1
|
Connor T, McPhillips M, Hipwell M, Ziolkowski A, Oldmeadow C, Clapham M, Pockney PG, Lis E, Banasiewicz T, Pławski A, Scott RJ. CD36 polymorphisms and the age of disease onset in patients with pathogenic variants within the mutation cluster region of APC. Hered Cancer Clin Pract 2021; 19:25. [PMID: 33926505 PMCID: PMC8086281 DOI: 10.1186/s13053-021-00183-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/20/2021] [Indexed: 12/30/2022] Open
Abstract
Background Familial adenomatous polyposis (FAP) is an autosomal dominant condition that predisposes patients to colorectal cancer. FAP is the result of a loss of APC function due to germline pathogenic variants disrupting gene expression. Genotype-phenotype correlations are described for FAP. For example attenuated forms of the disease are associated with pathogenic variants at the 5’ and 3’ ends of APC whilst severe forms of the disease appear to be linked to variants occurring in the mutation cluster region (MCR) of the gene. Variants occurring in the MCR are phenotypically associated with hundreds to thousands of adenomas carpeting the colon and rectum and patients harbouring changes in this region have a high propensity to develop colorectal cancer. Not all patients who carry pathogenic variants in this region have severe disease which may be a result of environmental factors. Alternatively, phenotypic variation observed in these patients could be due to modifier genes that either promote or inhibit disease expression. Mouse models of FAP have provided several plausible candidate modifier genes, but very few of these have survived scrutiny. One such genetic modifier that appears to be associated with disease expression is CD36. We previously reported a weak association between a polymorphism in CD36 and a later age of disease onset on a relatively small FAP patient cohort. Methods In the current study, we enlarged the FAP cohort. 395 patients all carrying pathogenic variants in APC were tested against three CD36 Single Nucleotide Polymorphisms (SNP)s (rs1049673, rs1761667 rs1984112), to determine if any of them were associated with differences in the age of disease expression. Results Overall, there appeared to be a statistically significant difference in the age of disease onset between carriers of the variant rs1984112 and wildtype. Furthermore, test equality of survivor functions for each SNP and mutation group suggested an interaction in the Log Rank, Wilcoxon, and Tarone-Ware methods for rs1049673, rs1761667, and rs1984112, thereby supporting the notion that CD36 modifies disease expression. Conclusions This study supports and strengthens our previous findings concerning CD36 and an association with disease onset in FAP, AFAP and FAP-MCR affected individuals. Knowledge about the role CD36 in adenoma development may provide greater insight into the development of colorectal cancer.
Collapse
Affiliation(s)
- T Connor
- School of Biomedical Sciences, Faculty of Health, University of Newcastle, Callaghan Campus, NSW, 2308, Newcastle, Australia
| | - M McPhillips
- Division of Molecular Medicine, NSW Health Pathology North, 2305, New Lambton, NSW, Australia
| | - M Hipwell
- Division of Molecular Medicine, NSW Health Pathology North, 2305, New Lambton, NSW, Australia
| | - A Ziolkowski
- Division of Molecular Medicine, NSW Health Pathology North, 2305, New Lambton, NSW, Australia
| | - C Oldmeadow
- Centre for Clinical Epidemiology and Biostatistics, University of Newcastle, Newcastle, NSW, Australia
| | - M Clapham
- Centre for Clinical Epidemiology and Biostatistics, University of Newcastle, Newcastle, NSW, Australia
| | - P G Pockney
- Department of Surgery, John Hunter Hospital, Newcastle, Australia
| | - E Lis
- Department of General, Endocrinological Surgery and Gastroenterological Oncology, Poznan University of Medical Sciences, Poznan, Poland.,Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - T Banasiewicz
- Department of General, Endocrinological Surgery and Gastroenterological Oncology, Poznan University of Medical Sciences, Poznan, Poland
| | - A Pławski
- Department of General, Endocrinological Surgery and Gastroenterological Oncology, Poznan University of Medical Sciences, Poznan, Poland.,Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - R J Scott
- School of Biomedical Sciences, Faculty of Health, University of Newcastle, Callaghan Campus, NSW, 2308, Newcastle, Australia. .,Division of Molecular Medicine, NSW Health Pathology North, 2305, New Lambton, NSW, Australia. .,Hunter Medical Research Institute, John Hunter Hospital, 2305, New Lambton, NSW, Australia.
