1
|
Nersesova L, Petrosyan M, Tsakanova G. Review of the evidence of radioprotective potential of creatine and arginine as dietary supplements. Int J Radiat Biol 2024; 100:849-864. [PMID: 38683545 DOI: 10.1080/09553002.2024.2345098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/10/2024] [Indexed: 05/01/2024]
Abstract
PURPOSE Creatine (Cr) and l-arginine are naturally occurring guanidino compounds, commonly used as ergogenic dietary supplements. Creatine and l-arginine exhibit also a number of non-energy-related features, such as antioxidant, anti-apoptotic, and anti-inflammatory properties, which contribute to their protective action against oxidative stress (OS). In this regard, there are a number of studies emphasizing the protective effect of Cr against OS, which develops in the process of aging, increased physical loads as part of athletes' workouts, as well as a number of neurological diseases and toxic effects associated with xenobiotics and UV irradiation. Against this backdrop, and since ionizing radiation causes OS in cells, leading to radiotoxicity, there is an increasing interest to understand whether Cr has the full potential to serve as an effective radioprotective agent. The extensive literature search did not provide any data on this issue. In this narrative review, we have summarized some of our own experimental data published over the last years addressing the respective radioprotective effects of Cr. Next, we have additionally reviewed the existing data on the radiomodifying effects of l-arginine presented earlier by other research groups. CONCLUSIONS Creatine possesses significant radioprotective potential including: (1) radioprotective effect on the survival rate of rats subjected to acute whole-body X-ray irradiation in a LD70/30 dose of 6.5 Gy, (2) radioprotective effect on the population composition of peripheral blood cells, (3) radioprotective effect on the DNA damage of peripheral blood mononuclear cells, (4) radioprotective effect on the hepatocyte nucleus-nucleolar apparatus, and (5) radioprotective effect on the brain and liver Cr-Cr kinase systems of the respective animals. Taking into account these cytoprotective, gene-protective, hepatoprotective and energy-stimulating features of Cr, as well as its significant radioprotective effect on the survival rate of rats, it can be considered as a potentially promising radioprotector for further preclinical and clinical studies. The review of the currently available data on radiomodifying effects of l-arginine has indicated its significant potential as a radioprotector, radiomitigator, and radiosensitizer. However, to prove the effectiveness of arginine (Arg) as a radioprotective agent, it appears necessary to expand and deepen the relevant preclinical studies, and, most importantly, increase the number of proof-of-concept clinical trials, which are evidently lacking as of now.
Collapse
Affiliation(s)
| | | | - Gohar Tsakanova
- Institute of Molecular Biology NAS RA, Yerevan, Armenia
- CANDLE Synchrotron Research Institute, Yerevan, Armenia
| |
Collapse
|
2
|
Zuppone S, Bresolin A, Spinelli AE, Fallara G, Lucianò R, Scarfò F, Benigni F, Di Muzio N, Fiorino C, Briganti A, Salonia A, Montorsi F, Vago R, Cozzarini C. Pre-clinical Research on Bladder Toxicity After Radiotherapy for Pelvic Cancers: State-of-the Art and Challenges. Front Oncol 2020; 10:527121. [PMID: 33194587 PMCID: PMC7642999 DOI: 10.3389/fonc.2020.527121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 08/31/2020] [Indexed: 01/01/2023] Open
Abstract
Despite the dramatic advancements in pelvic radiotherapy, urinary toxicity remains a significant side-effect. The assessment of clinico-dosimetric predictors of radiation cystitis (RC) based on clinical data has improved substantially over the last decade; however, a thorough understanding of the physiopathogenetic mechanisms underlying the onset of RC, with its variegated acute and late urinary symptoms, is still largely lacking, and data from pre-clinical research is still limited. The aim of this review is to provide an overview of the main open issues and, ideally, to help investigators in orienting future research. First, anatomy and physiology of bladder, as well as the current knowledge of dose and dose-volume effects in humans, are briefly summarized. Subsequently, pre-clinical radiobiology aspects of RC are discussed. The findings suggest that pre-clinical research on RC in animal models is a lively field of research with growing interest in the development of new radioprotective agents. The availability of new high precision micro-irradiators and the rapid advances in small animal imaging might lead to big improvement into this field. In particular, studies focusing on the definition of dose and fractionation are warranted, especially considering the growing interest in hypo-fractionation and ablative therapies for prostate cancer treatment. Moreover, improvement in radiotherapy plans optimization by selectively reducing radiation dose to more radiosensitive substructures close to the bladder would be of paramount importance. Finally, thanks to new pre-clinical imaging platforms, reliable and reproducible methods to assess the severity of RC in animal models are expected to be developed.
