1
|
Bouchet CA, McPherson KB, Coutens B, Janowsky A, Ingram SL. Monoacylglycerol Lipase Protects the Presynaptic Cannabinoid 1 Receptor from Desensitization by Endocannabinoids after Persistent Inflammation. J Neurosci 2023; 43:5458-5467. [PMID: 37414560 PMCID: PMC10376933 DOI: 10.1523/jneurosci.0037-23.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/08/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023] Open
Abstract
Cannabinoid-targeted pain therapies are increasing with the expansion of cannabis legalization, however, their efficacy may be limited by pain-induced adaptations in the cannabinoid system. Cannabinoid receptor subtype 1 (CB1R) inhibition of spontaneous, GABAergic miniature IPSCs (mIPSCs) and evoked IPSCs (eIPSCs) in the ventrolateral periaqueductal gray (vlPAG) were compared in slices from naive and inflamed male and female Sprague Dawley rats. Complete Freund's Adjuvant (CFA) injections into the hindpaw induced persistent inflammation. In naive rats, exogenous cannabinoid agonists robustly reduce both eIPSCs and mIPSCs. After 5-7 d of inflammation, the effects of exogenous cannabinoids are significantly reduced because of CB1R desensitization via GRK2/3, as function is recovered in the presence of the GRK2/3 inhibitor, Compound 101 (Cmp101). Inhibition of GABA release by presynaptic μ-opioid receptors in the vlPAG does not desensitize with persistent inflammation. Unexpectedly, while CB1R desensitization significantly reduces the inhibition produced by exogenous agonists, depolarization-induced suppression of inhibition protocols that promote 2-arachidonoylglycerol (2-AG) synthesis exhibit prolonged CB1R activation after inflammation. 2-AG tone is detected in slices from CFA-treated rats when GRK2/3 is blocked, suggesting an increase in 2-AG synthesis after persistent inflammation. Inhibiting 2-AG degradation with the monoacylglycerol lipase (MAGL) inhibitor JZL184 during inflammation results in the desensitization of CB1Rs by endocannabinoids that is reversed with Cmp101. Collectively, these data indicate that persistent inflammation primes CB1Rs for desensitization, and MAGL degradation of 2-AG protects CB1Rs from desensitization in inflamed rats. These adaptations with inflammation have important implications for the development of cannabinoid-based pain therapeutics targeting MAGL and CB1Rs.SIGNIFICANCE STATEMENT Presynaptic G-protein-coupled receptors are resistant to desensitization. Here we find that persistent inflammation increases endocannabinoid levels, priming presynaptic cannabinoid 1 receptors for desensitization on subsequent addition of exogenous agonists. Despite the reduced efficacy of exogenous agonists, endocannabinoids have prolonged efficacy after persistent inflammation. Endocannabinoids readily induce cannabinoid 1 receptor desensitization if their degradation is blocked, indicating that endocannabinoid concentrations are maintained at subdesensitizing levels and that degradation is critical for maintaining endocannabinoid regulation of presynaptic GABA release in the ventrolateral periaqueductal gray during inflammatory states. These adaptations with inflammation have important implications for the development of cannabinoid-based pain therapies.
Collapse
Affiliation(s)
- Courtney A Bouchet
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon 97239
- Neuroscience Graduate Program, Vollum Institute, Portland, Oregon 97239
| | - Kylie B McPherson
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Basile Coutens
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Aaron Janowsky
- Research Service, VA Portland Health Care System, Portland, Oregon 97239
- Departments of Psychiatry, and Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239
| | - Susan L Ingram
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon 97239
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| |
Collapse
|
2
|
Phillips TJ, Roy T, Aldrich SJ, Baba H, Erk J, Mootz JRK, Reed C, Chesler EJ. Confirmation of a Causal Taar1 Allelic Variant in Addiction-Relevant Methamphetamine Behaviors. Front Psychiatry 2021; 12:725839. [PMID: 34512422 PMCID: PMC8428522 DOI: 10.3389/fpsyt.2021.725839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Sensitivity to rewarding and reinforcing drug effects has a critical role in initial use, but the role of initial aversive drug effects has received less attention. Methamphetamine effects on dopamine re-uptake and efflux are associated with its addiction potential. However, methamphetamine also serves as a substrate for the trace amine-associated receptor 1 (TAAR1). Growing evidence in animal models indicates that increasing TAAR1 function reduces drug self-administration and intake. We previously determined that a non-synonymous single nucleotide polymorphism (SNP) in Taar1 predicts a conformational change in the receptor that has functional