independent transcriptional domains. The Drosophila genome contains hundreds of binding sites for the Suppressor of Hairy-wing [Su(Hw)] insulator protein, corresponding to locations of the retroviral gypsy insulator and non-gypsy binding regions (BRs). The first non-gypsy BR identified, 1A-2, resides in cytological region 1A. Using a quantitative transgene system, we show that 1A-2 is a composite insulator containing enhancer blocking and facilitator elements. We discovered that 1A-2 separates the yellow (y) gene from a previously unannotated, non-coding RNA gene, named yar for y-achaete (ac) intergenic RNA. The role of 1A-2 was elucidated using homologous recombination to excise these sequences from the natural location, representing the first deletion of any Su(Hw) BR in the genome. Loss of 1A-2 reduced yar RNA accumulation, without affecting mRNA levels from the neighboring y and ac genes. These data indicate that within the 1A region, 1A-2 acts an activator of yar transcription. Taken together, these studies reveal that the properties of 1A-2 are context-dependent, as this element has both insulator and enhancer activities. These findings imply that the function of non-gypsy Su(Hw) BRs depends on the genomic environment, predicting that Su(Hw) BRs represent a diverse collection of genomic regulatory elements.
Collapse
Affiliation(s)
- Alexey A. Soshnev
- Program in Molecular and Cellular Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Xingguo Li
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Misty D. Wehling
- Program in Molecular and Cellular Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Pamela K. Geyer
- Program in Molecular and Cellular Biology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
11
|
Chernov I, Stukacheva E, Akopov S, Didych D, Nikolaev L, Sverdlov E. A new technique for selective identification and mapping of enhancers within long genomic sequences. Biotechniques 2008; 44:775-84. [PMID: 18476831 DOI: 10.2144/000112732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We report a new experimental method of direct selection, identification, and mapping of potential enhancer sequences within extended stretches of genomic DNA. The method allows simultaneous cloning of a quantity of sequences instead of tedious screening of the separate ones, thus providing a robust and high-throughput approach to the mapping of enhancers. The selection procedure is based on the ability of such sequences to activate a minimal promoter that drives expression of a selective gene. To this end a mixture of short DNA fragments derived from the segment of interest was cloned in a retroviral vector containing the neomycin phosphotransferase II gene under control of a cytomegalovirus (CMV) minimal promoter. The pool of retroviruses obtained was used to infect HeLa cells and then to select neomycin-resistant colonies containing constructs with enhancer-like sequences. The pool of the genomic fragments was rescued by PCR and cloned, forming a library of the potential enhancers. Fifteen enhancer-like fragments were selected from 1-Mb human genome locus, and enhancer activity of 13 of them was verified in a transient transfection reporter gene assay. The sequences selected were found to be predominantly located near 5' regions of genes or within gene introns.
Collapse
Affiliation(s)
- Igor Chernov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
12
|
Nikolaev LG, Akopov SB, Chernov IP, Sverdlov ED. Maps of cis-Regulatory Nodes in Megabase Long Genome Segments are an Inevitable Intermediate Step Toward Whole Genome Functional Mapping. Curr Genomics 2008; 8:137-49. [PMID: 18660850 DOI: 10.2174/138920207780368178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 02/22/2007] [Accepted: 02/27/2007] [Indexed: 11/22/2022] Open
Abstract
The availability of complete human and other metazoan genome sequences has greatly facilitated positioning and analysis of various genomic functional elements, with initial emphasis on coding sequences. However, complete functional maps of sequenced eukaryotic genomes should include also positions of all non-coding regulatory elements. Unfortunately, experimental data on genomic positions of a multitude of regulatory sequences, such as enhancers, silencers, insulators, transcription terminators, and replication origins are very limited, especially at the whole genome level. Since most genomic regulatory elements (e.g. enhancers) are generally gene-, tissue-, or cell-specific, the prediction of these elements by computational methods is difficult and often ambiguous. Therefore, the development of high-throughput experimental approaches for identifying and mapping genomic functional elements is highly desirable. At the same time, the creation of whole-genome map of hundreds of thousands of regulatory elements in several hundreds of tissue/cell types is presently far beyond our capabilities. A possible alternative for the whole genome approach is to concentrate efforts on individual genomic segments and then to integrate the data obtained into a whole genome functional map. Moreover, the maps of polygenic fragments with functional cis-regulatory elements would provide valuable data on complex regulatory systems, including their variability and evolution. Here, we reviewed experimental approaches to the realization of these ideas, including our own developments of experimental techniques for selection of cis-acting functionally active DNA fragments from large (megabase-sized) segments of mammalian genomes.
Collapse
Affiliation(s)
- Lev G Nikolaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya,117997, Moscow, Russia
| | | | | | | |
Collapse
|
13
|
Akopov SB, Chernov IP, Vetchinova AS, Bulanenkova SS, Nikolaev LG. Identification and mapping of cis-regulatory elements within long genomic sequences. Mol Biol 2007. [DOI: 10.1134/s0026893307050056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|