1
|
Zhang G, Jiang Z, Chen J, Zhao Y, Wang J, Liu J, Ding Z, Shan L. Asystematic review and meta-analysis of clinical prognostic factors linked to extravesical recurrence after radical nephroureterectomy to treat upper tract urothelial carcinoma. Front Oncol 2024; 14:1475044. [PMID: 39659789 PMCID: PMC11628382 DOI: 10.3389/fonc.2024.1475044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/29/2024] [Indexed: 12/12/2024] Open
Abstract
Objective Numerous studies have investigated predictors of intravesical recurrence following radical nephrectomy (RNU) in patients with upper urinary tract uroepithelial carcinoma (UTUC). In contrast, extravesical recurrence (EUR) has received less focus. Consequently, this study aims to evaluate the significant predictors of EUR after RNU through a systematic review of the literature and a meta-analysis. Methodology We conducted a computerized bibliographic search across PubMed, Embase, and Cochrane databases to identify reports that include detailed results from multivariate analyses of predictors of EUR. Adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and the AMSTAR (Assessing the Methodological Quality of Systematic Reviews) criteria, we selected thirteen retrospective studies, each with a sample size exceeding 100 cases. Using Review Manager 5.4 software, we performed cumulative analyses of available HR and their corresponding 95% confidence intervals to evaluate potential predictors of EUR. Results Our findings indicate that patient-specific predictors include preoperative Ki-67 with a HR of 3.61 (P = 0.003), neutrophil-to-lymphocyte ratio with an HR of 2.20 (P = 0.0005), and glomerular filtration rate with an HR of 3.35 (P = 0.0009). Tumor-specific predictors identified were tumor stage with an HR of 4.67 (P < 0.00001), lymphovascular invasion with an HR of 2.37 (P = 0.004), and lymph node status with an HR of 2.68 (P < 0.0001). Regarding treatment-specific predictors, positive surgical margins were associated with an HR of 3.97 (P = 0.0005), and adjuvant chemotherapy was associated with an HR of 1.65 (P = 0.03). Discussion Our study identified three significant predictors across patient, tumor, and treatment dimensions for extravesical recurrence following radical nephroureterectomy in patients with upper urinary tract uroepithelial carcinoma. We hypothesize that history of bladder cancer, platelet-to-lymphocyte ratio, and urinary cytology could also be strong predictors of post- RNU extravesical recurrence in patients with upper UTUC, assuming adequate sample size and controlled heterogeneity. This research aims to provide urological clinicians with enhanced guidance for postoperative decision-making.
Collapse
Affiliation(s)
- Guanlan Zhang
- Urology Department, Henan Provincial People’s Hospital, Zhengzhou, China
- Department of Medicine, Graduate School, Henan University, Kaifeng, China
| | - Zhaoqiang Jiang
- Urology Department, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Jiawei Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Ying Zhao
- Urology Department, China-Japan Friendship Hospital, Beijing, China
| | - Jianan Wang
- Urology Department, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Jinxing Liu
- Urology Department, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Zhenshan Ding
- Urology Department, China-Japan Friendship Hospital, Beijing, China
| | - Lei Shan
- Urology Department, Henan Provincial People’s Hospital, Zhengzhou, China
| |
Collapse
|
2
|
Luo Z, Jiao B, Yan Y, Liu Y, Chen H, Guan Y, Ding Z, Zhang G. A novel nomogram for predicting extraurothelial recurrence in patients with upper urinary tract urothelial carcinoma after radical nephroureterectomy. J Cancer Res Clin Oncol 2023; 149:14241-14253. [PMID: 37555950 DOI: 10.1007/s00432-023-05237-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/31/2023] [Indexed: 08/10/2023]
Abstract
