1
|
Nunney L. The effect of body size and inbreeding on cancer mortality in breeds of the domestic dog: a test of the multi-stage model of carcinogenesis. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231356. [PMID: 38298404 PMCID: PMC10827441 DOI: 10.1098/rsos.231356] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024]
Abstract
Cancer is a leading cause of death in domestic dogs. Deaths due to cancer vary widely among breeds, providing an opportunity for testing the multi-stage model of carcinogenesis. This model underpins evolutionary and basic studies of cancer suppression and predicts a linear increase in cancer with breed size, an expectation complicated by bigger breeds having a shorter lifespan (decreasing risk). Using three independent datasets, the weight and lifespan of breeds provided a good fit of lifetime cancer mortality to the multi-stage model, the fit suggesting many canine cancers are initiated by four driver mutations. Of 85 breeds in more than one dataset, only flat-coated retriever showed significantly elevated cancer mortality, with Scottish terrier, Bernese mountain dog and bullmastiff also showing notable risk (greater than 50% over expected). Analysis of breed clades suggested terriers experience elevated cancer mortality. There was no evidence that the lower mass-specific metabolic rate of larger breeds reduced cancer risk. Residuals indicated increased breed inbreeding shortened expected lifespan, but had no overall effect on cancer mortality. The results provide a baseline for identifying increased breed risk for specific cancers and demonstrate that, unless selection promotes increased cancer suppression, the evolution of larger longer-lived animals leads to a predictable increased cancer risk.
Collapse
Affiliation(s)
- Leonard Nunney
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA
| |
Collapse
|
2
|
Kramer ML, Larsen JA, Kent MS. Changes in diet and supplement use in dogs with cancer. J Vet Intern Med 2023; 37:1830-1838. [PMID: 37555741 PMCID: PMC10473009 DOI: 10.1111/jvim.16825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Many dog owners alter their dog's nutritional regimen after a diagnosis of cancer. There are limited data as to specific changes made and reasons behind these changes. HYPOTHESIS/OBJECTIVES To collect updated and detailed data on changes made by owners to their dog's diet and supplements after a cancer diagnosis. ANIMALS Responses were collected from a survey of dog owners who brought their dogs to the UC Davis Veterinary Medical Teaching Hospital's Oncology Service for the first time after a cancer diagnosis. Dogs with recurrence or presenting for a second type of cancer were excluded. METHODS Eligible owners were surveyed between December 2020 and March 2022. The survey contained 62 questions regarding diet, supplement use, and treats, and how these were altered after a cancer diagnosis. Responses were matched to medical record data. RESULTS One hundred twenty-eight surveys were retained for analysis, including 120 respondents that completed the survey. In response to a cancer diagnosis, 54.8% (95% CI; 45.7%-63.8%) of owners altered diets or supplements or both. The most common informational resource for dog diets was veterinarians (53.9%). Usage of home-prepared foods significantly increased after a cancer diagnosis (P = .03). There was no significant difference in commercial diet usage before or after a diagnosis (P = .25). Joint support products were the most common supplements given both before (37.4%) and after (35.0%) diagnosis. CONCLUSIONS AND CLINICAL IMPORTANCE Many dog owners alter their dog's nutritional intake after a cancer diagnosis. These owners should be provided information relating to commonly observed alterations, including home-prepared foods and supplements.