| |
Collapse
|
2
|
Holmes M, Connor T, Oldmeadow C, Pockney PG, Scott RJ, Talseth-Palmer BA. CD36 - a plausible modifier of disease phenotype in familial adenomatous polyposis. Hered Cancer Clin Pract 2018; 16:14. [PMID: 30065793 PMCID: PMC6064055 DOI: 10.1186/s13053-018-0096-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/19/2018] [Indexed: 12/31/2022] Open
Abstract
Background Familial adenomatous polyposis (FAP) is a well characterised genetic predisposition to early onset colorectal cancer (CRC) that is characterised by polyposis of the colon and rectum. Animal models have consistently suggested the role of modifier genes in determining disease phenotype, yet none have been substantiated in the human population. The mouse homologue of cluster of differentiation 36 (CD36) has been proposed as a modifier of disease in the MIN mouse model of FAP. Methods Three single nucleotide polymorphisms (SNPs); rs1049673, rs1761667 and rs1984112 in CD36, have been investigated in 275 FAP patients to determine if they were associated with age of polyposis or risk of developing disease. Results The results revealed a substantially lower age of polyposis diagnosis for patients belonging to the severe FAP group (harbouring adenomatous polyposis coli (APC) variants in the mutation cluster region (MCR)) and high age for patients in the attenuated familial adenomatous polyposis (AFAP) group for SNPs rs1761667 and rs1984112. Conclusions This study provides evidence for patients belonging to the MCR and AFAP groups harbouring specific genotypes for SNPs in CD36 to initiate screening/treatment for FAP at much earlier (MCR) and much later (AFAP) ages than the norm in today’s clinical practice. The findings need to be verified in an independent FAP patient cohort.
Collapse
Affiliation(s)
- Merran Holmes
- 1School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW Australia.,2Department of Surgery, John Hunter Hospital, Newcastle, Australia
| | - Toni Connor
- 1School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW Australia.,Pathology North, NSW Health Pathology, Newcastle, Australia
| | - Christopher Oldmeadow
- 4Centre for Clinical Epidemiology and Biostatistics, University of Newcastle, Newcastle, NSW Australia
| | - Peter G Pockney
- 1School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW Australia.,2Department of Surgery, John Hunter Hospital, Newcastle, Australia
| | - Rodney J Scott
- Pathology North, NSW Health Pathology, Newcastle, Australia.,5School of Biomedical Science and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Bente A Talseth-Palmer
- 5School of Biomedical Science and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia.,6Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic for Medicine, Møre og Romsdal Hospital Trust, Molde, Norway
| |
Collapse
|
4
|
Talseth-Palmer BA. The genetic basis of colonic adenomatous polyposis syndromes. Hered Cancer Clin Pract 2017; 15:5. [PMID: 28331556 PMCID: PMC5353802 DOI: 10.1186/s13053-017-0065-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 03/07/2017] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common forms of cancer worldwide and familial adenomatous polyposis (FAP) accounts for approximately 1% of all CRCs. Adenomatous polyposis syndromes can be divided into; familial adenomatous polyposis (FAP) – classic FAP and attenuated familial adenomatous polyposis (AFAP), MUTYH-associated polyposis (MAP), NTHL1-associated polyposis (NAP) and polymerase proofreading-associated polyposis (PPAP). The polyposis syndromes genetics and clinical manifestation of disease varies and cases with clinical diagnosis of FAP might molecularly show a different diagnosis. This review examines different aspects of the adenomatous polyposis syndromes genetics and clinical manifestation of disease; in addition the genotype-phenotype and modifier alleles of FAP will be discussed. New technology has made it possible to diagnose some of the APC mutation negative patients into their respective syndromes. There still remain many molecularly undiagnosed adenomatous polyposis patients indicating that there remain causative genes to be discovered and with today’s technology these are expected to be identified in the near future. The knowledge about the role of modifier alleles in FAP will contribute to improved pre-symptomatic diagnosis and treatment. New novel mutations will continually be discovered in genes already associated with disease and new genes will be discovered that are associated with adenomatous polyposis. The search for modifier alleles in FAP should be made a priority.