PURPOSE We aimed to establish and validate a nomogram for extraurothelial recurrence (EUR) after radical nephroureterectomy (RNU) for upper urinary tract urothelial carcinoma (UTUC). METHODS The data of 521 patients with UTUC after RNU from 2 medical centers were retrospectively studied and were used as training cohort (n = 301) and external validation cohort (n = 220). We used the least absolute shrinkage and selection operator (LASSO) to select variables for multivariable Cox regression, and included independent risk factors into nomogram models predicting EUR-free survival (EURFS). Multiple parameters were used to validate the nomogram, including the concordance index (C-index), the calibration plots, the time-dependent receiver-operator characteristics curve (ROC), and the decision curve analysis (DCA). Patients were stratified into three risk groups according to total points calculated by nomograms. The differences of EURFS in each group were analyzed by the Kaplan-Meier analysis. RESULTS Four variables were screened through LASSO regression. Bladder cancer history, Ki-67, lymphovascular invasion (LVI), and pathological T stage were shown to be independent predictive factors for EUR. The C-indexes of the model were 0.793 and 0.793 in training and validation cohorts, respectively. In comparison with prediction based on categorized pathological T stage, the DCA curves for 5-year EUR exhibited better performance. The 5-year EURFS rates were 92.2%, 63.8%, and 36.2% in patients stratified to the low-, medium-, and high-risk group. CONCLUSION Our study provided a new nomogram to predict the probability of EUR in UTUC patients underwent RNU, with perfect performance in discrimination ability and clinical net benefit. The application of the model may help urologists to choose proper treatment and monitoring.
Collapse
Affiliation(s)
- Zhenkai Luo
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Binbin Jiao
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yangxuanyu Yan
- China-Japan Friendship School Clinical Medicine, Peking University, Beijing, 100029, China
- Department of Urology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yuhao Liu
- China-Japan Friendship School Clinical Medicine, Peking University, Beijing, 100029, China
- Department of Urology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Haijie Chen
- China-Japan Friendship School Clinical Medicine, Peking University, Beijing, 100029, China
- Department of Urology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yunfan Guan
- China-Japan Friendship School Clinical Medicine, Peking University, Beijing, 100029, China
- Department of Urology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Zhenshan Ding
- Department of Urology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Guan Zhang
- Department of Urology, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
3
|
Cho HC, Huang Y, Hung JT, Hung TH, Cheng KC, Liu YH, Kuo MW, Wang SH, Yu AL, Yu J. Puf-A promotes cancer progression by interacting with nucleophosmin in nucleolus. Oncogene 2022; 41:1155-1165. [PMID: 34999733 PMCID: PMC8856959 DOI: 10.1038/s41388-021-02138-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/11/2021] [Accepted: 11/25/2021] [Indexed: 01/02/2023]
Abstract
Previously, we identified Puf-A as a novel member of Puf-family RNA-binding proteins; however, its biological functions remain obscure. Analysis of tumor samples of non-small cell lung cancer (NSCLC) showed that high Puf-A expression correlated with high histology grade and abnormal p53 status. Kaplan-Meier curve for overall survival revealed high expression of Puf-A to predict poor prognosis in stage I NSCLC. Among patients with colorectal cancer, high Puf-A expression also showed an adverse impact on overall survival. In lung cancer cell lines, downregulation of p53 increased Puf-A expression, and upregulation of p53 dampened its expression. However, luciferase reporter assays indicated that PUF-A locus harbored the p53-response element, but regulated Puf-A transcription indirectly. In vivo suppression of p53 in CCSP-rtTA/TetO-Cre/LSL-KrasG12D/p53flox/flox conditional mutant mice accelerated the progression of the KrasG12D-driven lung cancer, along with enhanced expression of Puf-A. Importantly, intranasal delivery of shPuf-A to the inducible KrasG12D/p53flox/flox mice suppressed tumor progression. Puf-A silencing led to marked decreases in the 80S ribosomes, along with decrease in S6 and L5 in the cytoplasm and accumulation in the nucleolus. Based on immunofluorescence staining and immunoprecipitation studies, Puf-A interacted with NPM1 in nucleolus. Puf-A silencing resulted in NPM1 translocation from nucleolus to nucleoplasm and this disruption of NPM1 localization was reversed by a rescue experiment. Mechanistically, Puf-A silencing altered NPM1 localization, leading to the retention of ribosomal proteins in nucleolus and diminished ribosome biogenesis, followed by cell-cycle arrest/cell death. Puf-A is a potential theranostic target for cancer therapy and an important player in cancer progression.