Collapse
Affiliation(s)
- Matthew L. Kramer
- Department of Surgical and Radiological Sciences, School of Veterinary MedicineUniversity of California, DavisDavisCaliforniaUSA
| | - Jennifer A. Larsen
- Department of Molecular Biosciences, School of Veterinary MedicineUniversity of California, DavisDavisCaliforniaUSA
| | - Michael S. Kent
- Department of Surgical and Radiological Sciences, School of Veterinary MedicineUniversity of California, DavisDavisCaliforniaUSA
| |
Collapse
|
3
|
Kraus C, Snyder-Mackler N, Promislow DEL. How size and genetic diversity shape lifespan across breeds of purebred dogs. GeroScience 2023; 45:627-643. [PMID: 36066765 PMCID: PMC9886701 DOI: 10.1007/s11357-022-00653-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/27/2022] [Indexed: 02/03/2023] Open
Abstract
While the lifespan advantage of small body size and mixed breed status has been documented repeatedly, evidence for an effect of genetic diversity across dog breeds is equivocal. We hypothesized that this might be due to a strong right-censoring bias in available breed-specific lifespan estimates where early-dying dogs from birth cohorts that have not died off completely at the time of data collection are sampled disproportionately, especially in breeds with rapidly growing populations. We took advantage of data on owner reported lifespan and cause of death from a large public database to quantify the effect of size and genetic diversity (heterozygosity) on mortality patterns across 118 breeds based on more than 40,000 dogs. After documenting and removing the right-censoring bias from the breed-specific lifespan estimates by including only completed birth cohorts in our analyses, we show that small size and genetic diversity are both linked to a significant increase in mean lifespan across breeds. To better understand the proximate mechanisms underlying these patterns, we then investigated two major mortality causes in dogs - the cumulative pathophysiologies of old age and cancer. Old age lifespan, as well as the percentage of old age mortality, decreased with increasing body size and increased with increasing genetic diversity. The lifespan of dogs dying of cancer followed the same patterns, but while large size significantly increased proportional cancer mortality, we could not detect a significant signal for lowered cancer mortality with increasing diversity. Our findings suggest that outcross programs will be beneficial for breed health and longevity. They also emphasize the need for high-quality mortality data for veterinary epidemiology as well as for developing the dog as a translational model for human geroscience.
Collapse
Affiliation(s)
| | - Noah Snyder-Mackler
- School of Life Sciences, Center for Evolution and Medicine, School for Human Evolution and Social Change, Arizona State University, Tempe, AZ USA
| | - Daniel E. L. Promislow
- Department of Laboratory Medicine & Pathology, University of Washington School of Medicine, Seattle, WA 98195 USA
- Department of Biology, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
4
|
Binversie EE, Momen M, Rosa GJM, Davis BW, Muir P. Across-breed genetic investigation of canine hip dysplasia, elbow dysplasia, and anterior cruciate ligament rupture using whole-genome sequencing. Front Genet 2022; 13:913354. [PMID: 36531249 PMCID: PMC9755188 DOI: 10.3389/fgene.2022.913354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
Here, we report the use of genome-wide association study (GWAS) for the analysis of canine whole-genome sequencing (WGS) repository data using breed phenotypes. Single-nucleotide polymorphisms (SNPs) were called from WGS data from 648 dogs that included 119 breeds from the Dog10K Genomes Project. Next, we assigned breed phenotypes for hip dysplasia (Orthopedic Foundation for Animals (OFA) HD, n = 230 dogs from 27 breeds; hospital HD, n = 279 dogs from 38 breeds), elbow dysplasia (ED, n = 230 dogs from 27 breeds), and anterior cruciate ligament rupture (ACL rupture, n = 279 dogs from 38 breeds), the three most important canine spontaneous complex orthopedic diseases. Substantial morbidity is common with these diseases. Previous within- and between-breed GWAS for HD, ED, and ACL rupture using array SNPs have identified disease-associated loci. Individual disease phenotypes are lacking in repository data. There is a critical knowledge gap regarding the optimal approach to undertake categorical GWAS without individual phenotypes. We considered four GWAS approaches: a classical linear mixed model, a haplotype-based model, a binary case-control model, and a weighted least squares model using SNP average allelic frequency. We found that categorical GWAS was able to validate HD candidate loci. Additionally, we discovered novel candidate loci and genes for all three diseases, including FBX025, IL1A, IL1B, COL27A1, SPRED2 (HD), UGDH, FAF1 (ED), TGIF2 (ED & ACL rupture), and IL22, IL26, CSMD1, LDHA, and TNS1 (ACL rupture). Therefore, categorical GWAS of ancestral dog populations may contribute to the understanding of any disease for which breed epidemiological risk data are available, including diseases for which GWAS has not been performed and candidate loci remain elusive.
