1
|
Caruso SM, Cui X, Robbings BM, Heapes N, Demikrol A, Lopes Da Costa B, Hass DT, Quinn PM, Du J, Hurley JB, Tsang SH. Ablating VHL in rod photoreceptors modulates RPE glycolysis and improves preclinical model of retinitis pigmentosa. J Clin Invest 2025; 135:e185796. [PMID: 39932789 PMCID: PMC11957697 DOI: 10.1172/jci185796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
Neuroretinal degenerations including retinitis pigmentosa (RP) comprise a heterogeneous collection of pathogenic mutations that ultimately result in blindness. Despite recent advances in precision medicine, therapies for rarer mutations are hindered by burdensome developmental costs. To this end, Von Hippel-Lindau (VHL) is an attractive therapeutic target to treat RP. By ablating VHL in rod photoreceptors and elevating hypoxia-inducible factor (HIF) levels, we demonstrate a path to therapeutically enhancing glycolysis independent of the underlying genetic variant that slows degeneration of both rod and cone photoreceptors in a preclinical model of retinitis pigmentosa. This rod-specific intervention also resulted in reciprocal, decreased glycolytic activity within the retinal pigment epithelium (RPE) cells despite no direct genetic modifications to the RPE. Suppressing glycolysis in the RPE provided notable, noncell-autonomous therapeutic benefits to the photoreceptors, indicative of metabolically sensitive crosstalk between different cellular compartments of the retina. Surprisingly, targeting HIF2A in RPE cells did not impact RPE glycolysis, potentially implicating HIF1A as a major regulator in mouse RPE and providing a rationale for future therapeutic efforts aimed at modulating RPE metabolism.
Collapse
Affiliation(s)
- Salvatore Marco Caruso
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
- Jonas Children’s Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Institute of Human Nutrition, Columbia Stem Cell Initiative, New York, New York, USA
- Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, New York, USA
| | - Xuan Cui
- Jonas Children’s Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Institute of Human Nutrition, Columbia Stem Cell Initiative, New York, New York, USA
- Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, New York, USA
| | - Brian M. Robbings
- Department of Biochemistry, The University of Washington, Seattle, Washington, USA
| | - Noah Heapes
- Jonas Children’s Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Institute of Human Nutrition, Columbia Stem Cell Initiative, New York, New York, USA
| | - Aykut Demikrol
- Jonas Children’s Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Institute of Human Nutrition, Columbia Stem Cell Initiative, New York, New York, USA
- Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, New York, USA
| | - Bruna Lopes Da Costa
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
- Jonas Children’s Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Institute of Human Nutrition, Columbia Stem Cell Initiative, New York, New York, USA
- Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, New York, USA
| | - Daniel T. Hass
- Department of Biochemistry, The University of Washington, Seattle, Washington, USA
| | - Peter M.J. Quinn
- Jonas Children’s Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Institute of Human Nutrition, Columbia Stem Cell Initiative, New York, New York, USA
- Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, New York, USA
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences and
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - James B. Hurley
- Department of Biochemistry, The University of Washington, Seattle, Washington, USA
| | - Stephen H. Tsang
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
- Jonas Children’s Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Institute of Human Nutrition, Columbia Stem Cell Initiative, New York, New York, USA
- Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, New York, USA
- Departments of Ophthalmology, Pathology & Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
2
|
Clérin E, Aït-Ali N, Sahel JA, Léveillard T. Restoration of Rod-Derived Metabolic and Redox Signaling to Prevent Blindness. Cold Spring Harb Perspect Med 2024; 14:a041284. [PMID: 37848252 PMCID: PMC11529851 DOI: 10.1101/cshperspect.a041284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Vision is initiated by capturing photons in highly specialized sensory cilia known as the photoreceptor outer segment. Because of its lipid and protein composition, the outer segments are prone to photo-oxidation, requiring photoreceptors to have robust antioxidant defenses and high metabolic synthesis rates to regenerate the outer segments every 10 days. Both processes required high levels of glucose uptake and utilization. Retinitis pigmentosa is a prevalent form of inherited retinal degeneration characterized by initial loss of low-light vision caused by the death of rod photoreceptors. In this disease, rods die as a direct effect of an inherited mutation. Following the loss of rods, cones eventually degenerate, resulting in complete blindness. The progression of vision loss in retinitis pigmentosa suggested that rod photoreceptors were necessary to maintain healthy cones. We identified a protein secreted by rods that functions to promote cone survival, and we named it rod-derived cone viability factor (RdCVF). RdCVF is encoded by an alternative splice product of the nucleoredoxin-like 1 (NXNL1) gene, and RdCVF was found to accelerate the uptake of glucose by cones. Without RdCVF, cones eventually die because of compromised glucose uptake and utilization. The NXNL1 gene also encodes for the thioredoxin RdCVFL, which reduces cysteines in photoreceptor proteins that are oxidized, providing a defense against radical oxygen species. We will review here the main steps of discovering this novel intercellular signaling currently under translation as a broad-spectrum treatment for retinitis pigmentosa.