Collapse
Affiliation(s)
- Huan-Chieh Cho
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yenlin Huang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Anatomic Pathology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jung-Tung Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Tsai-Hsien Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Kai-Chun Cheng
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yun-Hen Liu
- Department of Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ming-Wei Kuo
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Sheng-Hung Wang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Alice L Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Department of Pediatrics, University of California San Diego Medical Center, San Diego, CA, USA
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
4
|
Sawazaki H, Ito K, Asano T, Kuroda K, Horiguchi A, Tsuda H, Asano T. Expressions of P-Glycoprotein, Multidrug Resistance Protein 1 and Annexin A2 as Predictive Factors for Intravesical Recurrence of Bladder Cancer after the Initial Transurethral Resection and Immediate Single Intravesical Instillation of Adriamycin. Asian Pac J Cancer Prev 2021; 22:1459-1466. [PMID: 34048174 PMCID: PMC8408374 DOI: 10.31557/apjcp.2021.22.5.1459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/07/2021] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE Immediate single instillation of chemotherapy following transurethral resection of bladder tumor (TURBT) is suggested for non-muscle invasive bladder cancer (NMIBC) patients. However, no study has evaluated molecular marker that was involved in intravesical recurrence (IVR) after single instillation of chemotherapy. Therefore, this study aimed to evaluate whether P-glycoprotein, multidrug resistance protein 1 (MRP1), Annexin A2 (ANXA2) or nucleophosmin (NPM) expression predicts IVR after initial TURBT and immediate single intravesical adriamycin instillation. METHODS We retrospectively reviewed consecutive 443 patients who underwent TURBT. Of these, 54 patients who underwent initial TURBT and single instillation of adriamycin for NMIBC were included. The expressions of P-glycoprotein, MRP1, ANXA2 and NPM were evaluated immunohistochemically and were divided into 2 groups (low or high) according to the staining intensity and/or proportion of positive cells. IVR was assessed by Kaplan-Meier method. Cox`s multivaritate analyses were performed to identify independent predictors for IVR. RESULTS Nineteen patients (35.1%) had IVR. High P-glycoprotein expression was significantly correlated with multiplicity, pT stage and high grade. High ANXA2 expression was significantly correlated with high grade. MRP1 and NPM were not correlated with any clinicopathological variables. MRP1 expression and ANXA2 expression were significantly correlated with P-glycoprotein expression. Patients with high P-glycoprotein expression had significantly worse IVR-free survival (IVRFS) than those with low P-glycoprotein expression (P =0.015). The difference in IVRFS rates between patients with high ANXA2 expression and those with low ANXA2 expression was nearly significant (P =0.057). Univariate analyses indicated multiplicity, high grade and high P-glycoprotein expression were significant predictors for IVR. Multivariate analysis indicated high grade was an independent predictor for IVR. CONCLUSIONS High P-glycoprotein expression was associated with IVR. Further study was needed to determine significance of P-glycoprotein expression in IVR after single intravesical adriamycin instillation.
Collapse
Affiliation(s)
- Harutake Sawazaki
- Department of Urology, National Defense Medical College Tokorozawa, Japan.
| | - Keiichi Ito
- Department of Urology, National Defense Medical College Tokorozawa, Japan.
| | - Takako Asano
- Department of Urology, National Defense Medical College Tokorozawa, Japan.
| | - Kenji Kuroda
- Department of Urology, National Defense Medical College Tokorozawa, Japan.
| | - Akio Horiguchi
- Department of Urology, National Defense Medical College Tokorozawa, Japan.
| | - Hitoshi Tsuda
- Department of Basic Pathology, National Defense Medical College Tokorozawa, Japan.