Collapse
Affiliation(s)
- Emily E. Binversie
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Mehdi Momen
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Guilherme J. M. Rosa
- Department of Animal and Dairy Sciences, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Brian W. Davis
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Peter Muir
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States,*Correspondence: Peter Muir,
| |
Collapse
|
5
|
Xiang Y, Feng L, Liu H, Liu Y, Li J, Su L, Liao X. SIPA1 Regulates LINC01615 to Promote Metastasis in Triple-Negative Breast Cancer. Cancers (Basel) 2022; 14:cancers14194815. [PMID: 36230738 PMCID: PMC9562673 DOI: 10.3390/cancers14194815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Breast cancer is a malignant tumor that often endangers women. After undergoing surgery and supplementary chemotherapy, however, tumor recurrence has not been well researched. The primary cause is high metastatic rates. Hence, bioinformatic and functional analyses were performed to indicate the effect of LINC01615 on breast cancer. We revealed that LINC01615 is regulated by the transcription factor SIPA1 in promoting breast cancer cell malignancy. Abstract Long non-coding RNAs (lncRNAs) are reported to play an important regulatory effect in carcinogenesis and malignancy. We found by high-throughput sequencing that LINC01615 is upregulated in breast cancer patients and reduces patients’ overall survival. In vivo and in vitro experiments, we clarified that overexpression of LINC01615 can promote breast cancer cell metastasis ability. The expression of LINC01615 is regulated by the transcriptional activator SIPA1, thereby promoting carcinogenesis in breast cancer cells. Our research clarified that LINC01615 can act as an oncogenic factor in promoting the development of breast cancer.
Collapse
Affiliation(s)
- Yuan Xiang
- Department of Medical Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Lingyun Feng
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430081, China
| | - Hui Liu
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yuhuan Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430081, China
| | - Jiapeng Li
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Li Su
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430081, China
- Correspondence: (L.S.); (X.L.); Tel.: +86-027-8779-2072 (L.S.); +86-027-6889-3590 (X.L.); Fax: +86-027-6889-3590 (X.L.)
| | - Xinghua Liao
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China
- Correspondence: (L.S.); (X.L.); Tel.: +86-027-8779-2072 (L.S.); +86-027-6889-3590 (X.L.); Fax: +86-027-6889-3590 (X.L.)
| |
Collapse
|
6
|
Aupperle-Lellbach H, Grassinger JM, Floren A, Törner K, Beitzinger C, Loesenbeck G, Müller T. Tumour Incidence in Dogs in Germany: a Retrospective Analysis of 109,616 Histopathological Diagnoses (2014-2019). J Comp Pathol 2022; 198:33-55. [PMID: 36116890 DOI: 10.1016/j.jcpa.2022.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/16/2022] [Accepted: 07/30/2022] [Indexed: 10/14/2022]
Abstract
Characterization of a tumour entity is based on the precise histopathological diagnosis taking into account the signalment of the diseased animal. The present study is a comprehensive, up-to-date statistical investigation on the type, frequency and breed distribution of neoplasia in dogs in Germany. The histopathological datasets of 109,616 German canine tissue samples (2014-2019) were processed and statistically examined in retrospect. Non-neoplastic diseases were found in 38,650 samples (35.3%) and 70,966 neoplasms (64.7%) were diagnosed. The most common neoplasms were mammary tumours (21.9%), benign epithelial skin tumours (15.4%), mast cell tumour (9.7%), histiocytoma (7.0%), soft tissue sarcoma (5.8%), lipoma (5.8%), melanocytic tumours (5.2%) and odontogenic tumours (4.7%). In general, Beagles, Magyar Vizslas, Boxers, Schnauzers, Spaniels, French Bulldogs and Golden Retrievers had an increased risk of neoplasia (odds ratio 1.17-1.46; all: P ≤0.001) compared with crossbreed dogs. In particular, Boxers, Golden Retrievers, Rottweilers and Schnauzers were often affected by malignant neoplasms, whereas some breeds (eg, West Highland White Terrier, Magyar Vizsla, Chihuahua, Dachshund and Yorkshire Terrier) were frequently affected by numerous benign tumour types. Despite the known risk of haemangiosarcoma in German Shepherd Dogs, other malignant tumours were rare in this breed. Depending on the type of tumour, some purebred dog breeds can have an increased, reduced or identical risk for certain neoplasms compared with crossbreeds. Discussion of breed predispositions to tumour diseases must therefore be conducted critically and with a view to clinical relevance.
