1
|
Swain J, Askenasy I, Rudland Nazeer R, Ho PM, Labrini E, Mancini L, Xu Q, Hollendung F, Sheldon I, Dickson C, Welch A, Agbamu A, Godlee C, Welch M. Pathogenicity and virulence of Pseudomonas aeruginosa: Recent advances and under-investigated topics. Virulence 2025; 16:2503430. [PMID: 40353451 DOI: 10.1080/21505594.2025.2503430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/23/2025] [Accepted: 05/03/2025] [Indexed: 05/14/2025] Open
Abstract
Pseudomonas aeruginosa is a model for the study of quorum sensing, protein secretion, and biofilm formation. Consequently, it has become one of the most intensely reviewed pathogens, with many excellent articles in the current literature focusing on these aspects of the organism's biology. Here, though, we aim to take a slightly different approach and consider some less well appreciated (but nonetheless important) factors that affect P. aeruginosa virulence. We start by reminding the reader of the global importance of P. aeruginosa infection and that the "virulome" is very niche-specific. Overlooked but obvious questions such as "what prevents secreted protein products from being digested by co-secreted proteases?" are discussed, and we suggest how the nutritional preference(s) of the organism might dictate its environmental reservoirs. Recent studies identifying host genes associated with genetic predisposition towards P. aeruginosa infection (and even infection by specific P. aeruginosa strains) and the role(s) of intracellular P. aeruginosa are introduced. We also discuss the fact that virulence is a high-risk strategy and touch on how expression of the two main classes of virulence factors is regulated. A particular focus is on recent findings highlighting how nutritional status and metabolism are as important as quorum sensing in terms of their impact on virulence, and how co-habiting microbial species at the infection site impact on P. aeruginosa virulence (and vice versa). It is our view that investigation of these issues is likely to dominate many aspects of research into this WHO-designated priority pathogen over the next decade.
Collapse
Affiliation(s)
- Jemima Swain
- Department of Biochemistry, Cambridge University, Cambridge, UK
| | - Isabel Askenasy
- Department of Biochemistry, Cambridge University, Cambridge, UK
| | | | - Pok-Man Ho
- Department of Biochemistry, Cambridge University, Cambridge, UK
| | - Edoardo Labrini
- Department of Biochemistry, Cambridge University, Cambridge, UK
| | | | - Qingqing Xu
- Department of Biochemistry, Cambridge University, Cambridge, UK
| | | | | | - Camilla Dickson
- Department of Biochemistry, Cambridge University, Cambridge, UK
| | - Amelie Welch
- Department of Biochemistry, Cambridge University, Cambridge, UK
| | - Adam Agbamu
- Department of Biochemistry, Cambridge University, Cambridge, UK
| | - Camilla Godlee
- Department of Biochemistry, Cambridge University, Cambridge, UK
| | - Martin Welch
- Department of Biochemistry, Cambridge University, Cambridge, UK
| |
Collapse
|
2
|
García-Reyes S, Moustafa DA, Attrée I, Goldberg JB, Quiroz-Morales SE, Soberón-Chávez G. Vfr or CyaB promote the expression of the pore-forming toxin exlBA operon in Pseudomonas aeruginosa ATCC 9027 without increasing its virulence in mice. MICROBIOLOGY-SGM 2021; 167. [PMID: 34424157 DOI: 10.1099/mic.0.001083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pseudomonas aeruginosa is a wide-spread γ-proteobacterium that produces the biosurfactant rhamnolipid that has a great commercial value due to excellent properties of low toxicity and high biodegradability. However, this bacterium is an opportunist pathogen that constitutes an important health hazard due to its production of virulence-associated traits and its high antibiotic resistance. Thus, it is highly desirable to have a non-virulent P. aeruginosa strain for rhamnolipid production. It has been reported that strain ATCC 9027 is avirulent in mouse models of infection, and it is still able to produce rhamnolipid. Thus, it has been proposed to be suitable for it industrial production, since it encodes a defective LasR quorum sensing (QS) transcriptional regulator that is the head of this regulatory network. However, the restoration of virulence factor production by overexpression of rhlR (the gene encoding a QS-transcriptional regulator which is under the transcriptional control of LasR) is not sufficient to restore its virulence in mice. It is desirable to obtain a deeper understanding of ATCC 9027 attenuated-virulence phenotype and to assess the safety of this strain to be used at an industrial scale. In this work we determined whether increasing the expression of the pore-forming toxin encoded by the exlBA operon in strain ATCC 9027 had an impact on its virulence using Galleria mellonella and mouse models of infections. We increased the expression of the exlBA operon by overexpressing from a plasmid its transcriptional activator Vfr or of the Vfr ligand cyclic AMP produced by CyaB. We found that in G. mellonella ATCC 9027/pUCP24-vfr and ATCC 9027/pUCP24-cyaB gained a virulent phenotype, but these strains remained avirulent in murine models of P. aeruginosa infection. These results reinforce the possibility of using ATCC 9027 for industrial biosurfactants production.