Collapse
Affiliation(s)
- Emmanuelle Clérin
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Najate Aït-Ali
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - José-Alain Sahel
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, F-75012 Paris, France
- Department of OphthalmoloUPMC Vision Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Thierry Léveillard
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| |
Collapse
|
3
|
Rajala A, Bhat MA, Teel K, Gopinadhan Nair GK, Purcell L, Rajala RVS. The function of lactate dehydrogenase A in retinal neurons: implications to retinal degenerative diseases. PNAS NEXUS 2023; 2:pgad038. [PMID: 36896135 PMCID: PMC9991461 DOI: 10.1093/pnasnexus/pgad038] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
The postmitotic retina is highly metabolic and the photoreceptors depend on aerobic glycolysis for an energy source and cellular anabolic activities. Lactate dehydrogenase A (LDHA) is a key enzyme in aerobic glycolysis, which converts pyruvate to lactate. Here we show that cell-type-specific actively translating mRNA purification by translating ribosome affinity purification shows a predominant expression of LDHA in rods and cones and LDHB in the retinal pigment epithelium and Müller cells. We show that genetic ablation of LDHA in the retina resulted in diminished visual function, loss of structure, and a loss of dorsal-ventral patterning of the cone-opsin gradient. Loss of LDHA in the retina resulted in increased glucose availability, promoted oxidative phosphorylation, and upregulated the expression of glutamine synthetase (GS), a neuron survival factor. However, lacking LDHA in Müller cells does not affect visual function in mice. Glucose shortage is associated with retinal diseases, such as age-related macular degeneration (AMD), and regulating the levels of LDHA may have therapeutic relevance. These data demonstrate the unique and unexplored roles of LDHA in the maintenance of a healthy retina.