consequences. A Taar1 m1J mutant allele existing in DBA/2J mice expresses a non-functional receptor. In comparison to mice that possess one or more copies of the reference Taar1 allele (Taar1 +/+ or Taar1 +/m1J ), mice with the Taar1 m1J/m1J genotype readily consume methamphetamine, express low sensitivity to aversive effects of methamphetamine, and lack sensitivity to acute methamphetamine-induced hypothermia. We used three sets of knock-in and control mice in which one Taar1 allele was exchanged with the alternative allele to determine if other methamphetamine-related traits and an opioid trait are impacted by the same Taar1 SNP proven to affect MA consumption and hypothermia. First, we measured sensitivity to conditioned rewarding and aversive effects of methamphetamine to determine if an impact of the Taar1 SNP on these traits could be proven. Next, we used multiple genetic backgrounds to study the consistency of Taar1 allelic effects on methamphetamine intake and hypothermia. Finally, we studied morphine-induced hypothermia to confirm prior data suggesting that a gene in linkage disequilibrium with Taar1, rather than Taar1, accounts for prior observed differences in sensitivity. We found that a single SNP exchange reduced sensitivity to methamphetamine conditioned reward and increased sensitivity to conditioned aversion. Profound differences in methamphetamine intake and hypothermia consistently corresponded with genotype at the SNP location, with only slight variation in magnitude across genetic backgrounds. Morphine-induced hypothermia was not dependent on Taar1 genotype. Thus, Taar1 genotype and TAAR1 function impact multiple methamphetamine-related effects that likely predict the potential for methamphetamine use. These data support further investigation of their potential roles in risk for methamphetamine addiction and therapeutic development.
Collapse
Affiliation(s)
- Tamara J. Phillips
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
- Veterans Affairs Portland Health Care System, Portland, OR, United States
| | - Tyler Roy
- The Jackson Laboratory and Center for Systems Neurogenetics of Addiction, Bar Harbor, ME, United States
| | - Sara J. Aldrich
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Harue Baba
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Jason Erk
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - John R. K. Mootz
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Cheryl Reed
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Elissa J. Chesler
- The Jackson Laboratory and Center for Systems Neurogenetics of Addiction, Bar Harbor, ME, United States
| |
Collapse
|
3
|
Stafford AM, Reed C, Phillips TJ. Non-genetic factors that influence methamphetamine intake in a genetic model of differential methamphetamine consumption. Psychopharmacology (Berl) 2020; 237:3315-3336. [PMID: 32833064 PMCID: PMC7572688 DOI: 10.1007/s00213-020-05614-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022]
Abstract
RATIONALE Genetic and non-genetic factors influence substance use disorders. Our previous work in genetic mouse models focused on genetic factors that influence methamphetamine (MA) intake. The current research examined several non-genetic factors for their potential influence on this trait. OBJECTIVES We examined the impact on MA intake of several non-genetic factors, including MA access schedule, prior forced MA exposure, concomitant ethanol (EtOH) access, and gamma-aminobutyric acid type B (GABAB) receptor activation. Selectively bred MA high drinking (MAHDR) and low drinking (MALDR) mice participated in this research. RESULTS MAHDR, but not MALDR, mice increased MA intake when given intermittent access, compared with continuous access, with a water choice under both schedules. MA intake was not altered by previous exposure to forced MA consumption. Male MAHDR mice given simultaneous access to MA, EtOH, and an EtOH+MA mixture exhibited a strong preference for MA over EtOH and EtOH+MA; MA intake was not affected by EtOH in female MAHDR mice. When independent MAHDR groups were given access to MA, EtOH, or EtOH+MA vs. water in each case, MA intake was reduced in the water vs. EtOH+MA group, compared with the water vs. MA group. The GABAB receptor agonist R(+)-baclofen (BAC) not only reduced MA intake but also reduced water intake and locomotor activity in MAHDR mice. There was a residual effect of BAC, such that MA intake was increased after termination of BAC treatment. CONCLUSIONS These findings demonstrate that voluntary MA intake in MAHDR mice is influenced by non-genetic factors related to MA access schedule and co-morbid EtOH exposure.
Collapse
Affiliation(s)
- A M Stafford
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
| | - C Reed
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
| | - T J Phillips
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA.
