1
|
Lehotzky D, Zupanc GKH. Supervised learning algorithm for analysis of communication signals in the weakly electric fish Apteronotus leptorhynchus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:443-458. [PMID: 37704754 PMCID: PMC11106210 DOI: 10.1007/s00359-023-01664-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 09/15/2023]
Abstract
Signal analysis plays a preeminent role in neuroethological research. Traditionally, signal identification has been based on pre-defined signal (sub-)types, thus being subject to the investigator's bias. To address this deficiency, we have developed a supervised learning algorithm for the detection of subtypes of chirps-frequency/amplitude modulations of the electric organ discharge that are generated predominantly during electric interactions of individuals of the weakly electric fish Apteronotus leptorhynchus. This machine learning paradigm can learn, from a 'ground truth' data set, a function that assigns proper outputs (here: time instances of chirps and associated chirp types) to inputs (here: time-series frequency and amplitude data). By employing this artificial intelligence approach, we have validated previous classifications of chirps into different types and shown that further differentiation into subtypes is possible. This demonstration of its superiority compared to traditional methods might serve as proof-of-principle of the suitability of the supervised machine learning paradigm for a broad range of signals to be analyzed in neuroethology.
Collapse
Affiliation(s)
- Dávid Lehotzky
- Laboratory of Neurobiology, Department of Biology, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| | - Günther K H Zupanc
- Laboratory of Neurobiology, Department of Biology, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Webster CF, Smotherman M, Pippel M, Brown T, Winkler S, Pieri M, Mai M, Myers EW, Teeling EC, Vernes SC. The genome sequence of Tadarida brasiliensis I. Geoffroy Saint-Hilaire, 1824 [Molossidae; Tadarida]. Wellcome Open Res 2024; 9:98. [PMID: 38800517 PMCID: PMC11128047 DOI: 10.12688/wellcomeopenres.20603.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 05/29/2024] Open
Abstract
We present a genome assembly from an individual male Tadarida brasiliensis (The Brazilian free-tailed bat; Chordata; Mammalia; Chiroptera; Molossidae). The genome sequence is 2.28 Gb in span. The majority of the assembly is scaffolded into 25 chromosomal pseudomolecules, with the X and Y sex chromosomes assembled.
Collapse
Affiliation(s)
- Cara F. Webster
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Michael Smotherman
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany
- Center for Systems Biology, Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany
- DRESDEN concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universitat, Dresden, 01307 Dresden, Germany
| | - Thomas Brown
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany
- Center for Systems Biology, Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany
- DRESDEN concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universitat, Dresden, 01307 Dresden, Germany
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany
- Center for Systems Biology, Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany
- DRESDEN concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universitat, Dresden, 01307 Dresden, Germany
| | - Myrtani Pieri
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
| | - Meike Mai
- School of Biology, University of St Andrews, St Andrews, UK
| | - Eugene W. Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany
- Center for Systems Biology, Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany
- DRESDEN concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universitat, Dresden, 01307 Dresden, Germany
| | - Emma C. Teeling
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridgeshire, CB10 1SA, UK
| | - Sonja C. Vernes
- School of Biology, University of St Andrews, St Andrews, UK
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - The Bat1K Consortium
- Department of Biology, Texas A&M University, College Station, Texas, USA
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany
- Center for Systems Biology, Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany
- DRESDEN concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universitat, Dresden, 01307 Dresden, Germany
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
- School of Biology, University of St Andrews, St Andrews, UK
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridgeshire, CB10 1SA, UK
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Gallo A, De Moura Lima A, Böye M, Hausberger M, Lemasson A. Study of repertoire use reveals unexpected context-dependent vocalizations in bottlenose dolphins (Tursiops truncatus). THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2023; 110:56. [PMID: 38060031 DOI: 10.1007/s00114-023-01884-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
Dolphins are known for their complex vocal communication, not least because of their capacity for acoustic plasticity. Paradoxically, we know little about their capacity for flexible vocal use. The difficulty in describing the behaviours performed underwater while vocalizing makes it difficult to analyse the contexts of emissions. Dolphins' main vocal categories are typically considered to be used for scanning the environment (clicks), agonistic encounters (burst pulses) and socio-affiliative interactions (whistles). Dolphins can also combine these categories in mixed vocal emissions, whose use remains unclear. To better understand how vocalizations are used, we simultaneously recorded vocal production and the associated behaviours by conducting underwater observations (N = 479 events) on a group of 7 bottlenose dolphins under human care. Our results showed a non-random association between vocal categories and behavioural contexts. Precisely, clicks were preferentially emitted during affiliative interactions and not during other social/solitary contexts, supporting a possible complementary communicative function. Burst pulses were associated to high arousal contexts (agonistic and social play), pinpointing on their use as an "emotively charged" signal. Whistles were related to solitary swimming and not preferentially produced in any social context. This questions whistles' functions and supports their potential role as a distant contact call. Finally, mixed vocalizations were especially found associated with sexual (bust pulse-whistle-click), solitary play (burst pulse-whistle) and affiliative (click-whistle) behaviours. Depending on the case, their emission seems to confirm, modify or refine the functions of their simple counterparts. These results open up new avenues of research into the contextual use of dolphin acoustic signals.
