1
|
Charvet CJ, de Sousa AA, Vassilopoulos T. Translating time: Challenges, progress, and future directions. Brain Res Bull 2025; 221:111212. [PMID: 39824228 PMCID: PMC11904871 DOI: 10.1016/j.brainresbull.2025.111212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Mice are the dominant model system to study human health and disease. Yet, there is a pressing need to use diverse model systems to address long-standing issues in biomedical sciences. Mice do not spontaneously recapitulate many of the diseases we seek to study. Accordingly, the relevance of studying mice to understand human disease is limited. We discuss examples associated with limitations of the mouse model, and how the inclusion of a richer array of model systems can help address long standing issues in biomedical sciences. We also discuss a tool called Translating Time, an online resource (www.translatingtime.org) that equates corresponding ages across model systems and humans. The translating time resource can be used to bridge the gap across species and make predictions when data are sparse or unavailable as is the case for human fetal development. Moreover, the Translating Time tool can map findings across species, make inferences about the evolution of shared neuropathologies, and inform the optimal model system for studying human biology in health and in disease. Resources such as these can be utilized to integrate information across diverse model systems to improve the study of human biology in health and disease.
Collapse
Affiliation(s)
- Christine J Charvet
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| | - Alexandra A de Sousa
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| | - Tatianna Vassilopoulos
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
2
|
Stone D, Aubert M, Jerome KR. Adeno-associated virus vectors and neurotoxicity-lessons from preclinical and human studies. Gene Ther 2025; 32:60-73. [PMID: 37165032 PMCID: PMC11247785 DOI: 10.1038/s41434-023-00405-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 05/12/2023]
Abstract
Over 15 years after hepatotoxicity was first observed following administration of an adeno-associated virus (AAV) vector during a hemophilia B clinical trial, recent reports of treatment-associated neurotoxicity in animals and humans have brought the potential impact of AAV-associated toxicity back to prominence. In both pre-clinical studies and clinical trials, systemic AAV administration has been associated with neurotoxicity in peripheral nerve ganglia and spinal cord. Neurological signs have also been seen following direct AAV injection into the brain, both in non-human primates and in a clinical trial for late infantile Batten disease. Neurotoxic events appear variable across species, and preclinical animal studies do not fully predict clinical observations. Accumulating data suggest that AAV-associated neurotoxicity may be underdiagnosed and may differ between species in terms of frequency and/or severity. In this review, we discuss the different animal models that have been used to demonstrate AAV-associated neurotoxicity, its potential causes and consequences, and potential approaches to blunt AAV-associated neurotoxicity.
Collapse
Affiliation(s)
- Daniel Stone
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Martine Aubert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Keith R Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Wang Y, Kuca K, You L, Nepovimova E, Heger Z, Valko M, Adam V, Wu Q, Jomova K. The role of cellular senescence in neurodegenerative diseases. Arch Toxicol 2024; 98:2393-2408. [PMID: 38744709 PMCID: PMC11272704 DOI: 10.1007/s00204-024-03768-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024]
Abstract
Increasing evidence has revealed that cellular senescence drives NDs, including Alzheimer's disease (AD) and Parkinson's disease. Different senescent cell populations secrete senescence-associated secretory phenotypes (SASP), including matrix metalloproteinase-3, interleukin (IL)-1α, IL-6, and IL-8, which can harm adjacent microglia. Moreover, these cells possess high expression levels of senescence hallmarks (p16 and p21) and elevated senescence-associated β-galactosidase activity in in vitro and in vivo ND models. These senescence phenotypes contribute to the deposition of β-amyloid and tau-protein tangles. Selective clearance of senescent cells and SASP regulation by inhibiting p38/mitogen-activated protein kinase and nuclear factor kappa B signaling attenuate β-amyloid load and prevent tau-protein tangle deposition, thereby improving cognitive performance in AD mouse models. In addition, telomere shortening, a cellular senescence biomarker, is associated with increased ND risks. Telomere dysfunction causes cellular senescence, stimulating IL-6, tumor necrosis factor-α, and IL-1β secretions. The forced expression of telomerase activators prevents cellular senescence, yielding considerable neuroprotective effects. This review elucidates the mechanism of cellular senescence in ND pathogenesis, suggesting strategies to eliminate or restore senescent cells to a normal phenotype for treating such diseases.
Collapse
Affiliation(s)
- Yating Wang
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, 500 05, Hradec Kralove, Czech Republic
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing, 401520, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China.
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic.
| | - Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74, Nitra, Slovakia.
| |
Collapse
|
4
|
Krut' VG, Kalinichenko AL, Maltsev DI, Jappy D, Shevchenko EK, Podgorny OV, Belousov VV. Optogenetic and chemogenetic approaches for modeling neurological disorders in vivo. Prog Neurobiol 2024; 235:102600. [PMID: 38548126 DOI: 10.1016/j.pneurobio.2024.102600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/26/2024] [Accepted: 03/22/2024] [Indexed: 04/01/2024]
Abstract
Animal models of human neurological disorders provide valuable experimental tools which enable us to study various aspects of disorder pathogeneses, ranging from structural abnormalities and disrupted metabolism and signaling to motor and mental deficits, and allow us to test novel therapies in preclinical studies. To be valid, these animal models should recapitulate complex pathological features at the molecular, cellular, tissue, and behavioral levels as closely as possible to those observed in human subjects. Pathological states resembling known human neurological disorders can be induced in animal species by toxins, genetic factors, lesioning, or exposure to extreme conditions. In recent years, novel animal models recapitulating neuropathologies in humans have been introduced. These animal models are based on synthetic biology approaches: opto- and chemogenetics. In this paper, we review recent opto- and chemogenetics-based animal models of human neurological disorders. These models allow for the creation of pathological states by disrupting specific processes at the cellular level. The artificial pathological states mimic a range of human neurological disorders, such as aging-related dementia, Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, epilepsy, and ataxias. Opto- and chemogenetics provide new opportunities unavailable with other animal models of human neurological disorders. These techniques enable researchers to induce neuropathological states varying in severity and ranging from acute to chronic. We also discuss future directions for the development and application of synthetic biology approaches for modeling neurological disorders.
Collapse
Affiliation(s)
- Viktoriya G Krut'
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia
| | - Andrei L Kalinichenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Dmitry I Maltsev
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - David Jappy
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia
| | - Evgeny K Shevchenko
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia
| | - Oleg V Podgorny
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia.
| | - Vsevolod V Belousov
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; Life Improvement by Future Technologies (LIFT) Center, Skolkovo, Moscow 143025, Russia.
| |
Collapse
|
5
|
Zhao H, Li Y, Zhang Y, Zhang C. Changes in myelinated nerve fibers induced by pulsed electrical stimulation: A microstructural perspective on the causes of electrical stimulation side effects. Biochem Biophys Res Commun 2024; 691:149331. [PMID: 38039835 DOI: 10.1016/j.bbrc.2023.149331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/17/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Electrical brain stimulation technology is widely used in the clinic to treat brain neurological disorders. However, during treatment, patients may experience side effects such as pain, poor limb coordination, and skin rash. Previous reports have focused on the brilliant chapter on electrical brain stimulation technology and have not paid attention to patients' suffering caused by side effects during treatment. In this study, electrodes were arranged on the medulla oblongata. Pulsed electric fields of different frequencies were used to perform electrical stimulation to study the impact of electric fields on myelinated nerve fibers and reveal the possible microstructural origin of side effects. Transmission electron microscopy was used to analyze and quantify the changes in microstructure. The results illustrated that myelinated nerve fibers underwent atrophy under pulsed electric fields, with the mildest degree of atrophy under high-frequency (400 Hz) electric fields. Myelin sheaths experienced plate separation under pulsed electric fields, and a distinct laminar structure appeared. The microstructure changes may be related to the side effects of clinical electrical stimulation. This study can provide pathological possibilities for exploring the causes of the side effects of electrical stimulation and supply guidance for selecting electrical parameters for clinical electrical stimulation therapy from a distinctive perspective.
Collapse
Affiliation(s)
- Hongwei Zhao
- Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, Changchun, 130025, PR China; School of Mechanical & Aerospace Engineering, Jilin University, Changchun, 130025, PR China; Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, PR China; Chongqing Research Institute of Jilin University, Chongqing, 401120, PR China
| | - Yiqiang Li
- Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, Changchun, 130025, PR China; School of Mechanical & Aerospace Engineering, Jilin University, Changchun, 130025, PR China; Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, PR China; Chongqing Research Institute of Jilin University, Chongqing, 401120, PR China
| | - Yibo Zhang
- Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, Changchun, 130025, PR China; School of Mechanical & Aerospace Engineering, Jilin University, Changchun, 130025, PR China; Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, PR China; Chongqing Research Institute of Jilin University, Chongqing, 401120, PR China
| | - Chi Zhang
- Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, Changchun, 130025, PR China; School of Mechanical & Aerospace Engineering, Jilin University, Changchun, 130025, PR China; Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, PR China; Chongqing Research Institute of Jilin University, Chongqing, 401120, PR China.
| |
Collapse
|
6
|
Chakraborty P, Bhattacharyya C, Sahu R, Dua TK, Kandimalla R, Dewanjee S. Polymeric nanotherapeutics: An emerging therapeutic approach for the management of neurodegenerative disorders. J Drug Deliv Sci Technol 2024; 91:105267. [DOI: 10.1016/j.jddst.2023.105267] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Skiba SA, Hansen A, McCall R, Byers A, Waldron S, Epping AJ, Taglialatela JP, Hudson ML. Linked OXTR Variants Are Associated with Social Behavior Differences in Bonobos ( Pan paniscus). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573122. [PMID: 38187727 PMCID: PMC10769379 DOI: 10.1101/2023.12.22.573122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Single-nucleotide polymorphisms (SNPs) in forkhead box protein P2 (FOXP2) and oxytocin receptor (OXTR) genes have been associated with linguistic and social development in humans, as well as to symptom severity in autism spectrum disorder (ASD). Studying biobehavioral mechanisms in the species most closely related to humans can provide insights into the origins of human communication, and the impact of genetic variation on complex behavioral phenotypes. Here, we aimed to determine if bonobos (Pan paniscus) exhibit individual variation in FOXP2 and OXTR loci that have been associated with human social development and behavior. Although the ASD-related variants were reported in 13-41% of the human population, we did not find variation at these loci in our sample of 13 bonobos. However, we did identify a novel variant in bonobo FOXP2, as well as four novel variants in bonobo OXTR that were 17-184 base pairs from the human ASD variants. We also found the same linked, homozygous allelic combination across the 4 novel OXTR SNPs (homozygous TGTC) in 6 of the 13 bonobos, indicating that this combination may be under positive selection. When comparing the combined OXTR genotypes, we found significant group differences in social behavior; bonobos with zero copies of the TGTC combination were less social than bonobos with one copy of the TGTC combination. Taken together, our findings suggest that these OXTR variants may influence individual-level social behavior in bonobos and support the notion that linked genetic variants are promising risk factors for social communication deficits in humans.