Collapse
Affiliation(s)
- Stefania Zuppone
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Fondazione Centro San Raffaele, Milan, Italy
| | - Andrea Bresolin
- Fondazione Centro San Raffaele, Milan, Italy.,Department of Medical Physics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonello E Spinelli
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giuseppe Fallara
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Lucianò
- Unit of Pathology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federico Scarfò
- Unit of Pathology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Benigni
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nadia Di Muzio
- Department of Radiotherapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Claudio Fiorino
- Department of Medical Physics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alberto Briganti
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Salonia
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Francesco Montorsi
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Riccardo Vago
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Cesare Cozzarini
- Department of Radiotherapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
3
|
Lee MS, Liu DW, Hung SK, Yu CC, Chi CL, Chiou WY, Chen LC, Lin RI, Huang LW, Chew CH, Hsu FC, Chan MWY, Lin HY. Emerging Challenges of Radiation-Associated Cardiovascular Dysfunction (RACVD) in Modern Radiation Oncology: Clinical Practice, Bench Investigation, and Multidisciplinary Care. Front Cardiovasc Med 2020; 7:16. [PMID: 32154267 PMCID: PMC7047711 DOI: 10.3389/fcvm.2020.00016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 01/31/2020] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy (RT) is a crucial treatment modality in managing cancer patients. However, irradiation dose sprinkling to tumor-adjacent normal tissues is unavoidable, generating treatment toxicities, such as radiation-associated cardiovascular dysfunction (RACVD), particularly for those patients with combined therapies or pre-existing adverse features/comorbidities. Radiation oncologists implement several efforts to decrease heart dose for reducing the risk of RACVD. Even applying the deep-inspiration breath-hold (DIBH) technique, the risk of RACVD is though reduced but still substantial. Besides, available clinical methods are limited for early detecting and managing RACVD. The present study reviewed emerging challenges of RACVD in modern radiation oncology, in terms of clinical practice, bench investigation, and multidisciplinary care. Several molecules are potential for serving as biomarkers and therapeutic targets. Of these, miRNAs, endogenous small non-coding RNAs that function in regulating gene expression, are of particular interest because low-dose irradiation, i.e., 200 mGy (one-tenth of conventional RT daily dose) induces early changes of pro-RACVD miRNA expression. Moreover, several miRNAs, e.g., miR-15b and miR21, involve in the development of RACVD, further demonstrating the potential bio-application in RACVD. Remarkably, many RACVDs are late RT sequelae, characterizing highly irreversible and progressively worse. Thus, multidisciplinary care from oncologists and cardiologists is crucial. Combined managements with commodities control (such as hypertension, hypercholesterolemia, and diabetes), smoking cessation, and close monitoring are recommended. Some agents show abilities for preventing and managing RACVD, such as statins and angiotensin-converting enzyme inhibitors (ACEIs); however, their real roles should be confirmed by further prospective trials.