| | - Tomohiko Asano
- Department of Urology, National Defense Medical College Tokorozawa, Japan.
| |
Collapse
|
5
|
Song H, Zhou Y, Peng A, Liu J, Wu X, Chen W, Liu Z. Aurora-B Promotes Osteosarcoma Cell Growth and Metastasis Through Activation of the NPM1/ERK/NF-κβ/MMPs Axis. Cancer Manag Res 2020; 12:4817-4827. [PMID: 32606971 PMCID: PMC7320907 DOI: 10.2147/cmar.s252847] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/10/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose Osteosarcoma (OS) is the most common primary malignant tumor of the bone in young adolescents and children. We explored the underlying mechanism of Aurora-B in promoting OS cell proliferation and metastasis. Patient and Methods Bioinformatics was employed to predict the substrate of Aurora-B. IHC and Western blot were used to confirm the correlation between Aurora-B and NPM1. ERK/NF-κβ pathway-related proteins were detected by Western blot and immunofluorescence (IF). CCK8, wound healing, transwell, and Tunel assays were used to identify the cell proliferation, migration and apoptosis potential. Spontaneous metastasis xenografts were established to confirm the role of Aurora-B and NPM1. Results Aurora-B promotes NPM1 phosphorylation on Ser125. The phosphorylation of NPM1Ser125 induced by Aurora-B activates the ERK/NF-κβ signaling. Further study revealed that Aurora-B promotes proliferation, migration and inhibits apoptosis via phosphorylating NPM1 in vitro and in vivo. Conclusion Aurora-B promotes OS malignancy via phosphorylating NPM1Ser125 and activating ERK/NF-κβ signaling.
Collapse
Affiliation(s)
- Honghai Song
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China.,Institute of Spinal and Spinal Cord Diseases, Nanchang University, Nanchang 330031, People's Republic of China
| | - Yang Zhou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Aifen Peng
- College of Humanities, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, People's Republic of China
| | - Jiaming Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China.,Institute of Spinal and Spinal Cord Diseases, Nanchang University, Nanchang 330031, People's Republic of China.,Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Xin Wu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Wenzhao Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Zhili Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China.,Institute of Spinal and Spinal Cord Diseases, Nanchang University, Nanchang 330031, People's Republic of China.,Division of Science and Technology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| |
Collapse
|
6
|
Differential expression of NPM, GSTA3, and GNMT in mouse liver following long-term in vivo irradiation by means of uranium tailings. Biosci Rep 2018; 38:BSR20180536. [PMID: 30061177 PMCID: PMC6200700 DOI: 10.1042/bsr20180536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/21/2018] [Accepted: 07/26/2018] [Indexed: 12/19/2022] Open
Abstract
Uranium tailings (UT) are formed as a byproduct of uranium mining and are of potential risk to living organisms. In the present study, we sought to identify potential biomarkers associated with chronic exposure to low dose rate γ radiation originating from UT. We exposed C57BL/6J mice to 30, 100, or 250 μGy/h of gamma radiation originating from UT samples. Nine animals were included in each treatment group. We observed that the liver central vein was significantly enlarged in mice exposed to dose rates of 100 and 250 μGy/h, when compared with nonirradiated controls. Using proteomic techniques, we identified 18 proteins that were differentially expressed (by a factor of at least 2.5-fold) in exposed animals, when compared with controls. We chose glycine N-methyltransferase (GNMT), glutathione S-transferase A3 (GSTA3), and nucleophosmin (NPM) for further investigations. Our data showed that GNMT (at 100 and 250 μGy/h) and NPM (at 250 μGy/h) were up-regulated, and GSTA3 was down-regulated in all of the irradiated groups, indicating that their expression is modulated by chronic gamma radiation exposure. GNMT, GSTA3, and NPM may therefore prove useful as biomarkers of gamma radiation exposure associated with UT. The mechanisms underlying those changes need to be further studied.