Collapse
Affiliation(s)
- Sara A. Skiba
- Ape Cognition and Conservation Initiative (Ape Initiative), Des Moines, IA
| | - Alek Hansen
- Kennesaw State University, Department of Molecular and Cellular Biology, Kennesaw, GA
| | - Ryan McCall
- Kennesaw State University, Department of Molecular and Cellular Biology, Kennesaw, GA
| | - Azeeza Byers
- Kennesaw State University, Department of Molecular and Cellular Biology, Kennesaw, GA
- Kennesaw State University, Department of Ecology, Evolution, and Organismal Biology, Kennesaw, GA
| | - Sarah Waldron
- Kennesaw State University, Department of Molecular and Cellular Biology, Kennesaw, GA
| | - Amanda J. Epping
- Ape Cognition and Conservation Initiative (Ape Initiative), Des Moines, IA
| | - Jared P. Taglialatela
- Ape Cognition and Conservation Initiative (Ape Initiative), Des Moines, IA
- Kennesaw State University, Department of Ecology, Evolution, and Organismal Biology, Kennesaw, GA
| | - Martin L. Hudson
- Kennesaw State University, Department of Molecular and Cellular Biology, Kennesaw, GA
| |
Collapse
|
8
|
Kelty TJ, Taylor CL, Wieschhaus NE, Thorne PK, Amin AR, Mueller CM, Olver TD, Tharp DL, Emter CA, Caulk AW, Rector RS. Western diet-induced obesity results in brain mitochondrial dysfunction in female Ossabaw swine. Front Mol Neurosci 2023; 16:1320879. [PMID: 38163062 PMCID: PMC10755880 DOI: 10.3389/fnmol.2023.1320879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024] Open
Abstract
Diet-induced obesity is implicated in the development of a variety of neurodegenerative disorders. Concurrently, the loss of mitochondrial Complex I protein or function is emerging as a key phenotype across an array of neurodegenerative disorders. Therefore, the objective of this study was to determine if Western diet (WD) feeding in swine [carbohydrate = 40.8% kCal (17.8% of total calories from high fructose corn syrup), protein = 16.2% kcal, fat = 42.9% kCal, and 2% cholesterol] would result in Complex I syndrome pathology. To characterize the effects of WD-induced obesity on brain mitochondria in swine, high resolution respirometry measurements from isolated brain mitochondria, oxidative phosphorylation Complex expression, and indices of oxidative stress and mitochondrial biogenesis were assessed in female Ossabaw swine fed a WD for 6-months. In line with Complex I syndrome, WD feeding severely reduced State 3 Complex I, State 3 Complex I and II, and uncoupled mitochondrial respiration in the hippocampus and prefrontal cortex (PFC). State 3 Complex I mitochondrial respiration in the PFC inversely correlated with serum total cholesterol. WD feeding also significantly reduced protein expression of oxidative phosphorylation Complexes I-V in the PFC. WD feeding significantly increased markers of antioxidant defense and mitochondrial biogenesis in the hippocampi and PFC. These data suggest WD-induced obesity may contribute to Complex I syndrome pathology by increasing oxidative stress, decreasing oxidative phosphorylation Complex protein expression, and reducing brain mitochondrial respiration. Furthermore, these findings provide mechanistic insight into the clinical link between obesity and mitochondrial Complex I related neurodegenerative disorders.
Collapse
Affiliation(s)
- Taylor J. Kelty
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| | - Chris L. Taylor
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| | | | - Pamela K. Thorne
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| | - Amira R. Amin
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| | - Christina M. Mueller
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| | - T. Dylan Olver
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Darla L. Tharp
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| | - Craig A. Emter
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| | | | - R. Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, United States
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
9
|
Powell K, Lin K, Tambo W, Saavedra AP, Sciubba D, Al Abed Y, Li C. Trigeminal nerve stimulation: a current state-of-the-art review. Bioelectron Med 2023; 9:30. [PMID: 38087375 PMCID: PMC10717521 DOI: 10.1186/s42234-023-00128-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/04/2023] [Indexed: 09/26/2024] Open
Abstract
Nearly 5 decades ago, the effect of trigeminal nerve stimulation (TNS) on cerebral blood flow was observed for the first time. This implication directly led to further investigations and TNS' success as a therapeutic intervention. Possessing unique connections with key brain and brainstem regions, TNS has been observed to modulate cerebral vasodilation, brain metabolism, cerebral autoregulation, cerebral and systemic inflammation, and the autonomic nervous system. The unique range of effects make it a prime therapeutic modality and have led to its clinical usage in chronic conditions such as migraine, prolonged disorders of consciousness, and depression. This review aims to present a comprehensive overview of TNS research and its broader therapeutic potentialities. For the purpose of this review, PubMed and Google Scholar were searched from inception to August 28, 2023 to identify a total of 89 relevant studies, both clinical and pre-clinical. TNS harnesses the release of vasoactive neuropeptides, modulation of neurotransmission, and direct action upon the autonomic nervous system to generate a suite of powerful multitarget therapeutic effects. While TNS has been applied clinically to chronic pathological conditions, these powerful effects have recently shown great potential in a number of acute/traumatic pathologies. However, there are still key mechanistic and methodologic knowledge gaps to be solved to make TNS a viable therapeutic option in wider clinical settings. These include bimodal or paradoxical effects and mechanisms, questions regarding its safety in acute/traumatic conditions, the development of more selective stimulation methods to avoid potential maladaptive effects, and its connection to the diving reflex, a trigeminally-mediated protective endogenous reflex. The address of these questions could overcome the current limitations and allow TNS to be applied therapeutically to an innumerable number of pathologies, such that it now stands at the precipice of becoming a ground-breaking therapeutic modality.
Collapse
Affiliation(s)
- Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Kanheng Lin
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Emory University, Atlanta, GA, USA
| | - Willians Tambo
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | - Daniel Sciubba
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Yousef Al Abed
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.
- Elmezzi Graduate School of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
10
|
Pavlinov I, Tambe M, Abbott J, Nguyen HN, Xu M, Pradhan M, Farkhondeh A, Zheng W. In depth characterization of midbrain organoids derived from wild type iPSC lines. PLoS One 2023; 18:e0292926. [PMID: 37862312 PMCID: PMC10588847 DOI: 10.1371/journal.pone.0292926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/02/2023] [Indexed: 10/22/2023] Open
Abstract
The ability to model human neurological tissues in vitro has been a major hurdle to effective drug development for neurological disorders. iPSC-derived brain organoids have emerged as a compelling solution to this problem as they have the potential to relevantly model the protein expression pattern and physiology of specific brain regions. Although many protocols now exist for the production of brain organoids, few attempts have been made to do an in-depth kinetic evaluation of expression of mature regiospecific markers of brain organoids. To address this, we differentiated midbrain-specific brain organoids from iPSC-lines derived from three apparently healthy individuals using a matrix-free, bioreactor method. We monitored the expression of midbrain-specific neuronal markers from 7 to 90-days using immunofluorescence and immunohistology. The organoids were further characterized using electron microscopy and RNA-seq. In addition to serving as a potential benchmark for the future evaluation of other differentiation protocols, the markers observed in this study can be useful as control parameters to identify and evaluate the disease phenotypes in midbrain organoid derived from patient iPSC-lines with genetic neurological disorders.
Collapse
Affiliation(s)
- Ivan Pavlinov
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States of America
| | - Mitali Tambe
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States of America
| | - Joshua Abbott
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States of America
| | - Ha Nam Nguyen
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- 3Dnamics, Inc., Baltimore, MD, United States of America
| | - Miao Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States of America
| | - Manisha Pradhan
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States of America
| | - Atena Farkhondeh
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States of America
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
11
|
Liu L, Tong H, Sun Y, Chen X, Yang T, Zhou G, Li XJ, Li S. Huntingtin Interacting Proteins and Pathological Implications. Int J Mol Sci 2023; 24:13060. [PMID: 37685866 PMCID: PMC10488016 DOI: 10.3390/ijms241713060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Huntington's disease (HD) is caused by an expansion of a CAG repeat in the gene that encodes the huntingtin protein (HTT). The exact function of HTT is still not fully understood, and previous studies have mainly focused on identifying proteins that interact with HTT to gain insights into its function. Numerous HTT-interacting proteins have been discovered, shedding light on the functions and structure of HTT. Most of these proteins interact with the N-terminal region of HTT. Among the various HTT-interacting proteins, huntingtin-associated protein 1 (HAP1) and HTT-interacting protein 1 (HIP1) have been extensively studied. Recent research has uncovered differences in the distribution of HAP1 in monkey and human brains compared with mice. This finding suggests that there may be species-specific variations in the regulation and function of HTT-interacting proteins. Understanding these differences could provide crucial insights into the development of HD. In this review, we will focus on the recent advancements in the study of HTT-interacting proteins, with particular attention to the differential distributions of HTT and HAP1 in larger animal models.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shihua Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of Central Nervous System Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510623, China; (L.L.); (H.T.); (Y.S.); (X.C.); (T.Y.); (G.Z.); (X.-J.L.)
| |
Collapse
|
12
|
Zhang C, Li Y, Yang L, Zhao H. Regulation of local alternating electric fields on synaptic plasticity in brain tissue. Biomed Eng Lett 2023; 13:391-396. [PMID: 37519881 PMCID: PMC10382455 DOI: 10.1007/s13534-023-00287-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/04/2023] [Accepted: 05/14/2023] [Indexed: 08/01/2023] Open
Abstract
Purpose External electric fields can regulate the neural network and change the excitability of the in-vivo cerebral cortex. Here, to prove the effect of alternating electric fields on the synaptic plasticity of ex-vivo tissues, the regular changes in the synaptic structure under alternating electric fields were studied. Methods This study applied alternating electric fields with a peak voltage of 20 V and frequencies of 5, 20, 50, and 80 Hz to the porcine cerebral cortex. Relying on transmission electron microscopy (TEM), the ultrastructure of synapses was observed, and the curvature radius of post-synaptic density (PSD) and the synaptic gap distance was quantified. Results The results indicated that under alternating electric fields, the average synaptic curvature of the PSD decreased by 30-59% with increasing frequency, and the average synaptic gap distance became narrower. Conclusion In ex-vivo brain tissue, synaptic plasticity can be regulated by alternating electric fields of different frequencies. This study can provide reference data for the storage and regulation of ex-vivo organs, as well as comparable data for in-vivo studies.