Collapse
Affiliation(s)
| | | | - Andreas Floren
- Institut für Bioinformatik, Julius-Maximilians-Universität, Würzburg, Germany; Institut für Tierökologie und Tropenbiologie, Lehrstuhl für Zoologie III (Tierökologie), Würzburg, Germany
| | | | | | | | - Tobias Müller
- Institut für Bioinformatik, Julius-Maximilians-Universität, Würzburg, Germany
| |
Collapse
|
7
|
Momen M, Brounts SH, Binversie EE, Sample SJ, Rosa GJM, Davis BW, Muir P. Selection signature analyses and genome-wide association reveal genomic hotspot regions that reflect differences between breeds of horse with contrasting risk of degenerative suspensory ligament desmitis. G3 (BETHESDA, MD.) 2022; 12:6648349. [PMID: 35866615 PMCID: PMC9526059 DOI: 10.1093/g3journal/jkac179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 06/08/2022] [Indexed: 01/07/2023]
Abstract
Degenerative suspensory ligament desmitis is a progressive idiopathic condition that leads to scarring and rupture of suspensory ligament fibers in multiple limbs in horses. The prevalence of degenerative suspensory ligament desmitis is breed related. Risk is high in the Peruvian Horse, whereas pony and draft breeds have low breed risk. Degenerative suspensory ligament desmitis occurs in families of Peruvian Horses, but its genetic architecture has not been definitively determined. We investigated contrasts between breeds with differing risk of degenerative suspensory ligament desmitis and identified associated risk variants and candidate genes. We analyzed 670k single nucleotide polymorphisms from 10 breeds, each of which was assigned one of the four breed degenerative suspensory ligament desmitis risk categories: control (Belgian, Icelandic Horse, Shetland Pony, and Welsh Pony), low risk (Lusitano, Arabian), medium risk (Standardbred, Thoroughbred, Quarter Horse), and high risk (Peruvian Horse). Single nucleotide polymorphisms were used for genome-wide association and selection signature analysis using breed-assigned risk levels. We found that the Peruvian Horse is a population with low effective population size and our breed contrasts suggest that degenerative suspensory ligament desmitis is a polygenic disease. Variant frequency exhibited signatures of positive selection across degenerative suspensory ligament desmitis breed risk groups on chromosomes 7, 18, and 23. Our results suggest degenerative suspensory ligament desmitis breed risk is associated with disturbances to suspensory ligament homeostasis where matrix responses to mechanical loading are perturbed through disturbances to aging in tendon (PIN1), mechanotransduction (KANK1, KANK2, JUNB, SEMA7A), collagen synthesis (COL4A1, COL5A2, COL5A3, COL6A5), matrix responses to hypoxia (PRDX2), lipid metabolism (LDLR, VLDLR), and BMP signaling (GREM2). Our results do not suggest that suspensory ligament proteoglycan turnover is a primary factor in disease pathogenesis.