Collapse
Affiliation(s)
- Alessandro Gallo
- Laboratoire d'Ethologie Animale Et Humaine, Université de Rennes, Université de Caen-Normandie, UMR 6552, Rennes, France.
- UMR 8002, Integrative Center for Neuroscience and Cognition, Université de Paris Cité, Paris, France.
- Centre de Recherche Et d'Études Pour L'Animal Sauvage (CREAS), Port Saint Père, France.
| | - Alice De Moura Lima
- Laboratoire d'Ethologie Animale Et Humaine, Université de Rennes, Université de Caen-Normandie, UMR 6552, Rennes, France
- Centre de Recherche Et d'Études Pour L'Animal Sauvage (CREAS), Port Saint Père, France
| | - Martin Böye
- Centre de Recherche Et d'Études Pour L'Animal Sauvage (CREAS), Port Saint Père, France
| | - Martine Hausberger
- UMR 8002, Integrative Center for Neuroscience and Cognition, Université de Paris Cité, Paris, France
- Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
| | - Alban Lemasson
- Laboratoire d'Ethologie Animale Et Humaine, Université de Rennes, Université de Caen-Normandie, UMR 6552, Rennes, France
| |
Collapse
|
4
|
Corcoran AJ. Sing or Jam? Density-Dependent Food Competition Strategies in Mexican Free-Tailed Bats (Tadarida brasiliensis). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.877579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Organisms compete for food in many ways, but it is often difficult to know why they use certain competition strategies over others. Bats compete for food either through aggression coupled with food-claiming signals or by actively interfering with a competitor’s sensory processing during prey pursuit (i.e., jamming). It is not known why these different behaviors are exhibited. I studied food competition between Mexican free-tailed bats (Tadarida brasiliensis) at foraging sites in Arizona and New Mexico using passive acoustic recording, insect sampling and 3-D infrared videography with or without supplemental lighting that concentrated prey. Bat activity was quantified by the number of recorded echolocation calls, while feeding behavior was indicated by feeding buzzes. Two competitive behaviors were observed—song, which was produced by bats chasing conspecifics, and sinFM calls, which jam echolocation of competitors pursuing prey. Song production was most common when few bats were present and feeding at low rates. In contrast, jamming signals were most common with many bats present and feeding at high rates. Supplemental lighting increased the numbers of bats, feeding buzzes and sinFM calls, but not song. These results indicate that bats employ different strategies—singing and chasing competitors at low bat densities but jamming competitors at high bat densities. Food claiming signals (song) may only be effective with few competitors present, whereas jamming can be effective with many bats at a foraging site. Multiple competition strategies appear to have evolved in bats that are used under different densities of competitors.
Collapse
|
5
|
Macias S, Bakshi K, Garcia-Rosales F, Hechavarria JC, Smotherman M. Temporal coding of echo spectral shape in the bat auditory cortex. PLoS Biol 2020; 18:e3000831. [PMID: 33170833 PMCID: PMC7678962 DOI: 10.1371/journal.pbio.3000831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/20/2020] [Accepted: 10/01/2020] [Indexed: 01/26/2023] Open
Abstract
Echolocating bats rely upon spectral interference patterns in echoes to reconstruct fine details of a reflecting object’s shape. However, the acoustic modulations required to do this are extremely brief, raising questions about how their auditory cortex encodes and processes such rapid and fine spectrotemporal details. Here, we tested the hypothesis that biosonar target shape representation in the primary auditory cortex (A1) is more reliably encoded by changes in spike timing (latency) than spike rates and that latency is sufficiently precise to support a synchronization-based ensemble representation of this critical auditory object feature space. To test this, we measured how the spatiotemporal activation patterns of A1 changed when naturalistic spectral notches were inserted into echo mimic stimuli. Neurons tuned to notch frequencies were predicted to exhibit longer latencies and lower mean firing rates due to lower signal amplitudes at their preferred frequencies, and both were found to occur. Comparative analyses confirmed that significantly more information was recoverable from changes in spike times relative to concurrent changes in spike rates. With this data, we reconstructed spatiotemporal activation maps of A1 and estimated the level of emerging neuronal spike synchrony between cortical neurons tuned to different frequencies. The results support existing computational models, indicating that spectral interference patterns may be efficiently encoded by a cascading tonotopic sequence of neural synchronization patterns within an ensemble of network activity that relates to the physical features of the reflecting object surface. Echolocating bats rely upon spectral interference patterns in echoes to reconstruct fine details of a reflecting object’s shape. This study shows that the latency shifts induced by spectral notch patterns can provide the foundation for an avalanche of neuronal synchrony that is sufficient to support encoding of auditory object shape features during active biosonar.