Collapse
Affiliation(s)
- Selene García-Reyes
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México. Ciudad Universitaria, Apdo. Postal 70228, C. P. 04510, CDMX, México
| | - Dina A Moustafa
- Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA.,Emory Children's Centre for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ina Attrée
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, Grenoble, France
| | - Joanna B Goldberg
- Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA.,Emory Children's Centre for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sara E Quiroz-Morales
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México. Ciudad Universitaria, Apdo. Postal 70228, C. P. 04510, CDMX, México
| | - Gloria Soberón-Chávez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México. Ciudad Universitaria, Apdo. Postal 70228, C. P. 04510, CDMX, México
| |
Collapse
|
3
|
Tamiya S, Yoshikawa E, Suzuki K, Yoshioka Y. Susceptibility Analysis in Several Mouse Strains Reveals Robust T-Cell Responses After Mycoplasma pneumoniae Infection in DBA/2 Mice. Front Cell Infect Microbiol 2021; 10:602453. [PMID: 33520736 PMCID: PMC7839406 DOI: 10.3389/fcimb.2020.602453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/27/2020] [Indexed: 02/03/2023] Open
Abstract
Mycoplasma pneumoniae (Mp) is a highly contagious respiratory pathogen responsible for human community-acquired pneumonia. The number of antibiotic-resistant Mp strains is increasing; therefore, to develop novel therapeutics, it is crucial to precisely understand the pathogenesis of mycoplasma pneumonia. Herein, we examined the susceptibility and response to Mp among eight inbred mouse strains. Following infection, the bacterial load in the bronchoalveolar lavage fluid (BALF) from DBA/2 mice was higher than that in the other tested strains such as BALB/c mice, which are frequently used in Mp research. In contrast, the numbers of CD45+ immune cells and neutrophils in BALF were comparable between BALB/c and DBA/2 mice, with lower numbers observed in C57BL/6J and CBA/N mice than in BALB/c mice. Among the tested strains, the BALF level of interleukin 12 subunit p40 was highest in DBA/2 mice; however, significant differences in other cytokines levels were not observed between BALB/c and DBA/2 mice. After Mp infection, Mp-specific Th1 and Th17 responses were significantly enhanced in DBA/2 mice when compared with BALB/c mice. Furthermore, prior infection with Mp increased the number of neutrophils in BALF after the reinfection of DBA/2 mice through an Mp-specific CD4+ T cell-dependent mechanism. Thus, DBA/2 may be an appropriate strain for evaluating Mp infection. Moreover, a comparison of responses revealed by various inbred mouse strains could be useful for elucidating the pathogenesis of Mycoplasma pneumonia.
Collapse
Affiliation(s)
- Shigeyuki Tamiya
- Laboratory of Nano-design for innovative drug development, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan.,Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Eisuke Yoshikawa
- Laboratory of Nano-design for innovative drug development, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan.,Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Koichiro Suzuki
- The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
| | - Yasuo Yoshioka
- Laboratory of Nano-design for innovative drug development, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan.,Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
| |
Collapse
|