Collapse
Affiliation(s)
- Mehdi Momen
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sabrina H Brounts
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Emily E Binversie
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Susannah J Sample
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Guilherme J M Rosa
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Brian W Davis
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Peter Muir
- Corresponding author: Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
8
|
Horvath S, Lu AT, Haghani A, Zoller JA, Li CZ, Lim AR, Brooke RT, Raj K, Serres-Armero A, Dreger DL, Hogan AN, Plassais J, Ostrander EA. DNA methylation clocks for dogs and humans. Proc Natl Acad Sci U S A 2022; 119:e2120887119. [PMID: 35580182 PMCID: PMC9173771 DOI: 10.1073/pnas.2120887119] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/05/2022] [Indexed: 12/24/2022] Open
Abstract
DNA methylation profiles have been used to develop biomarkers of aging known as epigenetic clocks, which predict chronological age with remarkable accuracy and show promise for inferring health status as an indicator of biological age. Epigenetic clocks were first built to monitor human aging, but their underlying principles appear to be evolutionarily conserved, as they have now been successfully developed for many mammalian species. Here, we describe reliable and highly accurate epigenetic clocks shown to apply to 93 domestic dog breeds. The methylation profiles were generated using the mammalian methylation array, which utilizes DNA sequences that are conserved across all mammalian species. Canine epigenetic clocks were constructed to estimate age and also average time to death. We also present two highly accurate human–dog dual species epigenetic clocks (R = 0.97), which may facilitate the ready translation from canine to human use (or vice versa) of antiaging treatments being developed for longevity and preventive medicine. Finally, epigenome-wide association studies here reveal individual methylation sites that may underlie the inverse relationship between breed weight and lifespan. Overall, we describe robust biomarkers to measure aging and, potentially, health status in canines.
Collapse
Affiliation(s)
- Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA 90095
| | - Ake T. Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Joseph A. Zoller
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA 90095
| | - Caesar Z. Li
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA 90095
| | - Andrea R. Lim
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | | | - Ken Raj
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot OX11 0RQ, United Kingdom
| | | | - Dayna L. Dreger
- National Human Genome Research Institute, NIH, Bethesda, MD 20892
| | - Andrew N. Hogan
- National Human Genome Research Institute, NIH, Bethesda, MD 20892
| | - Jocelyn Plassais
- National Human Genome Research Institute, NIH, Bethesda, MD 20892
| | | |
Collapse
|
9
|
Four novel genes associated with longevity found in Cane corso purebred dogs. BMC Vet Res 2022; 18:188. [PMID: 35590325 PMCID: PMC9118790 DOI: 10.1186/s12917-022-03290-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
Background Longevity-related genes have been found in several animal species as well as in humans. The goal of this study was to perform genetic analysis of long-lived Cane corso dogs with the aim to find genes that are associated with longevity. Results SNPs with particular nucleotides were significantly overrepresented in long-lived dogs in four genes, TDRP, MC2R, FBXO25 and FBXL21. In FBXL21, the longevity-associated SNP localises to the exon. In the FBXL21 protein, tryptophan in long-lived dogs replaced arginine present in reference dogs. Conclusions Four SNPs associated with longevity in dogs were identified using GWAS and validated by DNA sequencing. We conclude that genes TDRP, MC2R, FBXO25 and FBXL21 are associated with longevity in Cane corso dogs. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03290-9.
Collapse
|
10
|
Galván I, Schwartz TS, Garland T. Evolutionary physiology at 30+: Has the promise been fulfilled?: Advances in Evolutionary Physiology: Advances in Evolutionary Physiology. Bioessays 2021; 44:e2100167. [PMID: 34802161 DOI: 10.1002/bies.202100167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/19/2022]
Abstract
Three decades ago, interactions between evolutionary biology and physiology gave rise to evolutionary physiology. This caused comparative physiologists to improve their research methods by incorporating evolutionary thinking. Simultaneously, evolutionary biologists began focusing more on physiological mechanisms that may help to explain constraints on and trade-offs during microevolutionary processes, as well as macroevolutionary patterns in physiological diversity. Here we argue that evolutionary physiology has yet to reach its full potential, and propose new avenues that may lead to unexpected advances. Viewing physiological adaptations in wild animals as potential solutions to human diseases offers enormous possibilities for biomedicine. New evidence of epigenetic modifications as mechanisms of phenotypic plasticity that regulate physiological traits may also arise in coming years, which may also represent an overlooked enhancer of adaptation via natural selection to explain physiological evolution. Synergistic interactions at these intersections and other areas will lead to a novel understanding of organismal biology.