Collapse
Affiliation(s)
- Chi Zhang
- School of Mechanical & Aerospace Engineering, Jilin University, 5988 Renmin Street, Changchun, 130025 P. R. China
- Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun, 130025 P. R. China
| | - Yiqiang Li
- School of Mechanical & Aerospace Engineering, Jilin University, 5988 Renmin Street, Changchun, 130025 P. R. China
- Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun, 130025 P. R. China
| | - Li Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062 P. R. China
| | - Hongwei Zhao
- School of Mechanical & Aerospace Engineering, Jilin University, 5988 Renmin Street, Changchun, 130025 P. R. China
- Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun, 130025 P. R. China
| |
Collapse
|
13
|
Katanaev VL. Humanization for neurological disease modeling: A roadmap to increase the potential of Drosophila model systems. Animal Model Exp Med 2023; 6:230-236. [PMID: 37323110 PMCID: PMC10272901 DOI: 10.1002/ame2.12322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/03/2023] [Indexed: 06/17/2023] Open
Abstract
Neuroscience and neurology research is dominated by experimentation with rodents. Around 75% of neurology disease-associated genes have orthologs in Drosophila melanogaster, the fruit fly amenable to complex neurological and behavioral investigations. However, non-vertebrate models including Drosophila have so far been unable to significantly replace mice and rats in this field of studies. One reason for this situation is the predominance of gene overexpression (and gene loss-of-function) methodologies used when establishing a Drosophila model of a given neurological disease, a strategy that does not recapitulate accurately enough the genetic disease conditions. I argue here the need for a systematic humanization approach, whereby the Drosophila orthologs of human disease genes are replaced with the human sequences. This approach will identify the list of diseases and the underlying genes that can be adequately modeled in the fruit fly. I discuss the neurological disease genes to which this systematic humanization approach should be applied and provide an example of such an application, and consider its importance for subsequent disease modeling and drug discovery in Drosophila. I argue that this paradigm will not only advance our understanding of the molecular etiology of a number of neurological disorders, but will also gradually enable researchers to reduce experimentation using rodent models of multiple neurological diseases and eventually replace these models.
Collapse
Affiliation(s)
- Vladimir L. Katanaev
- Department of Cell Physiology and Metabolism, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
- HumanaFly Facility, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
14
|
Sorby-Adams AJ, Marian OC, Bilecki IM, Elms LE, Camargo J, Hall K, Crowther RG, Leonard AV, Wadsworth GI, Spear JH, Turner RJ, Jones CF. Neurological scoring and gait kinematics to assess functional outcome in an ovine model of ischaemic stroke. Front Neurol 2023; 14:1071794. [PMID: 36891474 PMCID: PMC9986303 DOI: 10.3389/fneur.2023.1071794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/27/2023] [Indexed: 02/22/2023] Open
Abstract
Background Assessment of functional impairment following ischaemic stroke is essential to determine outcome and efficacy of intervention in both clinical patients and pre-clinical models. Although paradigms are well described for rodents, comparable methods for large animals, such as sheep, remain limited. This study aimed to develop methods to assess function in an ovine model of ischaemic stroke using composite neurological scoring and gait kinematics from motion capture. Methods Merino sheep (n = 26) were anaesthetised and subjected to 2 hours middle cerebral artery occlusion. Animals underwent functional assessment at baseline (8-, 5-, and 1-day pre-stroke), and 3 days post-stroke. Neurological scoring was carried out to determine changes in neurological status. Ten infrared cameras measured the trajectories of 42 retro-reflective markers for calculation of gait kinematics. Magnetic resonance imaging (MRI) was performed at 3 days post-stroke to determine infarct volume. Intraclass Correlation Coefficients (ICC's) were used to assess the repeatability of neurological scoring and gait kinematics across baseline trials. The average of all baselines was used to compare changes in neurological scoring and kinematics at 3 days post-stroke. A principal component analysis (PCA) was performed to determine the relationship between neurological score, gait kinematics, and infarct volume post-stroke. Results Neurological scoring was moderately repeatable across baseline trials (ICC > 0.50) and detected marked impairment post-stroke (p < 0.05). Baseline gait measures showed moderate to good repeatability for the majority of assessed variables (ICC > 0.50). Following stroke, kinematic measures indicative of stroke deficit were detected including an increase in stance and stride duration (p < 0.05). MRI demonstrated infarction involving the cortex and/or thalamus (median 2.7 cm3, IQR 1.4 to 11.9). PCA produced two components, although association between variables was inconclusive. Conclusion This study developed repeatable methods to assess function in sheep using composite scoring and gait kinematics, allowing for the evaluation of deficit 3 days post-stroke. Despite utility of each method independently, there was poor association observed between gait kinematics, composite scoring, and infarct volume on PCA. This suggests that each of these measures has discreet utility for the assessment of stroke deficit, and that multimodal approaches are necessary to comprehensively characterise functional impairment.
Collapse
Affiliation(s)
- Annabel J Sorby-Adams
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Oana C Marian
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Isabella M Bilecki
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Levi E Elms
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Jonathan Camargo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Kelly Hall
- School of Public Health, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Robert G Crowther
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, SA, Australia
| | - Anna V Leonard
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - George I Wadsworth
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Joshua H Spear
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Renée J Turner
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Claire F Jones
- School of Mechanical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, Australia.,Adelaide Spinal Research Group, Centre for Orthopaedics and Trauma Research, The University of Adelaide, North Terrace, SA, Australia.,Department of Orthopaedics and Trauma, Royal Adelaide Hospital, Adelaide, SA, Australia
| |
Collapse
|
15
|
Elvira UKA, Seoane S, Janssen J, Janssen N. Contributions of human amygdala nuclei to resting-state networks. PLoS One 2022; 17:e0278962. [PMID: 36576924 PMCID: PMC9797096 DOI: 10.1371/journal.pone.0278962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/25/2022] [Indexed: 12/29/2022] Open
Abstract
The amygdala is a brain region with a complex internal structure that is associated with psychiatric disease. Methodological limitations have complicated the study of the internal structure of the amygdala in humans. In the current study we examined the functional connectivity between nine amygdaloid nuclei and existing resting-state networks using a high spatial-resolution fMRI dataset. Using data-driven analysis techniques we found that there were three main clusters inside the amygdala that correlated with the somatomotor, ventral attention and default mode networks. In addition, we found that each resting-state networks depended on a specific configuration of amygdaloid nuclei. Finally, we found that co-activity in the cortical-nucleus increased with the severity of self-rated fear in participants. These results highlight the complex nature of amygdaloid connectivity that is not confined to traditional large-scale divisions, implicates specific configurations of nuclei with certain resting-state networks and highlights the potential clinical relevance of the cortical-nucleus in future studies of the human amygdala.
Collapse
Affiliation(s)
- Uriel K. A. Elvira
- Department of Psychology, Universidad de la Laguna, Santa Cruz de Tenerife, Spain
- Institute of Biomedical Technologies, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- Institute of Neurosciences, Universidad de la Laguna, Santa Cruz de Tenerife, Spain
| | - Sara Seoane
- Department of Psychology, Universidad de la Laguna, Santa Cruz de Tenerife, Spain
- Institute of Biomedical Technologies, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- Institute of Neurosciences, Universidad de la Laguna, Santa Cruz de Tenerife, Spain
| | - Joost Janssen
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Ciber del Área de Salud Mental, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Department of Psychiatry, UMCU Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Niels Janssen
- Department of Psychology, Universidad de la Laguna, Santa Cruz de Tenerife, Spain
- Institute of Biomedical Technologies, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- Institute of Neurosciences, Universidad de la Laguna, Santa Cruz de Tenerife, Spain
- Department of Neurobiology and Behavior, University of California, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
16
|
Davies ES, Morphew RM, Cutress D, Morton AJ, McBride S. Characterization of microtubule-associated protein tau isoforms and Alzheimer's disease-like pathology in normal sheep (Ovis aries): relevance to their potential as a model of Alzheimer's disease. Cell Mol Life Sci 2022; 79:560. [PMID: 36269420 PMCID: PMC9587068 DOI: 10.1007/s00018-022-04572-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/26/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease is a chronic neurodegenerative disease that accounts for up to 80% of all dementias. Characterised by deteriorations of memory and cognitive function, the key neuropathological features are accumulations of β-amyloid and hyperphosphorylated tau, as 'plaques' and 'tangles', respectively. Despite extensive study, however, the exact mechanism underlying aggregate formation in Alzheimer's disease remains elusive, as does the contribution of these aggregates to disease progression. Importantly, a recent evaluation of current Alzheimer's disease animal models suggested that rodent models are not able to fully recapitulate the pathological intricacies of the disease as it occurs in humans. Therefore, increasing attention is being paid to species that might make good alternatives to rodents for studying the molecular pathology of Alzheimer's disease. The sheep (Ovis aries) is one such species, although to date, there have been few molecular studies relating to Alzheimer's disease in sheep. Here, we investigated the Alzheimer's disease relevant histopathological characteristics of 22 sheep, using anti-β-amyloid (Abcam 12267 and mOC64) and phosphorylation specific anti-tau (AT8 and S396) antibodies. We identified numerous intraneuronal aggregates of both β-amyloid and tau that are consistent with early Alzheimer's disease-like pathology. We confirmed the expression of two 3-repeat (1N3R, 2N3R) and two 4-repeat (1N4R, 2N4R) tau isoforms in the ovine brain, which result from the alternative splicing of two tau exons. Finally, we investigated the phosphorylation status of the serine396 residue in 30 sheep, and report that the phosphorylation of this residue begins in sheep aged as young as 2 years. Together, these data show that sheep exhibit naturally occurring β-amyloid and tau pathologies, that reflect those that occur in the early stages of Alzheimer's disease. This is an important step towards the validation of the sheep as a feasible large animal species in which to model Alzheimer's disease.
Collapse
Affiliation(s)
- Emma S. Davies
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | | | - David Cutress
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - A. Jennifer Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Sebastian McBride
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| |
Collapse
|
17
|
Volumetric assessment and longitudinal changes of subcortical structures in formalinized Beagle brains. PLoS One 2022; 17:e0261484. [PMID: 36206292 PMCID: PMC9543981 DOI: 10.1371/journal.pone.0261484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 08/02/2022] [Indexed: 11/07/2022] Open
Abstract
High field MRI is an advanced technique for diagnostic and research purposes on animal models, such as the Beagle dog. In this context, studies on neuroscience applications, e.g. aging and neuro-pathologies, are currently increasing. This led to a need for reference values, in terms of volumetric assessment, for the structures typically involved. Nowadays, several canine brain MRI atlases have been provided. However, no reports are available regarding the measurements’ reproducibility and little is known about the effect of formalin on MRI segmentation. Here, we assessed the segmentation variability of selected structures among operators (two operators segmented the same data) in a sample of 11 Beagle dogs. Then, we analyzed, for one Beagle dog, the longitudinal volumetric changes of these structures. We considered four conditions: in vivo, post mortem (after euthanasia), ex vivo (brain extracted and studied after 1 month in formalin, and after 12 months). The MRI data were collected with a 3 T scanner. Our findings suggest that the segmentation procedure was overall reproducible since only slight statistical differences were detected. In the post mortem/ ex vivo comparison, most structures showed a higher contrast, thereby leading to greater reproducibility between operators. We observed a net increase in the volume of the studied structures. This could be justified by the intrinsic relaxation time changes observed because of the formalin fixation. This led to an improvement in brain structure visualization and segmentation. To conclude, MRI-based segmentation seems to be a useful and accurate tool that allows longitudinal studies on formalin-fixed brains.