Collapse
Affiliation(s)
- Bente A Talseth-Palmer
- Department of Laboratory Medicine, Children's and Women's Health, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, 7491 Norway.,Clinic for Medicine, Møre og Romsdal Hospital Trust, Molde, Norway.,School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW Australia.,Hunter Medical Research Institute, Newcastle, NSW Australia.,Clinic for Medicine, Library, Molde Hospital, Parkvegen 84, Molde, 6407 Norway
| |
Collapse
|
5
|
Otterpohl KL, Gould KA. Evaluation of Rint1 as a modifier of intestinal tumorigenesis and cancer risk. PLoS One 2017; 12:e0172247. [PMID: 28264000 PMCID: PMC5339343 DOI: 10.1371/journal.pone.0172247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/01/2017] [Indexed: 11/18/2022] Open
Abstract
The Rad50 Interacting Protein 1 (Rint1) influences cellular homeostasis through maintenance of endoplasmic reticulum, Golgi and centrosome integrity and regulation of vesicle transport, autophagy and the G2/M checkpoint. Rint1 has been postulated to function as a tumor suppressor as well as an oncogene, with its role depending perhaps upon the precise cellular and/or experimental context. In humans, heterozygosity for germline missense variants in RINT1 have, in some studies, been associated with increased risk of both breast and Lynch syndrome type cancers. However, it is not known if these germline variants represent loss of function alleles or gain of function alleles. Based upon these findings, as well as our initial consideration of Rint1 as a potential candidate for Mom5, a genetic modifier of intestinal tumorigenesis in ApcMin/+ mice, we sought to explicitly examine the impact of Rint1 on tumorigenesis in ApcMin/+ mice. However, heterozygosity for a knockout of Rint1 had no impact on tumorigenesis in Rint1+/-; ApcMin/+ mice. Likewise, we found no evidence to suggest that the remaining Rint1 allele was lost somatically in intestinal tumors in ApcMin/+ mice. Interestingly, in contrast to what has been observed in Rint1+/- mice on a mixed genetic background, Rint1+/- mice on a pure C57BL/6J background did not show spontaneous tumor development. We also evaluated colorectal cancer data available in the COSMIC and ONCOMINE databases and found that RINT1 overexpression, as well as the presence of somatic missense mutations in RINT1 were associated with colorectal cancer development. In vitro evaluation of two missense variants in RINT1 suggested that such variants do have the potential to impact RINT1 function.
Collapse
Affiliation(s)
- Karla L. Otterpohl
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Karen A. Gould
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| |
Collapse
|
6
|
Abstract
Somatic recombination is essential to protect genomes of somatic cells from DNA damage but it also has important clinical implications, as it is a driving force of tumorigenesis leading to inactivation of tumor suppressor genes. Despite this importance, our knowledge about somatic recombination in adult tissues remains very limited. Our recent work, using the Drosophila adult midgut has demonstrated that spontaneous events of mitotic recombination accumulate in aging adult intestinal stem cells and result in frequent loss of heterozygosity (LOH). In this Extra View article, we provide further data supporting long-track chromosome LOH and discuss potential mechanisms involved in the process. In addition, we further discuss relevant questions surrounding somatic recombination and how the mechanisms and factors influencing somatic recombination in adult tissues can be explored using the Drosophila midgut model.
Collapse
Affiliation(s)
- Katarzyna Siudeja
- a Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis group , Paris , France , Sorbonne Universités, UPMC Univ Paris 6 , Paris , France
| | - Allison J Bardin
- a Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis group , Paris , France , Sorbonne Universités, UPMC Univ Paris 6 , Paris , France
| |
Collapse
|