Collapse
Affiliation(s)
- Ismael Galván
- Department of Evolutionary Ecology, National Museum of Natural Sciences, CSIC, Madrid, Spain
| | - Tonia S Schwartz
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, USA
| |
Collapse
|
11
|
Farré X, Molina R, Barteri F, Timmers PRHJ, Joshi PK, Oliva B, Acosta S, Esteve-Altava B, Navarro A, Muntané G. Comparative Analysis of Mammal Genomes Unveils Key Genomic Variability for Human Life Span. Mol Biol Evol 2021; 38:4948-4961. [PMID: 34297086 PMCID: PMC8557403 DOI: 10.1093/molbev/msab219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The enormous mammal's lifespan variation is the result of each species' adaptations to their own biological trade-offs and ecological conditions. Comparative genomics have demonstrated that genomic factors underlying both, species lifespans and longevity of individuals, are in part shared across the tree of life. Here, we compared protein-coding regions across the mammalian phylogeny to detect individual amino acid (AA) changes shared by the most long-lived mammals and genes whose rates of protein evolution correlate with longevity. We discovered a total of 2,737 AA in 2,004 genes that distinguish long- and short-lived mammals, significantly more than expected by chance (P = 0.003). These genes belong to pathways involved in regulating lifespan, such as inflammatory response and hemostasis. Among them, a total 1,157 AA showed a significant association with maximum lifespan in a phylogenetic test. Interestingly, most of the detected AA positions do not vary in extant human populations (81.2%) or have allele frequencies below 1% (99.78%). Consequently, almost none of these putatively important variants could have been detected by genome-wide association studies. Additionally, we identified four more genes whose rate of protein evolution correlated with longevity in mammals. Crucially, SNPs located in the detected genes explain a larger fraction of human lifespan heritability than expected, successfully demonstrating for the first time that comparative genomics can be used to enhance interpretation of human genome-wide association studies. Finally, we show that the human longevity-associated proteins are significantly more stable than the orthologous proteins from short-lived mammals, strongly suggesting that general protein stability is linked to increased lifespan.
Collapse
Affiliation(s)
- Xavier Farré
- Department of Experimental and Health Sciences, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Spain
| | - Ruben Molina
- Structural Bioinformatics Lab, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Fabio Barteri
- Department of Experimental and Health Sciences, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Spain
| | - Paul R H J Timmers
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom,Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Baldomero Oliva
- Structural Bioinformatics Lab, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Sandra Acosta
- Department of Experimental and Health Sciences, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Spain
| | - Borja Esteve-Altava
- Department of Experimental and Health Sciences, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Spain
| | | | | |
Collapse
|
12
|
McCune S, Promislow D. Healthy, Active Aging for People and Dogs. Front Vet Sci 2021; 8:655191. [PMID: 34164450 PMCID: PMC8215343 DOI: 10.3389/fvets.2021.655191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/05/2021] [Indexed: 01/08/2023] Open
Abstract
Dogs act as companions who provide us with emotional and physical support. Their shorter lifespans compel us to learn about the challenges and gifts of caring for older individuals. Our companion dogs can be exemplars of healthy or unhealthy aging, and sentinels of environmental factors that might increase or decrease our own healthy lifespan. In recent years, the field of aging has emphasized not just lifespan, but healthspan—the period of healthy, active lifespan. This focus on healthy, active aging is reflected in the World Health Organization's current focus on healthy aging for the next decade and the 2016 Healthy Aging in Action initiative in the US. This paper explores the current research into aging in both people and companion dogs, and in particular, how the relationship between older adults and dogs impacts healthy, active aging for both parties. The human-dog relationship faces many challenges as dogs, and people, age. We discuss potential solutions to these challenges, including suggestions for ways to continue contact with dogs if dog ownership is no longer possible for an older person. Future research directions are outlined in order to encourage the building of a stronger evidence base for the role of dogs in the lives of older adults.
