1
|
Ma G, Fu X, Zhou L, Babarinde IA, Shi L, Yang W, Chen J, Xiao Z, Qiao Y, Ma L, Ou Y, Li Y, Chang C, Deng B, Zhang R, Sun L, Tong G, Li D, Li Y, Hutchins AP. The nuclear matrix stabilizes primed-specific genes in human pluripotent stem cells. Nat Cell Biol 2025; 27:232-245. [PMID: 39789220 DOI: 10.1038/s41556-024-01595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/11/2024] [Indexed: 01/12/2025]
Abstract
The nuclear matrix, a proteinaceous gel composed of proteins and RNA, is an important nuclear structure that supports chromatin architecture, but its role in human pluripotent stem cells (hPSCs) has not been described. Here we show that by disrupting heterogeneous nuclear ribonucleoprotein U (HNRNPU) or the nuclear matrix protein, Matrin-3, primed hPSCs adopted features of the naive pluripotent state, including morphology and upregulation of naive-specific marker genes. We demonstrate that HNRNPU depletion leads to increased chromatin accessibility, reduced DNA contacts and increased nuclear size. Mechanistically, HNRNPU acts as a transcriptional co-factor that anchors promoters of primed-specific genes to the nuclear matrix with POLII to promote their expression and their RNA stability. Overall, HNRNPU promotes cell-type stability and when reduced promotes conversion to earlier embryonic states.
Collapse
Affiliation(s)
- Gang Ma
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xiuling Fu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Lulu Zhou
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Isaac A Babarinde
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Liyang Shi
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Wenting Yang
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiao Chen
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zhen Xiao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yu Qiao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Lisha Ma
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yuhao Ou
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yuhao Li
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Chen Chang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Boping Deng
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Ran Zhang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Sun
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Guoqing Tong
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dongwei Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Yiming Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China.
| | - Andrew P Hutchins
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
2
|
Nickerson JA, Momen-Heravi F. Long non-coding RNAs: roles in cellular stress responses and epigenetic mechanisms regulating chromatin. Nucleus 2024; 15:2350180. [PMID: 38773934 PMCID: PMC11123517 DOI: 10.1080/19491034.2024.2350180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Most of the genome is transcribed into RNA but only 2% of the sequence codes for proteins. Non-coding RNA transcripts include a very large number of long noncoding RNAs (lncRNAs). A growing number of identified lncRNAs operate in cellular stress responses, for example in response to hypoxia, genotoxic stress, and oxidative stress. Additionally, lncRNA plays important roles in epigenetic mechanisms operating at chromatin and in maintaining chromatin architecture. Here, we address three lncRNA topics that have had significant recent advances. The first is an emerging role for many lncRNAs in cellular stress responses. The second is the development of high throughput screening assays to develop causal relationships between lncRNAs across the genome with cellular functions. Finally, we turn to recent advances in understanding the role of lncRNAs in regulating chromatin architecture and epigenetics, advances that build on some of the earliest work linking RNA to chromatin architecture.
Collapse
Affiliation(s)
- Jeffrey A Nickerson
- Division of Genes & Development, Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Fatemeh Momen-Heravi
- College of Dental Medicine, Columbia University Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| |
Collapse
|
3
|
Stocks J, Gilbert N. Nuclear RNA: a transcription-dependent regulator of chromatin structure. Biochem Soc Trans 2024; 52:1605-1615. [PMID: 39082979 PMCID: PMC11668306 DOI: 10.1042/bst20230787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 08/29/2024]
Abstract
Although the majority of RNAs are retained in the nucleus, their significance is often overlooked. However, it is now becoming clear that nuclear RNA forms a dynamic structure through interacting with various proteins that can influence the three-dimensional structure of chromatin. We review the emerging evidence for a nuclear RNA mesh or gel, highlighting the interplay between DNA, RNA and RNA-binding proteins (RBPs), and assessing the critical role of protein and RNA in governing chromatin architecture. We also discuss a proposed role for the formation and regulation of the nuclear gel in transcriptional control. We suggest that it may concentrate the transcriptional machinery either by direct binding or inducing RBPs to form microphase condensates, nanometre sized membraneless structures with distinct properties to the surrounding medium and an enrichment of particular macromolecules.