Collapse
|
18
|
Arribarat G, Cartiaux B, Boucher S, Montel C, Gros-Dagnac H, Fave Y, Péran P, Mogicato G, Deviers A. Ex vivo susceptibility-weighted imaging anatomy of canine brain–comparison of imaging and histological sections. Front Neuroanat 2022; 16:948159. [PMID: 36124091 PMCID: PMC9481421 DOI: 10.3389/fnana.2022.948159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Now that access of large domestic mammals to high-field MRI becomes more common, techniques initially implemented for human patients can be used for the structural and functional study of the brain of these animals. Among them, susceptibility-weighted imaging (SWI) is a recent technique obtained from gradient echo (GE) imaging that allow for an excellent anatomical tissue contrast and a non-invasive assessment of brain iron content. The goal of this study was to design an optimal GE SWI imaging protocol to be used in dogs undergoing an MRI examination of the brain in a 3-Tesla scanner. This imaging protocol was applied to ex vivo brains from four dogs. The imaging protocol was validated by visual inspection of the SWI images that provided a high anatomical detail, as demonstrated by their comparison with corresponding microscopic sections. As resolvable brain structures were labeled, this study is the first to provide an anatomic description of SWI images of the canine brain. Once validated in living animals, this GE SWI imaging protocol could be easily included in routine neuroimaging protocols to improve the diagnosis of various intracranial diseases of dogs, or be used in future comparative studies aiming at evaluating brain iron content in animals.
Collapse
Affiliation(s)
- Germain Arribarat
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, Toulouse, France
| | - Benjamin Cartiaux
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, ENVT, Toulouse, France
| | - Samuel Boucher
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, Toulouse, France
| | - Charles Montel
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, ENVT, Toulouse, France
| | - Hélène Gros-Dagnac
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, Toulouse, France
| | - Yoann Fave
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, Toulouse, France
| | - Patrice Péran
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, Toulouse, France
| | - Giovanni Mogicato
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, ENVT, Toulouse, France
- *Correspondence: Giovanni Mogicato
| | - Alexandra Deviers
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, ENVT, Toulouse, France
| |
Collapse
|
19
|
An Optimized Comparative Proteomic Approach as a Tool in Neurodegenerative Disease Research. Cells 2022; 11:cells11172653. [PMID: 36078061 PMCID: PMC9454658 DOI: 10.3390/cells11172653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Recent advances in proteomic technologies now allow unparalleled assessment of the molecular composition of a wide range of sample types. However, the application of such technologies and techniques should not be undertaken lightly. Here, we describe why the design of a proteomics experiment itself is only the first step in yielding high-quality, translatable results. Indeed, the effectiveness and/or impact of the majority of contemporary proteomics screens are hindered not by commonly considered technical limitations such as low proteome coverage but rather by insufficient analyses. Proteomic experimentation requires a careful methodological selection to account for variables from sample collection, through to database searches for peptide identification to standardised post-mass spectrometry options directed analysis workflow, which should be adjusted for each study, from determining when and how to filter proteomic data to choosing holistic versus trend-wise analyses for biologically relevant patterns. Finally, we highlight and discuss the difficulties inherent in the modelling and study of the majority of progressive neurodegenerative conditions. We provide evidence (in the context of neurodegenerative research) for the benefit of undertaking a comparative approach through the application of the above considerations in the alignment of publicly available pre-existing data sets to identify potential novel regulators of neuronal stability.
Collapse
|
20
|
Eaton SL, Murdoch F, Rzechorzek NM, Thompson G, Hartley C, Blacklock BT, Proudfoot C, Lillico SG, Tennant P, Ritchie A, Nixon J, Brennan PM, Guido S, Mitchell NL, Palmer DN, Whitelaw CBA, Cooper JD, Wishart TM. Modelling Neurological Diseases in Large Animals: Criteria for Model Selection and Clinical Assessment. Cells 2022; 11:cells11172641. [PMID: 36078049 PMCID: PMC9454934 DOI: 10.3390/cells11172641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Issue: The impact of neurological disorders is recognised globally, with one in six people affected in their lifetime and few treatments to slow or halt disease progression. This is due in part to the increasing ageing population, and is confounded by the high failure rate of translation from rodent-derived therapeutics to clinically effective human neurological interventions. Improved translation is demonstrated using higher order mammals with more complex/comparable neuroanatomy. These animals effectually span this translational disparity and increase confidence in factors including routes of administration/dosing and ability to scale, such that potential therapeutics will have successful outcomes when moving to patients. Coupled with advancements in genetic engineering to produce genetically tailored models, livestock are increasingly being used to bridge this translational gap. Approach: In order to aid in standardising characterisation of such models, we provide comprehensive neurological assessment protocols designed to inform on neuroanatomical dysfunction and/or lesion(s) for large animal species. We also describe the applicability of these exams in different large animals to help provide a better understanding of the practicalities of cross species neurological disease modelling. Recommendation: We would encourage the use of these assessments as a reference framework to help standardise neurological clinical scoring of large animal models.
Collapse
Affiliation(s)
- Samantha L. Eaton
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
- Correspondence: (S.L.E.); (T.M.W.); Tel.: +44-(0)-131-651-9125 (S.L.E.); +44-(0)-131-651-9233 (T.M.W.)
| | - Fraser Murdoch
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - Nina M. Rzechorzek
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Gerard Thompson
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- Department of Clinical Neurosciences, NHS Lothian, 50 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Claudia Hartley
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - Benjamin Thomas Blacklock
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - Chris Proudfoot
- The Large Animal Research & Imaging Facility, Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - Simon G. Lillico
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - Peter Tennant
- The Large Animal Research & Imaging Facility, Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - Adrian Ritchie
- The Large Animal Research & Imaging Facility, Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - James Nixon
- The Large Animal Research & Imaging Facility, Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - Paul M. Brennan
- Translational Neurosurgery, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Stefano Guido
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
- Bioresearch & Veterinary Services, University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Nadia L. Mitchell
- Faculty of Agriculture and Life Sciences, Lincoln University, P.O. Box 85084, Lincoln 7647, New Zealand
| | - David N. Palmer
- Faculty of Agriculture and Life Sciences, Lincoln University, P.O. Box 85084, Lincoln 7647, New Zealand
| | - C. Bruce A. Whitelaw
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - Jonathan D. Cooper
- Departments of Pediatrics, Genetics, and Neurology, Washington University School of Medicine in St. Louis, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Thomas M. Wishart
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
- Correspondence: (S.L.E.); (T.M.W.); Tel.: +44-(0)-131-651-9125 (S.L.E.); +44-(0)-131-651-9233 (T.M.W.)
| |
Collapse
|
21
|
Amorós MA, Choi ES, Cofré AR, Dokholyan NV, Duzzioni M. Motor neuron-derived induced pluripotent stem cells as a drug screening platform for amyotrophic lateral sclerosis. Front Cell Dev Biol 2022; 10:962881. [PMID: 36105357 PMCID: PMC9467621 DOI: 10.3389/fcell.2022.962881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
The development of cell culture models that recapitulate the etiology and features of nervous system diseases is central to the discovery of new drugs and their translation onto therapies. Neuronal tissues are inaccessible due to skeletal constraints and the invasiveness of the procedure to obtain them. Thus, the emergence of induced pluripotent stem cell (iPSC) technology offers the opportunity to model different neuronal pathologies. Our focus centers on iPSCs derived from amyotrophic lateral sclerosis (ALS) patients, whose pathology remains in urgent need of new drugs and treatment. In this sense, we aim to revise the process to obtain motor neurons derived iPSCs (iPSC-MNs) from patients with ALS as a drug screening model, review current 3D-models and offer a perspective on bioinformatics as a powerful tool that can aid in the progress of finding new pharmacological treatments.
Collapse
Affiliation(s)
- Mariana A. Amorós
- Laboratory of Pharmacological Innovation, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Esther S. Choi
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| | - Axel R. Cofré
- Laboratory of Pharmacological Innovation, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Nikolay V. Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, United States
| | - Marcelo Duzzioni
- Laboratory of Pharmacological Innovation, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas, Brazil
| |
Collapse
|
22
|
The Sheep as a Large Animal Model for the Investigation and Treatment of Human Disorders. BIOLOGY 2022; 11:biology11091251. [PMID: 36138730 PMCID: PMC9495394 DOI: 10.3390/biology11091251] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 12/19/2022]
Abstract
Simple Summary We review the value of large animal models for improving the translation of biomedical research for human application, focusing primarily on sheep. Abstract An essential aim of biomedical research is to translate basic science information obtained from preclinical research using small and large animal models into clinical practice for the benefit of humans. Research on rodent models has enhanced our understanding of complex pathophysiology, thus providing potential translational pathways. However, the success of translating drugs from pre-clinical to clinical therapy has been poor, partly due to the choice of experimental model. The sheep model, in particular, is being increasingly applied to the field of biomedical research and is arguably one of the most influential models of human organ systems. It has provided essential tools and insights into cardiovascular disorder, orthopaedic examination, reproduction, gene therapy, and new insights into neurodegenerative research. Unlike the widely adopted rodent model, the use of the sheep model has an advantage over improving neuroscientific translation, in particular due to its large body size, gyrencephalic brain, long lifespan, more extended gestation period, and similarities in neuroanatomical structures to humans. This review aims to summarise the current status of sheep to model various human diseases and enable researchers to make informed decisions when considering sheep as a human biomedical model.
Collapse
|
23
|
Mice in translational neuroscience: What R we doing? Prog Neurobiol 2022; 217:102330. [PMID: 35872220 DOI: 10.1016/j.pneurobio.2022.102330] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 12/28/2022]
Abstract
Animal models play a pivotal role in translational neuroscience but recurrent problems in data collection, analyses, and interpretation, lack of biomarkers, and a tendency to over-reliance on mice have marred neuroscience progress, leading to one of the highest attrition rates in drug translation. Global initiatives to improve reproducibility and model selection are being implemented. Notwithstanding, mice are still the preferred animal species to model human brain disorders even when the translation has been shown to be limited. Non-human primates are better positioned to provide relevant translational information because of their higher brain complexity and homology to humans. Among others, lack of resources and formal training, strict legislation, and ethical issues may impede broad access to large animals. We propose that instead of increasingly restrictive legislation, more resources for training, education, husbandry, and data sharing are urgently needed. The creation of multidisciplinary teams, in which veterinarians need to play a key role, would be critical to improve translational efficiency. Furthermore, it is not usually acknowledged by researchers and regulators the value of comparative studies in lower species, that are instrumental in toxicology, target identification, and mechanistic studies. Overall, we highlight here the need for a conceptual shift in neuroscience research and policies to reach the patients.