Collapse
Affiliation(s)
- Ammaji Rajala
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
- Dean McGee Eye Institute, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
| | - Mohd A Bhat
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
- Dean McGee Eye Institute, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
| | - Kenneth Teel
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
- Dean McGee Eye Institute, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
| | - Gopa Kumar Gopinadhan Nair
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
- Dean McGee Eye Institute, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
| | - Lindsey Purcell
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
- Dean McGee Eye Institute, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
| | - Raju V S Rajala
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
- Dean McGee Eye Institute, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
| |
Collapse
|
4
|
Cui X, Kim HJ, Cheng CH, Jenny LA, Lima de Carvalho JR, Chang YJ, Kong Y, Hsu CW, Huang IW, Ragi SD, Lin CS, Li X, Sparrow JR, Tsang SH. Long-term vitamin A supplementation in a preclinical mouse model for RhoD190N-associated retinitis pigmentosa. Hum Mol Genet 2022; 31:2438-2451. [PMID: 35195241 PMCID: PMC9307315 DOI: 10.1093/hmg/ddac032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/10/2022] [Accepted: 01/25/2022] [Indexed: 01/12/2023] Open
Abstract
Retinitis pigmentosa (RP) is caused by one of many possible gene mutations. The National Institutes of Health recommends high daily doses of vitamin A palmitate for RP patients. There is a critical knowledge gap surrounding the therapeutic applicability of vitamin A to patients with the different subtypes of the disease. Here, we present a case report of a patient with RP caused by a p.D190N mutation in Rhodopsin (RHO) associated with abnormally high quantitative autofluorescence values after long-term vitamin A supplementation. We investigated the effects of vitamin A treatment strategy on RP caused by the p.D190N mutation in RHO by exposing Rhodopsin p.D190N (RhoD190N/+) and wild-type (WT) mice to experimental vitamin A-supplemented and standard control diets. The patient's case suggests that the vitamin A treatment strategy should be further studied to determine its effect on RP caused by p.D190N mutation in RHO and other mutations. Our mouse experiments revealed that RhoD190N/+ mice on the vitamin A diet exhibited higher levels of autofluorescence and lipofuscin metabolites compared to WT mice on the same diet and isogenic controls on the standard control diet. Vitamin A supplementation diminished photoreceptor function in RhoD190N/+ mice while preserving cone response in WT mice. Our findings highlight the importance of more investigations into the efficacy of clinical treatments like vitamin A for patients with certain genetic subtypes of disease and of genotyping in the precision care of inherited retinal degenerations.
Collapse
Affiliation(s)
- Xuan Cui
- Jonas Children’s Vision Care, and the Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
- School of Optometry and Ophthalmology, Tianjin Medical University Eye Institute, Tianjin Medical University Eye Hospital, Tianjin Medical University, Tianjin 300384, China
- Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
| | - Hye Jin Kim
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Chia-Hua Cheng
- Jonas Children’s Vision Care, and the Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Laura A Jenny
- Jonas Children’s Vision Care, and the Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Jose Ronaldo Lima de Carvalho
- Jonas Children’s Vision Care, and the Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Ya-Ju Chang
- Jonas Children’s Vision Care, and the Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Yang Kong
- Jonas Children’s Vision Care, and the Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Chun-Wei Hsu
- Jonas Children’s Vision Care, and the Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - I-Wen Huang
- Jonas Children’s Vision Care, and the Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Sara D Ragi
- Jonas Children’s Vision Care, and the Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Chyuan-Sheng Lin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Xiaorong Li
- School of Optometry and Ophthalmology, Tianjin Medical University Eye Institute, Tianjin Medical University Eye Hospital, Tianjin Medical University, Tianjin 300384, China
| | - Janet R Sparrow
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
- Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Stephen H Tsang
- Jonas Children’s Vision Care, and the Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
- Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
- Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
| |
Collapse
|
5
|
Weh E, Scott K, Wubben TJ, Besirli CG. Dark-reared rd10 mice experience rapid photoreceptor degeneration with short exposure to room-light during in vivo retinal imaging. Exp Eye Res 2022; 215:108913. [PMID: 34965404 PMCID: PMC8923962 DOI: 10.1016/j.exer.2021.108913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 02/03/2023]
Abstract
Inherited retinal diseases (IRDs) are a collection of rare genetic conditions, which can lead to complete blindness. A large number of causative genes have been identified for IRDs and while some success has been achieved with gene therapies, they are limited in scope to each individual gene and/or the specific mutation harbored by each patient with an IRD. Multiple studies are underway to elucidate common underlying mechanisms contributing to photoreceptor (PR) loss and to design gene-agnostic, pan-disease therapeutics. The rd10 mouse, which recapitulates slow degeneration of PRs, is an in vivo IRD model used commonly by vision researchers. Light deprivation by rearing animals in complete darkness significantly delays PR death in rd10 mice, subsequently increasing the time window for in vivo studies investigating neuroprotective strategies. Longitudinal in vivo retinal imaging following the same rd10 mice over time is a potential solution for reducing the number of animals required to complete a study. We describe a previously unreported phenotype in the dark-reared rd10 model that is characterized by dramatic PR degeneration following brief exposure to low-intensity light. This exquisite light sensitivity precludes the use of longitudinal studies employing in vivo imaging or other functional assessment requiring room light in rd10 mice and highlights the importance of closely following animal models of IRD to determine any deviations from the expected degeneration curve during routine experimentation.