Collapse
Affiliation(s)
- Jon Stocks
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, U.K
| | - Nick Gilbert
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, U.K
| |
Collapse
|
4
|
Thayer M, Heskett MB, Smith LG, Spellman PT, Yates PA. ASAR lncRNAs control DNA replication timing through interactions with multiple hnRNP/RNA binding proteins. eLife 2024; 13:RP95898. [PMID: 38896448 PMCID: PMC11186638 DOI: 10.7554/elife.95898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
ASARs are a family of very-long noncoding RNAs that control replication timing on individual human autosomes, and are essential for chromosome stability. The eight known ASAR lncRNAs remain closely associated with their parent chromosomes. Analysis of RNA-protein interaction data (from ENCODE) revealed numerous RBPs with significant interactions with multiple ASAR lncRNAs, with several hnRNPs as abundant interactors. An ~7 kb domain within the ASAR6-141 lncRNA shows a striking density of RBP interaction sites. Genetic deletion and ectopic integration assays indicate that this ~7 kb RNA binding protein domain contains functional sequences for controlling replication timing of entire chromosomes in cis. shRNA-mediated depletion of 10 different RNA binding proteins, including HNRNPA1, HNRNPC, HNRNPL, HNRNPM, HNRNPU, or HNRNPUL1, results in dissociation of ASAR lncRNAs from their chromosome territories, and disrupts the synchronous replication that occurs on all autosome pairs, recapitulating the effect of individual ASAR knockouts on a genome-wide scale. Our results further demonstrate the role that ASARs play during the temporal order of genome-wide replication, and we propose that ASARs function as essential RNA scaffolds for the assembly of hnRNP complexes that help maintain the structural integrity of each mammalian chromosome.
Collapse
Affiliation(s)
- Mathew Thayer
- Department of Chemical Physiology and Biochemistry,Oregon Health & Science UniversityPortlandUnited States
| | - Michael B Heskett
- Department of Molecular and Medical Genetics, Oregon Health & Science UniversityPortlandUnited States
- Stanford Cancer InstituteStanfordUnited States
| | - Leslie G Smith
- Department of Chemical Physiology and Biochemistry,Oregon Health & Science UniversityPortlandUnited States
| | - Paul T Spellman
- Department of Molecular and Medical Genetics, Oregon Health & Science UniversityPortlandUnited States
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science UniversityPortlandUnited States
| | - Phillip A Yates
- Department of Chemical Physiology and Biochemistry,Oregon Health & Science UniversityPortlandUnited States
| |
Collapse
|
5
|
Zhang D, Li L, Li M, Cao X. Biological functions and clinic significance of SAF‑A (Review). Biomed Rep 2024; 20:88. [PMID: 38665420 PMCID: PMC11040223 DOI: 10.3892/br.2024.1776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
As one member of the heterogeneous ribonucleoprotein (hnRNP) family, scaffold attachment factor A (SAF-A) or hnRNP U, is an abundant nuclear protein. With RNA and DNA binding activities, SAF-A has multiple functions. The present review focused on the biological structure and different roles of SAF-A and SAF-A-related diseases. It was found that SAF-A maintains the higher-order chromatin organization via RNA and DNA, and regulates transcription at the initiation and elongation stages. In addition to regulating pre-mRNA splicing, mRNA transportation and stabilization, SAF-A participates in double-strand breaks and mitosis repair. Therefore, the aberrant expression and mutation of SAF-A results in tumors and impaired neurodevelopment. Moreover, SAF-A may play a role in the anti-virus system. In conclusion, due to its essential biological functions, SAF-A may be a valuable clinical prediction factor or therapeutic target. Since the role of SAF-A in tumors and viral infections may be controversial, more animal experiments and clinical assays are needed.