Collapse
|
24
|
Legault EM, Bouquety J, Drouin-Ouellet J. Disease Modeling of Neurodegenerative Disorders Using Direct Neural Reprogramming. Cell Reprogram 2022; 24:228-251. [PMID: 35749150 DOI: 10.1089/cell.2021.0172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Understanding the pathophysiology of CNS-associated neurological diseases has been hampered by the inaccessibility of patient brain tissue to perform live analyses at the molecular level. To this end, neural cells obtained by differentiation of patient-derived induced pluripotent stem cells (iPSCs) are considerably helpful, especially in the context of monogenic-based disorders. More recently, the use of direct reprogramming to convert somatic cells to neural cells has emerged as an alternative to iPSCs to generate neurons, astrocytes, and oligodendrocytes. This review focuses on the different studies that used direct neural reprogramming to study disease-associated phenotypes in the context of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
| | - Julie Bouquety
- Faculty of Pharmacy, Université de Montréal, Montreal, Canada
| | | |
Collapse
|
25
|
Karwacka M, Olejniczak M. Advances in Modeling Polyglutamine Diseases Using Genome Editing Tools. Cells 2022; 11:cells11030517. [PMID: 35159326 PMCID: PMC8834129 DOI: 10.3390/cells11030517] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 11/18/2022] Open
Abstract
Polyglutamine (polyQ) diseases, including Huntington’s disease, are a group of late-onset progressive neurological disorders caused by CAG repeat expansions. Although recently, many studies have investigated the pathological features and development of polyQ diseases, many questions remain unanswered. The advancement of new gene-editing technologies, especially the CRISPR-Cas9 technique, has undeniable value for the generation of relevant polyQ models, which substantially support the research process. Here, we review how these tools have been used to correct disease-causing mutations or create isogenic cell lines with different numbers of CAG repeats. We characterize various cellular models such as HEK 293 cells, patient-derived fibroblasts, human embryonic stem cells (hESCs), induced pluripotent stem cells (iPSCs) and animal models generated with the use of genome-editing technology.
Collapse
|
26
|
Chovsepian A, Berchtold D, Winek K, Mamrak U, Ramírez Álvarez I, Dening Y, Golubczyk D, Weitbrecht L, Dames C, Aillery M, Fernandez‐Sanz C, Gajewski Z, Dieterich M, Janowski M, Falkai P, Walczak P, Plesnila N, Meisel A, Pan‐Montojo F. A Primeval Mechanism of Tolerance to Desiccation Based on Glycolic Acid Saves Neurons in Mammals from Ischemia by Reducing Intracellular Calcium-Mediated Excitotoxicity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103265. [PMID: 34904402 PMCID: PMC8811841 DOI: 10.1002/advs.202103265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/02/2021] [Indexed: 06/09/2023]
Abstract
Stroke is the second leading cause of death and disability worldwide. Current treatments, such as pharmacological thrombolysis or mechanical thrombectomy, reopen occluded arteries but do not protect against ischemia-induced damage that occurs before reperfusion or neuronal damage induced by ischemia/reperfusion. It has been shown that disrupting the conversion of glyoxal to glycolic acid (GA) results in a decreased tolerance to anhydrobiosis in Caenorhabditis elegans dauer larva and that GA itself can rescue this phenotype. During the process of desiccation/rehydration, a metabolic stop/start similar to the one observed during ischemia/reperfusion occurs. In this study, the protective effect of GA is tested in different ischemia models, i.e., in commonly used stroke models in mice and swine. The results show that GA, given during reperfusion, strongly protects against ischemic damage and improves functional outcome. Evidence that GA exerts its effect by counteracting the glutamate-dependent increase in intracellular calcium during excitotoxicity is provided. These results suggest that GA treatment has the potential to reduce mortality and disability in stroke patients.
Collapse
Affiliation(s)
- Alexandra Chovsepian
- Department of Psychiatry and PsychotherapyLudwig‐Maximilian University HospitalNussbaumstrasse. 780336MunichGermany
| | - Daniel Berchtold
- Department of NeurologyNeuroCure Clinical Research CenterCenter for Stroke ResearchCharité University MedicineCharitéplatz 110117BerlinGermany
| | - Katarzyna Winek
- Department of NeurologyNeuroCure Clinical Research CenterCenter for Stroke ResearchCharité University MedicineCharitéplatz 110117BerlinGermany
- Present address:
Present address: Edmond and Lily Safra Center for Brain SciencesHebrew University of JerusalemJerusalem9190401Israel
| | - Uta Mamrak
- Laboratory of Experimental Stroke ResearchInstitute for Stroke and Dementia Research (ISD)University of Munich Medical CenterFeodor‐Lynen‐Strasse 1781377MunichGermany
| | - Inés Ramírez Álvarez
- Department of NeurologyLudwig‐Maximilian University HospitalMarchioninstrasse. 1581377MunichGermany
- Munich Cluster for Systems Neurology (SyNergy)Ludwig‐Maximilian University Munich81377MunichGermany
| | - Yanina Dening
- Department of Psychiatry and PsychotherapyLudwig‐Maximilian University HospitalNussbaumstrasse. 780336MunichGermany
- Department of NeurologyLudwig‐Maximilian University HospitalMarchioninstrasse. 1581377MunichGermany
| | | | - Luis Weitbrecht
- Department of NeurologyNeuroCure Clinical Research CenterCenter for Stroke ResearchCharité University MedicineCharitéplatz 110117BerlinGermany
| | - Claudia Dames
- Department of NeurologyNeuroCure Clinical Research CenterCenter for Stroke ResearchCharité University MedicineCharitéplatz 110117BerlinGermany
| | - Marine Aillery
- Department of NeurologyNeuroCure Clinical Research CenterCenter for Stroke ResearchCharité University MedicineCharitéplatz 110117BerlinGermany
- Present address:
Present address: SeppicÎle‐de‐FranceLa Garenne‐Colombes92250France
| | - Celia Fernandez‐Sanz
- Department of NeurologyLudwig‐Maximilian University HospitalMarchioninstrasse. 1581377MunichGermany
- Munich Cluster for Systems Neurology (SyNergy)Ludwig‐Maximilian University Munich81377MunichGermany
- Present address:
Present address: Center for Translational MedicineDepartment of MedicineThomas Jefferson UniversityPhiladelphiaPA19107USA
| | - Zdzislaw Gajewski
- Center for Translational MedicineWarsaw University of Life SciencesWarsaw02‐787Poland
| | - Marianne Dieterich
- Department of NeurologyLudwig‐Maximilian University HospitalMarchioninstrasse. 1581377MunichGermany
- Munich Cluster for Systems Neurology (SyNergy)Ludwig‐Maximilian University Munich81377MunichGermany
| | - Miroslaw Janowski
- Program in Image Guided NeurointerventionsDepartment of Diagnostic Radiology and Nuclear MedicineUniversity of MarylandBaltimoreMD21201USA
| | - Peter Falkai
- Department of Psychiatry and PsychotherapyLudwig‐Maximilian University HospitalNussbaumstrasse. 780336MunichGermany
| | - Piotr Walczak
- Program in Image Guided NeurointerventionsDepartment of Diagnostic Radiology and Nuclear MedicineUniversity of MarylandBaltimoreMD21201USA
| | - Nikolaus Plesnila
- Laboratory of Experimental Stroke ResearchInstitute for Stroke and Dementia Research (ISD)University of Munich Medical CenterFeodor‐Lynen‐Strasse 1781377MunichGermany
- Munich Cluster for Systems Neurology (SyNergy)Ludwig‐Maximilian University Munich81377MunichGermany
| | - Andreas Meisel
- Department of NeurologyNeuroCure Clinical Research CenterCenter for Stroke ResearchCharité University MedicineCharitéplatz 110117BerlinGermany
| | - Francisco Pan‐Montojo
- Department of Psychiatry and PsychotherapyLudwig‐Maximilian University HospitalNussbaumstrasse. 780336MunichGermany
- Department of NeurologyLudwig‐Maximilian University HospitalMarchioninstrasse. 1581377MunichGermany
- Munich Cluster for Systems Neurology (SyNergy)Ludwig‐Maximilian University Munich81377MunichGermany
| |
Collapse
|
27
|
Castañeda R, Cáceres A, Velásquez D, Rodríguez C, Morales D, Castillo A. Medicinal plants used in traditional Mayan medicine for the treatment of central nervous system disorders: An overview. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114746. [PMID: 34656668 DOI: 10.1016/j.jep.2021.114746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/22/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE For thousands of years, different cultural groups have used and transformed natural resources for medicinal purposes focused on psychological or neurological conditions. Some of these are recognized as central nervous system (CNS) disorders and diseases, whereas other ethnopsychiatric interpretations are explained in culture-specific terms. In traditional Mayan medicine, several herbs have been part of treatments and rituals focused on cultural and ethnomedical concepts. AIM OF REVIEW This study aims to provide a comprehensive overview of the medicinal plants used in Mesoamerica by traditional healers and Mayan groups to CNS disorders and associate the traditional use with demonstrated pharmacological evidence to establish a solid foundation for directing future research. METHODS A systematic search for primary sources of plant use reports for traditional CNS-related remedies of Mesoamerica were obtained from library catalogs, thesis and scientific databases (PubMed, Scopus, Google Scholar; and Science Direct), and entered in a database with data analyzed in terms of the usage frequency, use by ethnic groups, plant endemism, and pharmacological investigation. RESULTS A total of 155 plants used for ethnopsychiatric conditions in Mesoamerica by Mayan groups were found, encompassing 127 native species. Of these, only 49 native species have reported in vitro or in vivo pharmacological analyses. The most commonly reported ethnopsychiatric conditions are related to anxiety, depression, memory loss, epilepsy, and insomnia. The extent of the scientific evidence available to understand the pharmacological application for their use against CNS disorders varied between different plant species, with the most prominent evidence shown by Annona cherimola, Justicia pectoralis, J. spicigera, Mimosa pudica, Persea americana, Petiveria alliacea, Piper amalago, Psidium guajava, Tagetes erecta and T. lucida. CONCLUSION Available pharmacological data suggest that different plant species used in traditional Mayan medicine may target the CNS, mainly related to GABA, serotonin, acetylcholine, or neuroprotective pathways. However, more research is required, given the limited data regarding mechanism of action at the preclinical in vivo level, identification of active compounds, scarce number of clinical studies, and the dearth of peer-reviewed studies.