- Veterans Affairs Portland Health Care System, Portland, OR, USA.
| |
Collapse
|
4
|
Abstract
This paper is the forty-first consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2018 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (2), the roles of these opioid peptides and receptors in pain and analgesia in animals (3) and humans (4), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (5), opioid peptide and receptor involvement in tolerance and dependence (6), stress and social status (7), learning and memory (8), eating and drinking (9), drug abuse and alcohol (10), sexual activity and hormones, pregnancy, development and endocrinology (11), mental illness and mood (12), seizures and neurologic disorders (13), electrical-related activity and neurophysiology (14), general activity and locomotion (15), gastrointestinal, renal and hepatic functions (16), cardiovascular responses (17), respiration and thermoregulation (18), and immunological responses (19).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
5
|
Mootz JRK, Miner NB, Phillips TJ. Differential genetic risk for methamphetamine intake confers differential sensitivity to the temperature-altering effects of other addictive drugs. GENES, BRAIN, AND BEHAVIOR 2020; 19:e12640. [PMID: 31925906 PMCID: PMC7286770 DOI: 10.1111/gbb.12640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 01/03/2023]
Abstract
Mice selectively bred for high methamphetamine (MA) drinking (MAHDR), compared with mice bred for low MA drinking (MALDR), exhibit greater sensitivity to MA reward and insensitivity to aversive and hypothermic effects of MA. Previous work identified the trace amine-associated receptor 1 gene (Taar1) as a quantitative trait gene for MA intake that also impacts thermal response to MA. All MAHDR mice are homozygous for the mutant Taar1 m1J allele, whereas all MALDR mice possess at least one copy of the reference Taar1 + allele. To determine if their differential sensitivity to MA-induced hypothermia extends to drugs of similar and different classes, we examined sensitivity to the hypothermic effect of the stimulant cocaine, the amphetamine-like substance 3,4-methylenedioxymethamphetamine (MDMA), and the opioid morphine in these lines. The lines did not differ in thermal response to cocaine, only MALDR mice exhibited a hypothermic response to MDMA, and MAHDR mice were more sensitive to the hypothermic effect of morphine than MALDR mice. We speculated that the μ-opioid receptor gene (Oprm1) impacts morphine response, and genotyped the mice tested for morphine-induced hypothermia. We report genetic linkage between Taar1 and Oprm1; MAHDR mice more often inherit the Oprm1 D2 allele and MALDR mice more often inherit the Oprm1 B6 allele. Data from a family of recombinant inbred mouse strains support the influence of Oprm1 genotype, but not Taar1 genotype, on thermal response to morphine. These results nominate Oprm1 as a genetic risk factor for morphine-induced hypothermia, and provide additional evidence for a connection between drug preference and drug thermal response.
Collapse
Affiliation(s)
- John R K Mootz
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, Oregon
| | - Nicholas B Miner
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, Oregon
| | - Tamara J Phillips
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, Oregon
- Division of Research, Veterans Affairs Portland Health Care System, Portland, Oregon
| |
Collapse
|
6
|
Stafford AM, Reed C, Baba H, Walter NAR, Mootz JRK, Williams RW, Neve KA, Fedorov LM, Janowsky AJ, Phillips TJ. Taar1 gene variants have a causal role in methamphetamine intake and response and interact with Oprm1. eLife 2019; 8:e46472. [PMID: 31274109 PMCID: PMC6682400 DOI: 10.7554/elife.46472] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/04/2019] [Indexed: 12/17/2022] Open
Abstract
We identified a locus on mouse chromosome 10 that accounts for 60% of the genetic variance in methamphetamine intake in mice selectively bred for high versus low methamphetamine consumption. We nominated the trace amine-associated receptor 1 gene, Taar1, as the strongest candidate and identified regulation of the mu-opioid receptor 1 gene, Oprm1, as another contributor. This study exploited CRISPR-Cas9 to test the causal role of Taar1 in methamphetamine intake and a genetically-associated thermal response to methamphetamine. The methamphetamine-related traits were rescued, converting them to levels found in methamphetamine-avoiding animals. We used a family of recombinant inbred mouse strains for interval mapping and to examine independent and epistatic effects of Taar1 and Oprm1. Both methamphetamine intake and the thermal response mapped to Taar1 and the independent effect of Taar1 was dependent on genotype at Oprm1. Our findings encourage investigation of the contribution of Taar1 and Oprm1 variants to human methamphetamine addiction.