Collapse
|
7
|
Abstract
The rates of ribosome production by a nucleolus and of protein biosynthesis by ribosomes are tightly correlated with the rate of cell growth and proliferation. All these processes must be matched and appropriately regulated to provide optimal cell functioning. Deregulation of certain factors, including oncogenes, controlling these processes, especially ribosome biosynthesis, can lead to cell transformation. Cancer cells are characterized by intense ribosome biosynthesis which is advantageous for their growth and proliferation. On the other hand, this feature can be engaged as an anticancer strategy. Numerous nucleolar factors such as nucleolar and ribosomal proteins as well as different RNAs, in addition to their role in ribosome biosynthesis, have other functions, including those associated with cancer biology. Some of them can contribute to cell transformation and cancer development. Others, under stress evoked by different factors which often hamper function of nucleoli and thus induce nucleolar/ribosomal stress, can participate in combating cancer cells. In this sense, intentional application of therapeutic agents affecting ribosome biosynthesis can cause either release of these molecules from nucleoli or their de novo biosynthesis to mediate the activation of pathways leading to elimination of harmful cells. This review underlines the role of a nucleolus not only as a ribosome constituting apparatus but also as a hub of both positive and negative control of cancer development. The article is mainly based on original papers concerning mechanisms in which the nucleolus is implicated directly or indirectly in processes associated with neoplasia.
Collapse
Affiliation(s)
- Dariusz Stępiński
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland.
| |
Collapse
|
8
|
Bram Ednersson S, Stenson M, Stern M, Enblad G, Fagman H, Nilsson-Ehle H, Hasselblom S, Andersson PO. Expression of ribosomal and actin network proteins and immunochemotherapy resistance in diffuse large B cell lymphoma patients. Br J Haematol 2018; 181:770-781. [PMID: 29767447 DOI: 10.1111/bjh.15259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/05/2018] [Indexed: 10/25/2022]
Abstract
Diffuse large B cell lymphoma (DLBCL) patients with early relapse or refractory disease have a very poor outcome. Immunochemotherapy resistance will probably, also in the era of targeted drugs, remain the major cause of treatment failure. We used proteomic mass spectrometry to analyse the global protein expression of micro-dissected formalin-fixed paraffin-embedded tumour tissues from 97 DLBCL patients: 44 with primary refractory disease or relapse within 1 year from diagnosis (REF/REL), and 53 who were progression-free more than 5 years after diagnosis (CURED). We identified 2127 proteins: 442 were found in all patients and 102 were differentially expressed. Sixty-five proteins were overexpressed in REF/REL patients, of which 46 were ribosomal proteins (RPs) compared with 2 of the 37 overexpressed proteins in CURED patients (P = 7·6 × 10-10 ). Twenty of 37 overexpressed proteins in CURED patients were associated with actin regulation, compared with 1 of 65 in REF/REL patients (P = 1·4 × 10-9 ). Immunohistochemical staining showed higher expression of RPS5 and RPL17 in REF/REL patients while MARCKS-like protein, belonging to the actin network, was more highly expressed in CURED patients. Even though functional studies aimed at individual proteins and protein interactions to evaluate potential clinical effect are needed, our findings suggest new mechanisms behind immunochemotherapy resistance in DLBCL.
Collapse
Affiliation(s)
- Susanne Bram Ednersson
- Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Martin Stenson
- Section of Haematology, Department of Medicine, Kungälvs Hospital, Kungälv, Sweden.,Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Mimmie Stern
- Section of Haematology, Department of Medicine, South Älvsborg Hospital, Borås, Sweden.,Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Gunilla Enblad
- Department of Immunology, Genetics and Pathology/Experimental and Clinical Oncology, Uppsala University, Uppsala, Sweden
| | - Henrik Fagman
- Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Herman Nilsson-Ehle
- Section of Haematology and Coagulation, Sahlgrenska University Hospital, Gothenburg, Sweden.,Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Sverker Hasselblom
- Department of Research, Development and Education, Region Halland, Halmstad, Sweden
| | - Per-Ola Andersson
- Section of Haematology, Department of Medicine, South Älvsborg Hospital, Borås, Sweden.,Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|