Collapse
Affiliation(s)
- Rodrigo Castañeda
- School of Pharmacy, Faculty of Chemical Sciences and Pharmacy, University of San Carlos, Guatemala.
| | | | - Diana Velásquez
- School of Biology, Faculty of Chemical Sciences and Pharmacy, University of San Carlos, Guatemala.
| | - Cesar Rodríguez
- School of Pharmacy, Faculty of Chemical Sciences and Pharmacy, University of San Carlos, Guatemala.
| | - David Morales
- School of Pharmacy, Faculty of Chemical Sciences and Pharmacy, University of San Carlos, Guatemala.
| | - Andrea Castillo
- School of Pharmacy, Faculty of Chemical Sciences and Pharmacy, University of San Carlos, Guatemala.
| |
Collapse
|
28
|
Deep brain electrophysiology in freely moving sheep. Curr Biol 2022; 32:763-774.e4. [PMID: 35030329 DOI: 10.1016/j.cub.2021.12.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/05/2021] [Accepted: 12/14/2021] [Indexed: 12/17/2022]
Abstract
Although rodents are arguably the easiest animals to use for studying brain function, relying on them as model species for translational research comes with its own set of limitations. Here, we propose sheep as a practical large animal species to use for in vivo brain function studies performed in naturalistic settings. We conducted proof-of-principle deep brain electrophysiological recording experiments using unrestrained sheep during behavioral testing. Recordings were made from cortex and hippocampus, both while sheep performed goal-directed behaviors (two-choice discrimination tasks) and across states of vigilance, including sleep. Hippocampal and cortical oscillatory rhythms were consistent with those seen in rodents and non-human primates, and included cortical alpha oscillations and hippocampal sharp wave ripple oscillations (∼150 Hz) during immobility and hippocampal theta oscillations (5-6 Hz) during locomotion. Recordings were conducted over a period of many months during which time the animals participated willingly in the experiments. Over 3,000 putative neurons were identified, including examples whose activity was modulated by task, speed of locomotion, spatial position, reward and vigilance states, and one whose firing rate was potentially modulated by the sight of the investigator. Together, these experiments demonstrate that sheep are excellent experimental animals to use for longitudinal studies requiring a large-brained mammal and/or large-scale recordings across distributed neuronal networks. Sheep could be used safely for studying not only neural encoding of decision-making and spatial-mapping in naturalistic environments outside the confines of the traditional laboratory but also the neural basis of both intra- and inter-species social interactions.
Collapse
|
29
|
Yang W, Chen X, Li S, Li XJ. Genetically modified large animal models for investigating neurodegenerative diseases. Cell Biosci 2021; 11:218. [PMID: 34933675 PMCID: PMC8690884 DOI: 10.1186/s13578-021-00729-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 12/02/2022] Open
Abstract
Neurodegenerative diseases represent a large group of neurological disorders including Alzheimer’s disease, amyotrophic lateral sclerosis, Parkinson’s disease, and Huntington’s disease. Although this group of diseases show heterogeneous clinical and pathological phenotypes, they share important pathological features characterized by the age-dependent and progressive degeneration of nerve cells that is caused by the accumulation of misfolded proteins. The association of genetic mutations with neurodegeneration diseases has enabled the establishment of various types of animal models that mimic genetic defects and have provided important insights into the pathogenesis. However, most of genetically modified rodent models lack the overt and selective neurodegeneration seen in the patient brains, making it difficult to use the small animal models to validate the effective treatment on neurodegeneration. Recent studies of pig and monkey models suggest that large animals can more faithfully recapitulate pathological features of neurodegenerative diseases. In this review, we discuss the important differences in animal models for modeling pathological features of neurodegenerative diseases, aiming to assist the use of animal models to better understand the pathogenesis and to develop effective therapeutic strategies.
Collapse
Affiliation(s)
- Weili Yang
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
| | - Xiusheng Chen
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Shihua Li
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
30
|
Zhang C, Liu C, Zhao H. Mechanical properties of brain tissue based on microstructure. J Mech Behav Biomed Mater 2021; 126:104924. [PMID: 34998069 DOI: 10.1016/j.jmbbm.2021.104924] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/04/2021] [Accepted: 10/24/2021] [Indexed: 11/17/2022]
Abstract
Research on the mechanical properties of brain tissue has gradually deepened recently. Two indentation protocols were used here to characterize the mechanical properties of cortical tissues. Further, histological staining was used to explore the correlation between the mechanical properties and microstructure on the basis of the density of cell nuclei and proteoglycan content. No significant difference was observed in transient contact stiffness between the cerebral cortex and cerebellar cortex at the depth interval of 0-600 μm under the cortical surface; however, the average shear modulus of the cerebral cortex was higher than that of the cerebellar cortex. The cerebral cortex responded more quickly to the change in load and released stress more thoroughly than the cerebellar cortex. In addition, the density of cell nuclei was related to both the transient contact stiffness and second time constant of cortical tissues. Proteoglycan content had a more significant impact on the shear modulus, second time constant, and stress relaxation rate of cortical tissues. Exploring mechanical properties thoroughly will provide more detailed mechanical information for future brain chip implantation. Alternatively, linking the mechanical properties of cortical tissues to the microstructure can provide basic data for the design and manufacture of substitute materials for brain tissue.
Collapse
Affiliation(s)
- Chi Zhang
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, PR China; Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun, 130025, PR China
| | - Changyi Liu
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, PR China; Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130025, PR China.
| | - Hongwei Zhao
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, PR China; Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun, 130025, PR China.
| |
Collapse
|
31
|
Zhao Y, Kuca K, Wu W, Wang X, Nepovimova E, Musilek K, Wu Q. Hypothesis: JNK signaling is a therapeutic target of neurodegenerative diseases. Alzheimers Dement 2021; 18:152-158. [PMID: 34032377 DOI: 10.1002/alz.12370] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/10/2020] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
The exact signaling leading to neurological dysfunction in neurodegenerative diseases is currently unknown. We hypothesize that the c-Jun N-terminal kinase (JNK) signaling pathway is a potential therapeutic target for neurodegenerative diseases. This postulate rests on extensive data from cell and animal experimental studies, demonstrating that JNK signaling plays a crucial role in the pathogenesis of neurodegenerative diseases. The sustained activation of JNK leads to synaptic dysfunction and even neuronal apoptosis, ultimately resulting in memory deficits and neurodegeneration. JNK phosphorylates the amyloid precursor protein and tau, ultimately resulting in the formation of extraneuronal senile plaques and intraneuronal neurofibrillary tangles. Our hypothesis could be validated by investigating the cerebral cortex of elderly chimpanzees injected with phosphorylated JNK or transgenic pig and chimpanzee models established using gene editing technology including CRISPR. This hypothesis provides clues for further understanding the molecular mechanisms of neurodegenerative diseases and the development of potential target therapeutic drugs.
Collapse
Affiliation(s)
- Yingying Zhao
- College of Life Science, Yangtze University, Jingzhou, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
32
|
Barazesh M, Mohammadi S, Bahrami Y, Mokarram P, Morowvat MH, Saidijam M, Karimipoor M, Kavousipour S, Vosoughi AR, Khanaki K. CRISPR/Cas9 Technology as a Modern Genetic Manipulation Tool for Recapitulating of Neurodegenerative Disorders in Large Animal Models. Curr Gene Ther 2021; 21:130-148. [PMID: 33319680 DOI: 10.2174/1566523220666201214115024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/12/2020] [Accepted: 11/23/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Neurodegenerative diseases are often the consequence of alterations in structures and functions of the Central Nervous System (CNS) in patients. Despite obtaining massive genomic information concerning the molecular basis of these diseases and since the neurological disorders are multifactorial, causal connections between pathological pathways at the molecular level and CNS disorders development have remained obscure and need to be elucidated to a great extent. OBJECTIVE Animal models serve as accessible and valuable tools for understanding and discovering the roles of causative factors in the development of neurodegenerative disorders and finding appropriate treatments. Contrary to rodents and other small animals, large animals, especially non-human primates (NHPs), are remarkably similar to humans; hence, they establish suitable models for recapitulating the main human's neuropathological manifestations that may not be seen in rodent models. In addition, they serve as useful models to discover effective therapeutic targets for neurodegenerative disorders due to their similarity to humans in terms of physiology, evolutionary distance, anatomy, and behavior. METHODS In this review, we recommend different strategies based on the CRISPR-Cas9 system for generating animal models of human neurodegenerative disorders and explaining in vivo CRISPR-Cas9 delivery procedures that are applied to disease models for therapeutic purposes. RESULTS With the emergence of CRISPR/Cas9 as a modern specific gene-editing technology in the field of genetic engineering, genetic modification procedures such as gene knock-in and knock-out have become increasingly easier compared to traditional gene targeting techniques. Unlike the old techniques, this versatile technology can efficiently generate transgenic large animal models without the need to complicate lab instruments. Hence, these animals can accurately replicate the signs of neurodegenerative disorders. CONCLUSION Preclinical applications of CRISPR/Cas9 gene-editing technology supply a unique opportunity to establish animal models of neurodegenerative disorders with high accuracy and facilitate perspectives for breakthroughs in the research on the nervous system disease therapy and drug discovery. Furthermore, the useful outcomes of CRISPR applications in various clinical phases are hopeful for their translation to the clinic in a short time.
Collapse
Affiliation(s)
- Mahdi Barazesh
- School of Paramedical, Gerash University of Medical Sciences, Gerash, Iran
| | - Shiva Mohammadi
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Khoram Abad, Iran
| | - Yadollah Bahrami
- Molecular Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pooneh Mokarram
- Autophagy Research center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Massoud Saidijam
- Department of Molecular Medicine and Genetics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Morteza Karimipoor
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Soudabeh Kavousipour
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amir Reza Vosoughi
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Korosh Khanaki
- Medical Biotechnology Research Center, Paramedicine Faculty, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
33
|
Akhtar A, Andleeb A, Waris TS, Bazzar M, Moradi AR, Awan NR, Yar M. Neurodegenerative diseases and effective drug delivery: A review of challenges and novel therapeutics. J Control Release 2020; 330:1152-1167. [PMID: 33197487 DOI: 10.1016/j.jconrel.2020.11.021] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022]
Abstract
The central nervous system (CNS) encompasses the brain and spinal cord and is considered the processing center and the most vital part of human body. The central nervous system (CNS) barriers are crucial interfaces between the CNS and the periphery. Among all these biological barriers, the blood-brain barrier (BBB) strongly impede hurdle for drug transport to brain. It is a semi-permeable diffusion barrier against the noxious chemicals and harmful substances present in the blood stream and regulates the nutrients delivery to the brain for its proper functioning. Neurological diseases owing to the existence of the BBB and the blood-spinal cord barrier have been terrible and threatening challenges all over the world and can rarely be directly mediated. In fact, drug delivery to brain remained a challenge in the treatment of neurodegenerative (ND) disorders, for these different approaches have been proposed. Nano-fabricated smart drug delivery systems and implantable drug loaded biomaterials for brain repair are among some of these latest approaches. In current review, modern approaches developed to deal with the challenges associated with transporting drugs to the CNS are included. Recent studies on neural drug discovery and injectable hydrogels provide a potential new treatment option for neurological disorders. Moreover, induced pluripotent stem cells used to model ND diseases are discussed to evaluate drug efficacy. These protocols and recent developments will enable discovery of more effective drug delivery systems for brain.