Collapse
Affiliation(s)
- Moon-Sing Lee
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Dai-Wei Liu
- School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Radiation Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Shih-Kai Hung
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Chih-Chia Yu
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan
| | - Chen-Lin Chi
- School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Anatomic Pathology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Wen-Yen Chiou
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Liang-Cheng Chen
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Ru-Inn Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan
| | - Li-Wen Huang
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Chia-Hui Chew
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Feng-Chun Hsu
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Michael W Y Chan
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan
| | - Hon-Yi Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan
| |
Collapse
|
4
|
Pinto FCM, Campos-Silva P, Souza DBD, Costa WS, Sampaio FJB. Nutritional supplementation with arginine protects radiation-induced effects. An experimental study. Acta Cir Bras 2017; 31:650-654. [PMID: 27828597 DOI: 10.1590/s0102-865020160100000002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/18/2016] [Indexed: 11/21/2022] Open
Abstract
PURPOSE: To investigate the protective effect of L-arginine on the prostate (nonneoplasic) of rats with radiation-induced injury. METHODS: Twenty-nine Wistar rats, male adult, allocated into three groups: Control group (C) was not exposed to irradiation (n=10); Radiated group (R) had undergone pelvic irradiation (n=10); Supplemented and radiated group (R+S) had undergone pelvic irradiation plus L-arginine supplementation (n=9). The animals were observed for signs of toxicity. After euthanization, the prostate was dissected under magnification and stained by hematoxylin and eosin to study acinar structures and stained with Picrosirius red for collagen analysis. RESULTS: After radiation exposure, all animals presented diarrhea, but supplementation with L-arginine reduced this effect. The weight gain in the R+S group was significantly higher than in the C and R groups. In the R+S group the collagen density and the prostate acinar area was similar to the R and C groups. Epithelial height was significantly reduced in group R compared with group C (p<0.0001). When comparing the group R+S with R, a statistical difference was observed to be present (p<0.0001). CONCLUSIONS: Pelvic radiation promotes systemic effects and some structural modifications in the ventral prostate of rats. These modifications can be prevented by oral supplementation with L-arginine.
Collapse
Affiliation(s)
- Flavia Cristina Morone Pinto
- Assistant Professor, Researcher, Nucleus of Experimental Surgery, Department of Surgery, Center for Health Sciences, Universidade Federal de Pernambuco (UFPE), Recife-PE, Brazil. Design of the study, histomorphometrical examinations, statistical analysis, manuscript writing
| | - Pamella Campos-Silva
- Graduate student, Urogenital Research Unit, Universidade Estadual do Rio de Janeiro (UERJ), Brazil. Acquisition of data, histomorphometrical examinations
| | - Diogo Benchimol de Souza
- Assistant Professor, Researcher, Urogenital Research Unit, UERJ, Rio de Janeiro-RJ, Brazil. Intellectual and scientific content of the study, functional examination
| | - Waldemar Silva Costa
- Associate Professor, Urogenital Research Unit, UERJ, Rio de Janeiro-RJ, Brazil. Design of the study, manuscript writing, supervised all phases of the study
| | - Francisco José Barcellos Sampaio
- Full Professor, CNPq 1A Researcher, Urogenital Research Unit, UERJ, Rio de Janeiro-RJ, Brazil. Intellectual and scientific content of the study
| |
Collapse
|
5
|
How to Quantify Penile Corpus Cavernosum Structures with Histomorphometry: Comparison of Two Methods. BIOMED RESEARCH INTERNATIONAL 2015; 2015:832156. [PMID: 26413547 PMCID: PMC4564595 DOI: 10.1155/2015/832156] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/31/2015] [Accepted: 04/07/2015] [Indexed: 12/20/2022]
Abstract
The use of morphometrical tools in biomedical research permits the accurate comparison of specimens subjected to different conditions, and the surface density of structures is commonly used for this purpose. The traditional point-counting method is reliable but time-consuming, with computer-aided methods being proposed as an alternative. The aim of this study was to compare the surface density data of penile corpus cavernosum trabecular smooth muscle in different groups of rats, measured by two observers using the point-counting or color-based segmentation method. Ten normotensive and 10 hypertensive male rats were used in this study. Rat penises were processed to obtain smooth muscle immunostained histological slices and photomicrographs captured for analysis. The smooth muscle surface density was measured in both groups by two different observers by the point-counting
method and by the color-based segmentation method. Hypertensive rats showed an increase in smooth muscle surface density by the two methods, and no difference was found between the results of the two observers. However, surface density values were higher by the point-counting method. The use of either method did not influence the final interpretation of the results, and both proved to have adequate reproducibility. However, as differences were found between the two methods, results obtained by either method should not be compared.