Collapse
Affiliation(s)
- Daiquan Zhang
- Department of Traditional Chinese Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Li Li
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Mengni Li
- Department of Pediatrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Xinmei Cao
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
6
|
Valledor M, Byron M, Dumas B, Carone DM, Hall LL, Lawrence JB. Early chromosome condensation by XIST builds A-repeat RNA density that facilitates gene silencing. Cell Rep 2023; 42:112686. [PMID: 37384527 PMCID: PMC10461597 DOI: 10.1016/j.celrep.2023.112686] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 10/31/2022] [Accepted: 06/08/2023] [Indexed: 07/01/2023] Open
Abstract
XIST RNA triggers chromosome-wide gene silencing and condenses an active chromosome into a Barr body. Here, we use inducible human XIST to examine early steps in the process, showing that XIST modifies cytoarchitecture before widespread gene silencing. In just 2-4 h, barely visible transcripts populate the large "sparse zone" surrounding the smaller "dense zone"; importantly, density zones exhibit different chromatin impacts. Sparse transcripts immediately trigger immunofluorescence for H2AK119ub and CIZ1, a matrix protein. H3K27me3 appears hours later in the dense zone, which enlarges with chromosome condensation. Genes examined are silenced after compaction of the RNA/DNA territory. Insights into this come from the findings that the A-repeat alone can silence genes and rapidly, but only where dense RNA supports sustained histone deacetylation. We propose that sparse XIST RNA quickly impacts architectural elements to condense the largely non-coding chromosome, coalescing RNA density that facilitates an unstable, A-repeat-dependent step required for gene silencing.
Collapse
Affiliation(s)
- Melvys Valledor
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Meg Byron
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Brett Dumas
- Department of Medicine, Boston University Medical Center, Boston, MA 02118, USA
| | - Dawn M Carone
- Department of Biology, Swarthmore College, Swarthmore, PA 19081, USA
| | - Lisa L Hall
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
| | - Jeanne B Lawrence
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
7
|
Nickerson JA. The ribonucleoprotein network of the nucleus: a historical perspective. Curr Opin Genet Dev 2022; 75:101940. [PMID: 35777349 DOI: 10.1016/j.gde.2022.101940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022]
Abstract
There is a long experimental history supporting the principle that RNA is essential for normal nuclear and chromatin architecture. Most of the genome is transcribed into RNA but only 2% of the sequence codes for proteins. In the nucleus, most non-coding RNA, packaged in proteins, is bound into structures including chromatin and a non-chromatin scaffolding, the nuclear matrix, which was first observed by electron microscopy. Removing nuclear RNA or inhibiting its transcription causes the condensation of chromatin, showing the importance of RNA in spatially and functionally organizing the genome. Today, powerful techniques for the molecular characterization of RNA and for mapping its spatial organization in the nucleus have provided molecular detail to these principles.
Collapse
Affiliation(s)
- Jeffrey A Nickerson
- Division of Genes & Development, Department of Pediatrics, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| |
Collapse
|
8
|
A lifelong duty: how Xist maintains the inactive X chromosome. Curr Opin Genet Dev 2022; 75:101927. [PMID: 35717799 PMCID: PMC9472561 DOI: 10.1016/j.gde.2022.101927] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/10/2022] [Accepted: 05/14/2022] [Indexed: 11/22/2022]
Abstract
Female eutherians transcriptionally silence one X chromosome to balance gene dosage between the sexes. X-chromosome inactivation (XCI) is initiated by the lncRNA Xist, which assembles many proteins within the inactive X chromosome (Xi) to trigger gene silencing and heterochromatin formation. It is well established that gene silencing on the Xi is maintained through repressive epigenetic processes, including histone deacetylation and DNA methylation. Recent studies revealed a new mechanism where RNA-binding proteins that interact directly with the RNA contribute to the maintenance of Xist localization and gene silencing. In addition, a surprising plasticity of the Xi was uncovered with many genes becoming upregulated upon experimental deletion of Xist. Intriguingly, immune cells normally lose Xist from the Xi, suggesting that thisXist dependence is utilized in vivo to dynamically regulate gene expression from the Xi. These new studies expose fundamental regulatory mechanisms for the chromatin association of RNAs, highlight the need for studying the maintenance of XCI and Xist localization in a gene- and cell-type-specific manner, and are likely to have clinical impact.
Collapse
|