Collapse
Affiliation(s)
| | | | | | - Cagri G. Besirli
- Corresponding Author, please direct all correspondence to: Cagri Besirli, 1000 Wall St., Ann Arbor, MI 48105, 734-232-8404,
| |
Collapse
|
6
|
Renormalization of metabolic coupling treats age-related degenerative disorders: an oxidative RPE niche fuels the more glycolytic photoreceptors. Eye (Lond) 2022; 36:278-283. [PMID: 34974542 PMCID: PMC8807833 DOI: 10.1038/s41433-021-01726-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 11/26/2022] Open
Abstract
Retinitis pigmentosa is characterized by a dysregulation within the metabolic coupling of the retina, particularly between the glycolytic photoreceptors and the oxidative retina pigment epithelium. This phenomenon of metabolic uncoupling is seen in both aging and retinal degenerative diseases, as well as across a variety of cell types in human biology. Given its crucial role in the health and maintenance of these cell types, the metabolic pathways involved present a suitable area for therapeutic intervention. Herein, this review covers the scope of this delicate metabolic interplay, its dysregulation, how it relates to the retina as well other cell types, and finally concludes with a summary of various strategies aimed at reinstating normal metabolic coupling within the retina, and future directions within the field.
Collapse
|
7
|
Li X, Cai S, He Z, Reilly J, Zeng Z, Strang N, Shu X. Metabolomics in Retinal Diseases: An Update. BIOLOGY 2021; 10:944. [PMID: 34681043 PMCID: PMC8533136 DOI: 10.3390/biology10100944] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/17/2022]
Abstract
Retinal diseases are a leading cause of visual loss and blindness, affecting a significant proportion of the population worldwide and having a detrimental impact on quality of life, with consequent economic burden. The retina is highly metabolically active, and a number of retinal diseases are associated with metabolic dysfunction. To better understand the pathogenesis underlying such retinopathies, new technology has been developed to elucidate the mechanism behind retinal diseases. Metabolomics is a relatively new "omics" technology, which has developed subsequent to genomics, transcriptomics, and proteomics. This new technology can provide qualitative and quantitative information about low-molecular-weight metabolites (M.W. < 1500 Da) in a given biological system, which shed light on the physiological or pathological state of a cell or tissue sample at a particular time point. In this article we provide an extensive review of the application of metabolomics to retinal diseases, with focus on age-related macular degeneration (AMD), diabetic retinopathy (DR), retinopathy of prematurity (ROP), glaucoma, and retinitis pigmentosa (RP).
Collapse
Affiliation(s)
- Xing Li
- School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China; (X.L.); (Z.H.)
| | - Shichang Cai
- Department of Human Anatomy, School of Medicine, Hunan University of Medicine, Huaihua 418000, China;
| | - Zhiming He
- School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China; (X.L.); (Z.H.)
| | - James Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK;
| | - Zhihong Zeng
- College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China;
| | - Niall Strang
- Department of Vision Science, Glasgow Caledonian University, Glasgow G4 0BA, UK;
| | - Xinhua Shu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China; (X.L.); (Z.H.)