Collapse
|
6
|
Medeiros JL, Costa WS, Felix-Patricio B, Sampaio FJB, Cardoso LEM. Protective effects of nutritional supplementation with arginine and glutamine on the penis of rats submitted to pelvic radiation. Andrology 2014; 2:943-50. [PMID: 25271133 DOI: 10.1111/andr.134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 08/02/2013] [Accepted: 08/26/2013] [Indexed: 12/14/2022]
Abstract
Radiotherapy is widely used to treat pelvic malignancies, but normal tissues near the target tumour are often affected. Our aims were thus to determine whether the structural organization of the rat penis is altered by radiation, and whether supplementation with L-arginine (ARG) or L-glutamine (GLN) would have protective effects against these alterations. Groups of rats were treated with: no intervention (CONTR); pelvic radiation, followed by sacrifice 7 (RAD7) or 15 (RAD15) days later; and pelvic radiation, daily supplementation with ARG or GLN, followed by sacrifice 7 (RAD7+ARG, RAD7+GLN) or 15 (RAD15+ARG, RAD15+GLN) days after radiation. Structural components in the corpus cavernosum (CC), tunica albuginea of the corpus spongiosum (TACS) and urethral epithelium (UE) were analysed using stereological and immunohistochemical methods. The results showed that in the CC, connective tissue was increased by 18% in RAD15 (p < 0.04), but this change was partially prevented in RAD15+GLN (p < 0.05) and RAD15+ARG (p < 0.04). The fibrous matrix of the CC trabeculae stained evenly for collagen type I. In RAD15, the intensity of the labelling was increased, whereas in RAD15+GLN and RAD15+ARG the staining was similar to that of CONTR. No staining changes were seen in the groups that were sacrificed 7 days after radiation. Cavernosal elastic fibre content in RAD15 was increased by 61% (p < 0.004), and this was prevented in RAD15+ARG (p < 0.004) but not in RAD15+GLN. In TACS, the amino acids protected (p < 0.02) against the radiation-induced 92% increase in elastic fibre content, but only in RAD15. Cell density in the UE, as well as UE thickness, were reduced by 30% in RAD15 (p < 0.004), and there were protective effects of both amino acids. In conclusion, radiation-induced alterations in penile structures tend to be more pronounced 15 days after radiation session. Both ARG and GLN have protective effects against these changes, with the former being slightly more effective.
Collapse
Affiliation(s)
- J L Medeiros
- Urogenital Research Unit, State University of Rio de Janeiro, UERJ, Rio de Janeiro, RJ, Brazil
| | | | | | | | | |
Collapse
|
7
|
Ribeiro CT, Milhomem R, De Souza DB, Costa WS, Sampaio FJB, Pereira-Sampaio MA. Effect of antioxidants on outcome of testicular torsion in rats of different ages. J Urol 2014; 191:1578-84. [PMID: 24679870 DOI: 10.1016/j.juro.2013.09.066] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2013] [Indexed: 12/29/2022]
Abstract
PURPOSE We assessed reproductive and testicular function in adult rats after testicular torsion created before, during and after puberty, and with vs without resveratrol or arginine treatment. MATERIALS AND METHODS Age matched rats were divided into groups, including simulated surgery without testicular torsion, 720-degree testicular torsion for 4 hours, testicular torsion with resveratrol treatment and testicular torsion with arginine treatment. To study reproductive function at age 12 weeks each rat mated with 3 females. The males were sacrificed at age 14 weeks. Spermatozoids were collected from the epididymal tail and evaluated for concentration, motility and viability. Testicular samples were collected for morphological analysis. RESULTS Reproductive function was not altered by testicular torsion but antioxidants improved potency. Compared to sham operated and contralateral samples all spermatozoid parameters from testicular torsion samples were inferior. Resveratrol and arginine did not improve spermatozoid quality or quantity in torsed testes but contralateral samples were improved by each drug. The seminiferous epithelium of rats submitted to testicular torsion during puberty was least affected. Each antioxidant partially to totally prevented the morphological alterations found in rats with untreated testicular torsion. Rats submitted to testicular torsion before puberty that were treated with antioxidants showed the fewest changes. CONCLUSIONS Testicular morphology was altered less in rats when torsion occurred earlier in life, that is during puberty. Treatment with antioxidants improved contralateral spermatozoid production and some fertility parameters. Each antioxidant also prevented testicular morphology alterations after testicular torsion. Prepubertal rats benefited most from antioxidant treatment.
Collapse
Affiliation(s)
- Carina T Ribeiro
- Urogenital Research Unit, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Milhomem
- Urogenital Research Unit, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diogo B De Souza
- Urogenital Research Unit, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Waldemar S Costa
- Urogenital Research Unit, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Francisco J B Sampaio
- Urogenital Research Unit, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marco A Pereira-Sampaio
- Urogenital Research Unit, State University of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Morphology, Fluminense Federal University, Niteroi, Brazil
| |
Collapse
|