Collapse
Affiliation(s)
- Amna Akhtar
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus, Lahore 54000, Pakistan; Department of Chemical Engineering, COMSATS University Islamabad Lahore Campus, Lahore 54000, Pakistan
| | - Anisa Andleeb
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus, Lahore 54000, Pakistan
| | - Tayyba Sher Waris
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus, Lahore 54000, Pakistan
| | - Masoomeh Bazzar
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Ali-Reza Moradi
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran; School of Nano Science, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran 19395, Iran
| | - Nasir Raza Awan
- Department of Neurosciences, Sharif Medical and Dental College, Lahore, Pakistan; Spinacure, 63-A Block E1, Gulberg III, Lahore, Pakistan
| | - Muhammad Yar
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus, Lahore 54000, Pakistan.
| |
Collapse
|
34
|
Boehm I, Alhindi A, Leite AS, Logie C, Gibbs A, Murray O, Farrukh R, Pirie R, Proudfoot C, Clutton R, Wishart TM, Jones RA, Gillingwater TH. Comparative anatomy of the mammalian neuromuscular junction. J Anat 2020; 237:827-836. [PMID: 32573802 PMCID: PMC7542190 DOI: 10.1111/joa.13260] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
The neuromuscular junction (NMJ)—a synapse formed between lower motor neuron and skeletal muscle fibre—represents a major focus of both basic neuroscience research and clinical neuroscience research. Although the NMJ is known to play an important role in many neurodegenerative conditions affecting humans, the vast majority of anatomical and physiological data concerning the NMJ come from lower mammalian (e.g. rodent) animal models. However, recent findings have demonstrated major differences between the cellular anatomy and molecular anatomy of human and rodent NMJs. Therefore, we undertook a comparative morphometric analysis of the NMJ across several larger mammalian species in order to generate baseline inter‐species anatomical reference data for the NMJ and to identify animal models that better represent the morphology of the human NMJ in vivo. Using a standardized morphometric platform (‘NMJ‐morph’), we analysed 5,385 individual NMJs from lower/pelvic limb muscles (EDL, soleus and peronei) of 6 mammalian species (mouse, cat, dog, sheep, pig and human). There was marked heterogeneity of NMJ morphology both within and between species, with no overall relationship found between NMJ morphology and muscle fibre diameter or body size. Mice had the largest NMJs on the smallest muscle fibres; cats had the smallest NMJs on the largest muscle fibres. Of all the species examined, the sheep NMJ had the most closely matched morphology to that found in humans. Taken together, we present a series of comprehensive baseline morphometric data for the mammalian NMJ and suggest that ovine models are likely to best represent the human NMJ in health and disease.
Collapse
Affiliation(s)
- Ines Boehm
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Abrar Alhindi
- School of Medicine, UNESP-São Paulo State University, Botucatu, Sao Paulo, Brazil.,Faculty of Medicine, Department of Anatomy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ana S Leite
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.,School of Medicine, UNESP-São Paulo State University, Botucatu, Sao Paulo, Brazil
| | - Chandra Logie
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, UK
| | - Alyssa Gibbs
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Olivia Murray
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Rizwan Farrukh
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Robert Pirie
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, UK
| | | | - Richard Clutton
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, UK
| | - Thomas M Wishart
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, UK
| | - Ross A Jones
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Thomas H Gillingwater
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
35
|
Nicol AU, Morton AJ. Characteristic patterns of EEG oscillations in sheep (Ovis aries) induced by ketamine may explain the psychotropic effects seen in humans. Sci Rep 2020; 10:9440. [PMID: 32528071 PMCID: PMC7289807 DOI: 10.1038/s41598-020-66023-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 05/04/2020] [Indexed: 11/10/2022] Open
Abstract
Ketamine is a valuable anaesthetic and analgesic that in recent years has gained notoriety as a recreational drug. Recently, ketamine has also been proposed as a novel treatment for depression and post-traumatic stress disorder. Beyond its anaesthetic actions, however, the effects of ketamine on brain activity have rarely been probed. Here we examined the cortical electroencephalography (EEG) response to ketamine of 12 sheep. Following ketamine administration, EEG changes were immediate and widespread, affecting the full extent of the EEG frequency spectrum measured (0–125 Hz). After recovery from sedation during which low frequency activity dominated, the EEG was characterised by short periods (2–3 s) of alternating low (<14 Hz) and high (>35 Hz) frequency oscillation. This alternating EEG rhythm phase is likely to underlie the dissociative actions of ketamine, since it is during this phase that ketamine users report hallucinations. At the highest intravenous dose used (24 mg/kg), in 5/6 sheep we observed a novel effect of ketamine, namely the complete cessation of cortical EEG activity. This persisted for up to several minutes, after which cortical activity resumed. This phenomenon is likely to explain the ‘k-hole’, a state of oblivion likened to a near death experience that is keenly sought by ketamine abusers.
Collapse
Affiliation(s)
- A U Nicol
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - A J Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK.
| |
Collapse
|
36
|
Chen SD, Li HQ, Cui M, Dong Q, Yu JT. Pluripotent stem cells for neurodegenerative disease modeling: an expert view on their value to drug discovery. Expert Opin Drug Discov 2020; 15:1081-1094. [PMID: 32425128 DOI: 10.1080/17460441.2020.1767579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Neurodegenerative diseases have become a major global health concern, posing a huge disease burden on patients and their families. Although there has been rapid progress in the development of therapies, a lack of accurate disease models and efficient drug screening platforms have made achieving a breakthrough difficult. The technology of human-induced pluripotent stem cells (iPSCs) shows better recapitulation of disease pathophysiology and provides a more accessible supply of patient-specific samples compared to other modeling methods. It has been a powerful tool for mechanism exploration and drug development. AREAS COVERED This review describes the recent use of human iPSC-derived cells for modeling neurodegenerative disorders and discovering potential drugs. EXPERT OPINION Model systems based on iPSC-derived cells have created a paradigm shift in drug discovery. Accuracy, consistency, translatability, and cost-effectiveness are the four major focuses of academic and industrial communities to fulfill the potential of iPSC technology for their purposes. It is the art of balance between these four factors to generate efficacious outputs with maximum efficiency. Future studies should persist in refining this technology and promote its application in this field to benefit all the disease-affected population eventually.
Collapse
Affiliation(s)
- Shi-Dong Chen
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University , Shanghai, China
| | - Hong-Qi Li
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University , Shanghai, China
| | - Mei Cui
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University , Shanghai, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University , Shanghai, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University , Shanghai, China
| |
Collapse
|
37
|
Żakowski W. Animal Use in Neurobiological Research. Neuroscience 2020; 433:1-10. [PMID: 32156550 DOI: 10.1016/j.neuroscience.2020.02.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/20/2020] [Accepted: 02/29/2020] [Indexed: 12/13/2022]
Abstract
The fact that neurobiological research is reliant upon laboratory-reared rodents is well known. The following paper discusses this topic broadly, but also aims to highlight other species used in the study of the nervous system and the evolution of animal species usage from the end of World War II through recent investigations. Attention is drawn to the dramatic reduction in the diversity of species used in neuroscience, with a significant shift toward two species, the mouse (Mus musculus) and rat (Rattus norvegicus). Such a limitation in animal species causes many difficulties in the development of new therapies for various neuropsychiatric diseases. Based on numerous scientific publications, the advantages of using a greater diversity of species in neuroscience and the disadvantages of focusing on mice and rats are presented.
Collapse
Affiliation(s)
- Witold Żakowski
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| |
Collapse
|
38
|
Kabadi A, McDonnell E, Frank CL, Drowley L. Applications of Functional Genomics for Drug Discovery. SLAS DISCOVERY 2020; 25:823-842. [PMID: 32026742 DOI: 10.1177/2472555220902092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Many diseases, such as diabetes, autoimmune diseases, cancer, and neurological disorders, are caused by a dysregulation of a complex interplay of genes. Genome-wide association studies have identified thousands of disease-linked polymorphisms in the human population. However, detailing the causative gene expression or functional changes underlying those associations has been elusive in many cases. Functional genomics is an emerging field of research that aims to deconvolute the link between genotype and phenotype by making use of large -omic data sets and next-generation gene and epigenome editing tools to perturb genes of interest. Here we review how functional genomic tools can be used to better understand the biological interplay between genes, improve disease modeling, and identify novel drug targets. Incorporation of functional genomic capabilities into conventional drug development pipelines is predicted to expedite the development of first-in-class therapeutics.
Collapse
Affiliation(s)
- Ami Kabadi
- Element Genomics, a UCB company, Durham, NC, USA
| | | | | | | |
Collapse
|
39
|
Nelvagal HR, Cooper JD. An update on the progress of preclinical models for guiding therapeutic management of neuronal ceroid lipofuscinosis. Expert Opin Orphan Drugs 2019. [DOI: 10.1080/21678707.2019.1703672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Hemanth Ramesh Nelvagal
- Department of Pediatrics, Division of genetics and genomics, Washington University School of Medicine in St. Louis, St Louis, MO, USA
| | - Jonathan D Cooper
- Department of Pediatrics, Division of genetics and genomics, Washington University School of Medicine in St. Louis, St Louis, MO, USA
| |
Collapse
|
40
|
CRISPR/Cas9 mediated gene knockout of Glb1 gene in mouse embryonic fibroblasts. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Hoffe B, Holahan MR. The Use of Pigs as a Translational Model for Studying Neurodegenerative Diseases. Front Physiol 2019; 10:838. [PMID: 31354509 PMCID: PMC6635594 DOI: 10.3389/fphys.2019.00838] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 06/18/2019] [Indexed: 12/14/2022] Open
Abstract
In recent years, the move to study neurodegenerative disease using larger animal models with brains that are more similar to humans has gained interest. While pigs have been used for various biomedical applications and research, it has only been recently that they have been used to study neurodegenerative diseases due to their neuroanatomically similar gyrencephalic brains and similar neurophysiological processes as seen in humans. This review focuses on the use of pigs in the study of Alzheimer’s disease (AD) and traumatic brain injury (TBI). AD is considered the most common neurodegenerative disease in elderly populations. Head impacts from falls are the most common form of injury in the elderly and recent literature has shown an association between repetitive head impacts and the development of AD. This review summarizes research into the pathological mechanisms underlying AD and TBI as well as the advantages and disadvantages of using pigs in the neuroscientific study of these disease processes. With the lack of successful therapeutics for neurodegenerative diseases, and an increasing elderly population, the use of pigs may provide a better translational model for understanding and treating these diseases.