Collapse
Affiliation(s)
- Alexandra M Stafford
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research CenterOregon Health & Science UniversityPortlandUnited States
| | - Cheryl Reed
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research CenterOregon Health & Science UniversityPortlandUnited States
| | - Harue Baba
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research CenterOregon Health & Science UniversityPortlandUnited States
| | - Nicole AR Walter
- Division of NeuroscienceOregon National Primate Research CenterPortlandUnited States
| | - John RK Mootz
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research CenterOregon Health & Science UniversityPortlandUnited States
| | - Robert W Williams
- Department of Genetics, Genomics and InformaticsUniversity of Tennessee Health Sciences CenterMemphisUnited States
| | - Kim A Neve
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research CenterOregon Health & Science UniversityPortlandUnited States
- Veterans Affairs Portland Health Care SystemPortlandUnited States
| | - Lev M Fedorov
- Transgenic Mouse Models Shared Resource, Knight Cancer InstituteOregon Health & Science UniversityPortlandUnited States
| | - Aaron J Janowsky
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research CenterOregon Health & Science UniversityPortlandUnited States
- Veterans Affairs Portland Health Care SystemPortlandUnited States
- Department of PsychiatryOregon Health & Science UniversityPortlandUnited States
| | - Tamara J Phillips
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research CenterOregon Health & Science UniversityPortlandUnited States
- Veterans Affairs Portland Health Care SystemPortlandUnited States
| |
Collapse
|
7
|
Hitzemann R, Iancu OD, Reed C, Baba H, Lockwood DR, Phillips TJ. Regional Analysis of the Brain Transcriptome in Mice Bred for High and Low Methamphetamine Consumption. Brain Sci 2019; 9:E155. [PMID: 31262025 PMCID: PMC6681006 DOI: 10.3390/brainsci9070155] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/20/2019] [Accepted: 06/26/2019] [Indexed: 01/08/2023] Open
Abstract
Transcriptome profiling can broadly characterize drug effects and risk for addiction in the absence of drug exposure. Modern large-scale molecular methods, including RNA-sequencing (RNA-Seq), have been extensively applied to alcohol-related disease traits, but rarely to risk for methamphetamine (MA) addiction. We used RNA-Seq data from selectively bred mice with high or low risk for voluntary MA intake to construct coexpression and cosplicing networks for differential risk. Three brain reward circuitry regions were explored, the nucleus accumbens (NAc), prefrontal cortex (PFC), and ventral midbrain (VMB). With respect to differential gene expression and wiring, the VMB was more strongly affected than either the PFC or NAc. Coexpression network connectivity was higher in the low MA drinking line than in the high MA drinking line in the VMB, oppositely affected in the NAc, and little impacted in the PFC. Gene modules protected from the effects of selection may help to eliminate certain mechanisms from significant involvement in risk for MA intake. One such module was enriched in genes with dopamine-associated annotations. Overall, the data suggest that mitochondrial function and glutamate-mediated synaptic plasticity have key roles in the outcomes of selective breeding for high versus low levels of MA intake.
Collapse
Affiliation(s)
- Robert Hitzemann
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ovidiu D Iancu
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | - Cheryl Reed
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Harue Baba
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Denesa R Lockwood
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | - Tamara J Phillips
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA.
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR 97239, USA.
- Veterans Affairs Portland Health Care System, Portland, OR 97239, USA.
| |
Collapse
|
8
|
Shabani S, Schmidt B, Ghimire B, Houlton SK, Hellmuth L, Mojica E, Phillips TJ. Depression-like symptoms of withdrawal in a genetic mouse model of binge methamphetamine intake. GENES, BRAIN, AND BEHAVIOR 2019; 18:e12533. [PMID: 30375183 PMCID: PMC6399044 DOI: 10.1111/gbb.12533] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/05/2018] [Accepted: 10/27/2018] [Indexed: 12/25/2022]
Abstract
Binge methamphetamine (MA) users have higher MA consumption, relapse rates and depression-like symptoms during early periods of withdrawal, compared with non-binge users. The impact of varying durations of MA abstinence on depression-like symptoms and on subsequent MA intake was examined in mice genetically prone to binge-level MA consumption. Binge-level MA intake was induced using a multiple-bottle choice procedure in which mice were offered one water drinking tube and three tubes containing increasing concentrations of MA in water, or four water tubes (control group). In two studies, depression-like symptoms were measured using a tail-suspension test and a subsequent forced-swim test, after forced abstinence of 6 and 30 hours from a 28-day course of chronic MA intake. An additional study measured the same depression-like symptoms, as well as MA intake, after prolonged abstinence of 1 and 2 weeks. MA high drinking mice and one of their progenitor strains DBA/2J escalated their MA intake with increasing MA concentration; however, MA high drinking mice consumed almost twice as much MA as DBA/2J mice. Depression-like symptoms were significantly higher early after MA access was withdrawn, compared to levels in drug-naïve controls, with more robust effects of MA withdrawal observed in MA high drinking than DBA/2J mice. When depression-like symptoms were examined after 1 or 2 weeks of forced abstinence in MA high drinking mice, depression-like symptoms dissipated, and subsequent MA intake was high. The MA high drinking genetic mouse model has strong face validity for human binge MA use and behavioral sequelae associated with abstinence.
Collapse
Affiliation(s)
- Shkelzen Shabani
- Grand Valley State University, Allendale, MI, USA
- Minot State University, Minot, ND, USA
| | | | | | | | | | | | - Tamara J. Phillips
- Oregon Health & Science University, Portland, OR, USA
- VA Portland Health Care System, Portland, OR, USA
| |
Collapse
|