1
|
Chen X, Zhou G, Wang X, Xu H, Wang C, Yao Q, Chi J, Fu X, Wang Y, Yin X, Zhang Z. Progress in semiconductor materials for photocathodic protection: Design strategies and applications in marine corrosion protection. CHEMOSPHERE 2023; 323:138194. [PMID: 36828106 DOI: 10.1016/j.chemosphere.2023.138194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Metal protection of offshore equipment is very complicated owing to the complex marine environment. Photocathodic protection (PCP) is one of the popular research topics in marine metal protection. The protection efficiency of photoanode depends largely on the photoelectric properties of semiconductor materials, viz. the process of charge separation, charge migration, and light absorption. In this article, the enhancement strategies, photoelectrochemical properties, and electron transfer mechanisms of different composites for PCP were reviewed and highlighted. Some photoanodes with unusual and striking properties were emphasized. In addition, the outlooks and challenges of the application of PCP and the design of photoanodes materials are proposed.
Collapse
Affiliation(s)
- Xi Chen
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Guangzhu Zhou
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Xiutong Wang
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hui Xu
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Cuizhen Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Qiuhui Yao
- The Third Exploration Team, Shandong Bureau of Coal Geology, Tai'an, 271000, China.
| | - Jingyi Chi
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Xiaoning Fu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Yuanhao Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Xueying Yin
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Zijin Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| |
Collapse
|
2
|
Z-Scheme CuO x/Ag/TiO 2 Heterojunction as Promising Photoinduced Anticorrosion and Antifouling Integrated Coating in Seawater. Molecules 2023; 28:molecules28010456. [PMID: 36615649 PMCID: PMC9824377 DOI: 10.3390/molecules28010456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/26/2022] [Accepted: 01/01/2023] [Indexed: 01/05/2023] Open
Abstract
In the marine environment, steel materials usually encounter serious problems with chemical or electrochemical corrosion and fouling by proteins, bacteria, and other marine organisms. In this work, a green bifunctional Z-scheme CuOx/Ag/P25 heterostructure coating material was designed to achieve the coordination of corrosion prevention and antifouling by matching the redox potential of the reactive oxygen species and the corrosion potential of 304SS. When CuOx/Ag/P25 heterostructure was coupled with the protected metal, the open circuit potential under illumination negatively shifted about 240 mV (vs. Ag/AgCl) and the photoinduced current density reached 16.6 μA cm-2. At the same time, more reactive oxygen species were produced by the Z-shape structure, and then the photocatalytic sterilization effect was stronger. Combined with the chemical sterilization of Ag and the oxide of Cu, the bacterial survival rate of CuOx/Ag/P25 was low (0.006%) compared with the blank sample. This design provides a strategy for developing green dual-functional coating materials with photoelectrochemical anticorrosion and antifouling properties.
Collapse
|
3
|
Recycling of photocatalysis-reduced Cr(VI) in metal surface passivation protection. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01827-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Adsorption and Mechanism of Glycine on the Anatase with Exposed (001) and (101) Facets. MINERALS 2022. [DOI: 10.3390/min12070798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
As a widely existing mineral types on Earth, semiconductor minerals play an important role in the origin of life and the material geochemical cycle. The first step of peptide formation is amino acid adsorption on the mineral surface, but the role and mechanism of different crystal facets of semiconductor minerals are not well understood. Anatase (TiO2) with exposed (001) facets was synthesized by a hydrothermal method, and then analyzed and compared with the purchased ordinary anatase (TiO2) for the adsorption of glycine, the simplest amino acid. XRD, SEM and TEM results show that the hydrothermally synthesized anatase (TiO2) has a good anatase crystal form, which is micro-nano-scale flake particles and mainly composed of (001) facets. The results of HPLC used in the adsorption experiment showed that under optimal conditions (pH 5 to 6, an adsorption time of 24 h, and an initial concentration of 0.09 mol/L), the adsorption quantity of glycine on anatase (TiO2) with exposed (001) facets may reach 10 mg/m2, which is larger than that for ordinary anatase (TiO2) with exposed (101) facets. Based on a combination of various characterizations and simulation calculations, the results proved that anatase can activate thermodynamically stable γ-glycine to β-glycine. The adsorption of glycine on anatase (TiO2) has two forms, one is the zwitterionic form in which the carboxyl group forms a bridge structure with two Ti atoms connected by surface bridging oxygen, and the dissociated form is in which the amino group forms a bond with the surface Ti atom. Among these, glycine is mainly adsorbed to anatase by dissociative molecules on the anatase (TiO2) with exposed (001) facets and by zwitterion adsorption on the anatase (TiO2) with exposed (101) facets. This research elucidates the conditions and mechanism of amino acid adsorption by semiconductor minerals in weak acidic environment, which is similar to the environmental pH that was beneficial to the formation of life on the early Earth. Therefore, these can provide a reference for the further study of the role of semiconductor minerals in the adsorption and polymerization of small biomolecules in the origin of life.
Collapse
|
5
|
Design of Photocatalytic Functional Coatings Based on the Immobilization of Metal Oxide Particles by the Combination of Electrospinning and Layer-by-Layer Deposition Techniques. COATINGS 2022. [DOI: 10.3390/coatings12060862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This work reports the design and characterization of functional photocatalytic coatings based on the combination of two different deposition techniques. In a first step, a poly(acrylic acid) + β-Cyclodextrin (denoted as PAA+ β-CD) electrospun fiber mat was deposited by using the electrospinning technique followed by a thermal treatment in order to provide an enhancement in the resultant adhesion and mechanical resistance. In a second step, a layer-by-layer (LbL) assembly process was performed in order to immobilize the metal oxide particles onto the previously electrospun fiber mat. In this context, titanium dioxide (TiO2) was used as the main photocatalytic element, acting as the cationic element in the multilayer LbL structure. In addition, two different metal oxides, such as tungsten oxide (WO3) and iron oxide (Fe2O3), were added into PAA anionic polyelectrolyte solution with the objective of optimizing the photocatalytic efficiency of the coating. All of the coatings were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM) images, showing an increase in the original fiber diameter and a decrease in roughness of the mats because of the LbL second step. The variation in the wettability properties from a superhydrophilic surface to a less wettable surface as a function of the incorporation of the metal oxides was also observed by means of water contact angle (WCA) measurements. With the aim of analyzing the photocatalytic efficiency of the samples, degradation of methyl blue (MB) azo-dye was studied, showing an almost complete discoloration of the dye in the irradiated area. This study reports a novel combination method of two deposition techniques in order to obtain a functional, homogeneous and efficient photocatalytic coating.
Collapse
|
6
|
Zhang Y, Bao H, Liu X, Zhang X, He H, Li T, Yang H, Shah SP, Li W. Bi2S3 nanoparticles/ZnO nanowire heterojunction films for improved photoelectrochemical cathodic protection for 304 SS under visible light. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-021-01654-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
7
|
Jin P, Guan ZC, Wang HP, Wang X, Song GL, Du RG. Fabrication of CdSe/ZnIn2S4 modified TiO2 nanotube composite and its application in photoelectrochemical cathodic protection. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|