Collapse
Affiliation(s)
- Brendan Hoffe
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | | |
Collapse
|
42
|
CRISPR/Cas9 mediated generation of an ovine model for infantile neuronal ceroid lipofuscinosis (CLN1 disease). Sci Rep 2019; 9:9891. [PMID: 31289301 PMCID: PMC6616324 DOI: 10.1038/s41598-019-45859-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/12/2019] [Indexed: 01/09/2023] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are a group of devastating monogenetic lysosomal disorders that affect children and young adults with no cure or effective treatment currently available. One of the more severe infantile forms of the disease (INCL or CLN1 disease) is due to mutations in the palmitoyl-protein thioesterase 1 (PPT1) gene and severely reduces the child's lifespan to approximately 9 years of age. In order to better translate the human condition than is possible in mice, we sought to produce a large animal model employing CRISPR/Cas9 gene editing technology. Three PPT1 homozygote sheep were generated by insertion of a disease-causing PPT1 (R151X) human mutation into the orthologous sheep locus. This resulted in a morphological, anatomical and biochemical disease phenotype that closely resembles the human condition. The homozygous sheep were found to have significantly reduced PPT1 enzyme activity and accumulate autofluorescent storage material, as is observed in CLN1 patients. Clinical signs included pronounced behavioral deficits as well as motor deficits and complete loss of vision, with a reduced lifespan of 17 ± 1 months at a humanely defined terminal endpoint. Magnetic resonance imaging (MRI) confirmed a significant decrease in motor cortical volume as well as increased ventricular volume corresponding with observed brain atrophy and a profound reduction in brain mass of 30% at necropsy, similar to alterations observed in human patients. In summary, we have generated the first CRISPR/Cas9 gene edited NCL model. This novel sheep model of CLN1 disease develops biochemical, gross morphological and in vivo brain alterations confirming the efficacy of the targeted modification and potential relevance to the human condition.
Collapse
|
43
|
Endothelial progenitor cells: Potential novel therapeutics for ischaemic stroke. Pharmacol Res 2019; 144:181-191. [DOI: 10.1016/j.phrs.2019.04.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/08/2019] [Accepted: 04/16/2019] [Indexed: 01/15/2023]
|
44
|
de Graeff N, Jongsma KR, Johnston J, Hartley S, Bredenoord AL. The ethics of genome editing in non-human animals: a systematic review of reasons reported in the academic literature. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180106. [PMID: 30905297 PMCID: PMC6452271 DOI: 10.1098/rstb.2018.0106] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2018] [Indexed: 12/16/2022] Open
Abstract
In recent years, new genome editing technologies have emerged that can edit the genome of non-human animals with progressively increasing efficiency. Despite ongoing academic debate about the ethical implications of these technologies, no comprehensive overview of this debate exists. To address this gap in the literature, we conducted a systematic review of the reasons reported in the academic literature for and against the development and use of genome editing technologies in animals. Most included articles were written by academics from the biomedical or animal sciences. The reported reasons related to seven themes: human health, efficiency, risks and uncertainty, animal welfare, animal dignity, environmental considerations and public acceptability. Our findings illuminate several key considerations about the academic debate, including a low disciplinary diversity in the contributing academics, a scarcity of systematic comparisons of potential consequences of using these technologies, an underrepresentation of animal interests, and a disjunction between the public and academic debate on this topic. As such, this article can be considered a call for a broad range of academics to get increasingly involved in the discussion about genome editing, to incorporate animal interests and systematic comparisons, and to further discuss the aims and methods of public involvement. This article is part of a discussion meeting issue 'The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems'.
Collapse
Affiliation(s)
- Nienke de Graeff
- Department of Medical Humanities, Julius Center, University Medical Center Utrecht/Utrecht University, PO Box 85500, Utrecht, GA 3508, The Netherlands
| | - Karin R. Jongsma
- Department of Medical Humanities, Julius Center, University Medical Center Utrecht/Utrecht University, PO Box 85500, Utrecht, GA 3508, The Netherlands
| | - Josephine Johnston
- Research Department, The Hastings Center, 21 Malcolm Gordon Road, Garrison, NY 10524, USA
| | - Sarah Hartley
- The University of Exeter Business School, University of Exeter, Rennes Drive, Exeter EX4 4PU, UK
| | - Annelien L. Bredenoord
- Department of Medical Humanities, Julius Center, University Medical Center Utrecht/Utrecht University, PO Box 85500, Utrecht, GA 3508, The Netherlands
| |
Collapse
|
45
|
Menon DV, Patel D, Joshi CG, Kumar A. The road less travelled: The efficacy of canine pluripotent stem cells. Exp Cell Res 2019; 377:94-102. [DOI: 10.1016/j.yexcr.2019.01.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/20/2019] [Accepted: 01/22/2019] [Indexed: 12/28/2022]
|
46
|
Key periods of cognitive decline in a nonhuman primate model of cognitive aging, the common marmoset (Callithrix jacchus). Neurobiol Aging 2019; 74:1-14. [DOI: 10.1016/j.neurobiolaging.2018.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/18/2022]
|
47
|
Qian L, Sun Y, Tong Q, Tian J, Ren Z, Zhao H. Indentation response in porcine brain under electric fields. SOFT MATTER 2019; 15:623-632. [PMID: 30608501 DOI: 10.1039/c8sm01272e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electric fields in the environment can have profound effects on brain function and behavior. In clinical practice, some noninvasive/microinvasive therapies with electrical fields such as transcranial electrical stimulation (tES), deep brain stimulation (DBS), and electroconvulsive therapy (ECT) have emerged as powerful tools for the treatment of neuropsychiatric disorders and neuromodulation. Nonetheless, currently, most studies focus on the mechanisms and effects of therapies and do not to address the mechanical properties of brain tissue under electric fields. Thus, the mechanical behavior of brain tissue, which plays an important role in modulating both brain form and brain function, should be given attention. The present study addresses this paucity by presenting, for the first time, the mechanical properties of brain tissue under various intensities of direct current electric field (0, 2, 5, 10, 20, and 50 V) using a custom-designed indentation device. Prior to brain indentation, validation tests were performed in different hydrogels to ensure that there was no interference in the electric fields from the indentation device. Subsequently, the load trace data obtained from the indentation-relaxation tests was fitted to both linear elastic and viscoelastic models to characterize the sensitivity of the mechanical behavior of the brain tissue to the electric fields. The brain tissue was found to be softened at a higher electric field level and less viscous, and substantially responded more quickly with an increase in electric field. The explanations for the above behaviors were further discussed based on the analysis of the resistance and thermal responses during the testing process. Understanding the effect of electric fields on brain tissue at the mechanical level can provide a better understanding of the mechanisms of some therapies, which may be beneficial to guide therapy protocols.
Collapse
Affiliation(s)
- Long Qian
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China.
| | - Yifan Sun
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China.
| | - Qian Tong
- Department of Cardiology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Jiyu Tian
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China.
| | - Zhuang Ren
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China.
| | - Hongwei Zhao
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China.
| |
Collapse
|
48
|
Farkhondeh A, Li R, Gorshkov K, Chen KG, Might M, Rodems S, Lo DC, Zheng W. Induced pluripotent stem cells for neural drug discovery. Drug Discov Today 2019; 24:992-999. [PMID: 30664937 DOI: 10.1016/j.drudis.2019.01.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/31/2018] [Accepted: 01/15/2019] [Indexed: 12/12/2022]
Abstract
Neurological diseases such as Alzheimer's disease and Parkinson's disease are growing problems, as average life expectancy is increasing globally. Drug discovery for neurological disease remains a major challenge. Poor understanding of disease pathophysiology and incomplete representation of human disease in animal models hinder therapeutic drug development. Recent advances with induced pluripotent stem cells (iPSCs) have enabled modeling of human diseases with patient-derived neural cells. Utilizing iPSC-derived neurons advances compound screening and evaluation of drug efficacy. These cells have the genetic backgrounds of patients that more precisely model disease-specific pathophysiology and phenotypes. Neural cells derived from iPSCs can be produced in a large quantity. Therefore, application of iPSC-derived human neurons is a new direction for neuronal drug discovery.
Collapse
Affiliation(s)
- Atena Farkhondeh
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Rong Li
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Kirill Gorshkov
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Kevin G Chen
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Matthew Might
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Donald C Lo
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
49
|
Pohl F, Kong Thoo Lin P. The Potential Use of Plant Natural Products and Plant Extracts with Antioxidant Properties for the Prevention/Treatment of Neurodegenerative Diseases: In Vitro, In Vivo and Clinical Trials. Molecules 2018; 23:E3283. [PMID: 30544977 PMCID: PMC6321248 DOI: 10.3390/molecules23123283] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 01/08/2023] Open
Abstract
Neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease and Huntington's disease, present a major health issue and financial burden for health care systems around the world. The impact of these diseases will further increase over the next decades due to increasing life expectancies. No cure is currently available for the treatment of these conditions; only drugs, which merely alleviate the symptoms. Oxidative stress has long been associated with neurodegeneration, whether as a cause or as part of the downstream results caused by other factors. Thus, the use of antioxidants to counter cellular oxidative stress within the nervous system has been suggested as a potential treatment option for neurological disorders. Over the last decade, significant research has focused on the potential use of natural antioxidants to target oxidative stress. However, clinical trial results have lacked success for the treatment of patients with neurological disorders. The knowledge that natural extracts show other positive molecular activities in addition to antioxidant activity, however, has led to further research of natural extracts for their potential use as prevention or treatment/management of neurodegenerative diseases. This review will cover several in vitro and in vivo research studies, as well as clinical trials, and highlight the potential of natural antioxidants.
Collapse
Affiliation(s)
- Franziska Pohl
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK.
| | - Paul Kong Thoo Lin
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK.
| |
Collapse
|
50
|
McBride SD, Morton AJ. Indices of comparative cognition: assessing animal models of human brain function. Exp Brain Res 2018; 236:3379-3390. [PMID: 30267138 PMCID: PMC6267686 DOI: 10.1007/s00221-018-5370-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 08/29/2018] [Indexed: 11/27/2022]
Abstract
Understanding the cognitive capacities of animals is important, because (a) several animal models of human neurodegenerative disease are considered poor representatives of the human equivalent and (b) cognitive capacities may provide insight into alternative animal models. We used a three-stage process of cognitive and neuroanatomical comparison (using sheep as an example) to assess the appropriateness of a species to model human brain function. First, a cognitive task was defined via a reinforcement-learning algorithm where values/constants in the algorithm were taken as indirect measures of neurophysiological attributes. Second, cognitive data (values/constants) were generated for the example species (sheep) and compared to other species. Third, cognitive data were compared with neuroanatomical metrics for each species (endocranial volume, gyrification index, encephalisation quotient, and number of cortical neurons). Four breeds of sheep (n = 15/sheep) were tested using the two-choice discrimination-reversal task. The 'reversal index' was used as a measure of constants within the learning algorithm. Reversal index data ranked sheep as third in a table of species that included primates, dogs, and pigs. Across all species, number of cortical neurons correlated strongest against the reversal index (r2 = 0.66, p = 0.0075) followed by encephalization quotient (r2 = 0.42, p = 0.03), endocranial volume (r2 = 0.30, p = 0.08), and gyrification index (r2 = 0.16, p = 0.23). Sheep have a high predicted level of cognitive capacity and are thus a valid alternative model for neurodegenerative research. Using learning algorithms within cognitive tasks increases the resolution of methods of comparative cognition and can help to identify the most relevant species to model human brain function and dysfunction.
Collapse
Affiliation(s)
- Sebastian D McBride
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3FG, UK.
| | - A Jennifer Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK
| |
Collapse
|