Collapse
Affiliation(s)
- Sandra McCune
- School of Psychology, School of Life Sciences, University of Lincoln, Lincoln, United Kingdom.,Animal Matters Consultancy Ltd., Stamford, United Kingdom
| | - Daniel Promislow
- Department of Lab Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States.,Department of Biology, University of Washington, Seattle, WA, United States
| |
Collapse
|
13
|
Edmunds GL, Smalley MJ, Beck S, Errington RJ, Gould S, Winter H, Brodbelt DC, O'Neill DG. Dog breeds and body conformations with predisposition to osteosarcoma in the UK: a case-control study. Canine Med Genet 2021; 8:2. [PMID: 33750475 PMCID: PMC7944903 DOI: 10.1186/s40575-021-00100-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/30/2021] [Indexed: 11/16/2022] Open
Abstract
Background Osteosarcoma is an aggressive and painful bone neoplasm in dogs. Previous studies have reported epidemiological associations suggesting that large body mass, long bone length and the genetics of certain breeds including the Rottweiler are associated with elevated osteosarcoma risk. However, these studies were often limited by selection bias and confounding factors, and have rarely offered insights into breed-associated protection for osteosarcoma. The current study includes 1756 appendicular and axial osteosarcoma cases presenting to VPG Histology (Bristol, UK) compared against a control population of 905,211 dogs without osteosarcoma from primary care electronic patient records in the VetCompass™ dataset. Methods and study design Retrospective, case-control study. Multivariable logistic regression analysis explored associations between demographic risk factors (including breed, chondrodystrophy, age, sex/neuter status, skull-shape, and body mass) and osteosarcoma of all anatomical sites. Results We identified several breeds with increased and reduced odds of osteosarcoma. At highest risk were the Rottweiler and Great Dane, with > 10 times the odds of osteosarcoma compared with crossbreds, and the Rhodesian Ridgeback, which has not featured in previous lists of at-risk breeds for osteosarcoma, and had an odds ratio of 11.31 (95% confidence interval 7.37–17.35). Breeds at lowest risk of osteosarcoma (protected breeds) included the Bichon Frise, the French Bulldog and the Cavalier King Charles Spaniel, all with odd ratios of less than 0.30 compared with crossbreds. Body mass was strongly associated with osteosarcoma risk; dogs over 40 kg exhibited osteosarcoma odds of 45.44 (95% confidence interval 33.74–61.20) compared with dogs less than 10 kg. Chondrodystrophic breeds had an osteosarcoma odds ratio of 0.13 (95% confidence interval 0.11–0.16) compared with non-chondrodystrophic breeds. Conclusions This study provides evidence of strong breed-associated osteosarcoma risk and protection, suggesting a genetic basis for osteosarcoma pathogenesis. It highlights that breeds selected for long legs/large body mass are generally overrepresented amongst at-risk breeds, whilst those selected for short leg length/small body mass are generally protected. These findings could inform genetic studies to identify osteosarcoma risk alleles in canines and humans; as well as increasing awareness amongst veterinarians and owners, resulting in improved breeding practices and clinical management of osteosarcoma in dogs. Supplementary Information The online version contains supplementary material available at 10.1186/s40575-021-00100-7.
Collapse
Affiliation(s)
- Grace L Edmunds
- Bristol Veterinary School, Langford House, Langford, Bristol, BS40 5DU, UK.
| | - Matthew J Smalley
- European Cancer Stem Cell Research Institute and School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Sam Beck
- VPG Histology (formerly Bridge), Horner Court, 637 Gloucester Road, Horfield, Bristol, BS7 0BJ, UK
| | - Rachel J Errington
- Division of Cancer and Genetics, School of Medicine, Academic Avenue, Cardiff University, Cardiff, CF62 3LF, UK
| | - Sara Gould
- Langford Veterinary Services, Langford House Langford, Bristol, BS40 5DU, UK
| | | | - Dave C Brodbelt
- Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts, AL9 7TA, UK
| | - Dan G O'Neill
- Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts, AL9 7TA, UK
| |
Collapse
|