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK;
- Department of Vision Science, Glasgow Caledonian University, Glasgow G4 0BA, UK;
| |
Collapse
|
8
|
Abstract
The outer retina is nourished from the choroid, a capillary bed just inside the sclera. O2, glucose, and other nutrients diffuse out of the choroid and then filter through a monolayer of retinal pigment epithelium (RPE) cells to fuel the retina. Recent studies of energy metabolism have revealed striking differences between retinas and RPE cells in the ways that they extract energy from fuels. The purpose of this review is to suggest and evaluate the hypothesis that the retina and RPE have complementary metabolic roles that make them depend on each other for survival and for their abilities to perform essential and specialized functions. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- James B Hurley
- Departments of Biochemistry and Ophthalmology, University of Washington, Seattle, Washington 98115, USA;
| |
Collapse
|
9
|
Pan WW, Wubben TJ, Besirli CG. Photoreceptor metabolic reprogramming: current understanding and therapeutic implications. Commun Biol 2021; 4:245. [PMID: 33627778 PMCID: PMC7904922 DOI: 10.1038/s42003-021-01765-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Acquired and inherited retinal disorders are responsible for vision loss in an increasing proportion of individuals worldwide. Photoreceptor (PR) death is central to the vision loss individuals experience in these various retinal diseases. Unfortunately, there is a lack of treatment options to prevent PR loss, so an urgent unmet need exists for therapies that improve PR survival and ultimately, vision. The retina is one of the most energy demanding tissues in the body, and this is driven in large part by the metabolic needs of PRs. Recent studies suggest that disruption of nutrient availability and regulation of cell metabolism may be a unifying mechanism in PR death. Understanding retinal cell metabolism and how it is altered in disease has been identified as a priority area of research. The focus of this review is on the recent advances in the understanding of PR metabolism and how it is critical to reduction-oxidation (redox) balance, the outer retinal metabolic ecosystem, and retinal disease. The importance of these metabolic processes is just beginning to be realized and unraveling the metabolic and redox pathways integral to PR health may identify novel targets for neuroprotective strategies that prevent blindness in the heterogenous group of retinal disorders.
Collapse
Affiliation(s)
- Warren W Pan
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | - Thomas J Wubben
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA.
| | - Cagri G Besirli
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Caruso S, Ryu J, Quinn PM, Tsang SH. Precision metabolome reprogramming for imprecision therapeutics in retinitis pigmentosa. J Clin Invest 2021; 130:3971-3973. [PMID: 32657778 DOI: 10.1172/jci139239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Retinitis pigmentosa (RP), the most common form of rod-cone dystrophy, is caused by greater than 3100 mutations in more than 71 genes, many of which are preferentially expressed in rod photoreceptors. Cone death generally follows rod loss regardless of the underlying pathogenic mutation. Preventing the secondary loss of cone photoreceptors would preserve central visual acuity and substantially improve patients' quality of life. In this issue of the JCI, Wang et al. demonstrate that adeno-associated virus-mediated overexpression of TGF-β1 promoted cone survival and function in 3 distinct RP models with rod-specific mutations. TGF-β1 induces microglia to metabolically tune from a glycolytic phenotype (M1) to an oxidative phenotype (M2), which associates with neuroprotection and the antiinflammatory ecosystem. Consolidating the results of this study with our current understanding of how TGF-β1 regulates microglia polarization, we highlight cell-specific metabolome reprogramming as a promising non-gene-specific therapeutic avenue for inherited retinal degenerations.
Collapse
Affiliation(s)
- Salvatore Caruso
- Jonas Children's Vision Care and Bernard and Shirlee Brown Glaucoma Research Laboratory.,Department of Biomedical Engineering, and
| | - Joseph Ryu
- Jonas Children's Vision Care and Bernard and Shirlee Brown Glaucoma Research Laboratory
| | - Peter Mj Quinn
- Jonas Children's Vision Care and Bernard and Shirlee Brown Glaucoma Research Laboratory
| | - Stephen H Tsang
- Jonas Children's Vision Care and Bernard and Shirlee Brown Glaucoma Research Laboratory.,Columbia Stem Cell Initiative.,Department of Ophthalmology.,Department of Pathology.,Department of Cell Biology.,Department of Biomedical Engineering, and.,Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, New York, USA
| |
Collapse
|