Collapse
Affiliation(s)
- Silvio Macias
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| | - Kushal Bakshi
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | | | - Julio C. Hechavarria
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt/M., Germany
| | - Michael Smotherman
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
6
|
Macias S, Bakshi K, Smotherman M. Functional organization of the primary auditory cortex of the free-tailed bat Tadarida brasiliensis. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:429-440. [PMID: 32036404 DOI: 10.1007/s00359-020-01406-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/19/2022]
Abstract
The Mexican free-tailed bat, Tadarida brasiliensis, is a fast-flying bat that hunts by biosonar at high altitudes in open space. The auditory periphery and ascending auditory pathways have been described in great detail for this species, but nothing is yet known about its auditory cortex. Here we describe the topographical organization of response properties in the primary auditory cortex (AC) of the Mexican free-tailed bat with emphasis on the sensitivity for FM sweeps and echo-delay tuning. Responses of 716 units to pure tones and of 373 units to FM sweeps and FM-FM pairs were recorded extracellularly using multielectrode arrays in anesthetized bats. A general tonotopy was confirmed with low frequencies represented caudally and high frequencies represented rostrally. Characteristic frequencies (CF) ranged from 15 to 70 kHz, and fifty percent of CFs fell between 20 and 30 kHz, reflecting a hyper-representation of a bandwidth corresponding to search-phase echolocation pulses. Most units showed a stronger response to downward rather than upward FM sweeps and forty percent of the neurons interspersed throughout AC (150/371) showed echo-delay sensitivity to FM-FM pairs. Overall, the results illustrate that the free-tailed bat auditory cortex is organized similarly to that of other FM-type insectivorous bats.
Collapse
Affiliation(s)
- Silvio Macias
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA.
| | - Kushal Bakshi
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Michael Smotherman
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
7
|
Macias S, Bakshi K, Smotherman M. Laminar Organization of FM Direction Selectivity in the Primary Auditory Cortex of the Free-Tailed Bat. Front Neural Circuits 2019; 13:76. [PMID: 31827425 PMCID: PMC6890848 DOI: 10.3389/fncir.2019.00076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/13/2019] [Indexed: 01/18/2023] Open
Abstract
We studied the columnar and layer-specific response properties of neurons in the primary auditory cortex (A1) of six (four females, two males) anesthetized free-tailed bats, Tadarida brasiliensis, in response to pure tones and down and upward frequency modulated (FM; 50 kHz bandwidth) sweeps. In addition, we calculated current source density (CSD) to test whether lateral intracortical projections facilitate neuronal activation in response to FM echoes containing spectrally distant frequencies from the excitatory frequency response area (FRA). Auditory responses to a set of stimuli changing in frequency and level were recorded along 64 penetrations in the left A1 of six free-tailed bats. FRA shapes were consistent across the cortical depth within a column and there were no obvious differences in tuning properties. Generally, response latencies were shorter (<10 ms) for cortical depths between 500 and 600 μm, which might correspond to thalamocortical input layers IIIb-IV. Most units showed a stronger response to downward FM sweeps, and direction selectivity did not vary across cortical depth. CSD profiles calculated in response to the CF showed a current sink located at depths between 500 and 600 μm. Frequencies lower than the frequency range eliciting a spike response failed to evoke any visible current sink. Frequencies higher than the frequency range producing a spike response evoked layer IV sinks at longer latencies that increased with spectral distance. These data support the hypothesis that a progressive downward relay of spectral information spreads along the tonotopic axis of A1 via lateral connections, contributing to the neural processing of FM down sweeps used in biosonar.
Collapse
Affiliation(s)
- Silvio Macias
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Kushal Bakshi
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Michael Smotherman
- Department of Biology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
8
|
Hintze F, Arias-Aguilar A, Dias-Silva L, Delgado-Jaramillo M, Silva CR, Jucá T, Mischiatti FL, Almeida M, Bezerra B, Aguiar LMS, Ramos Pereira MJ, Bernard E. Molossid unlimited: extraordinary extension of range and unusual vocalization patterns of the bat, Promops centralis. J Mammal 2019. [DOI: 10.1093/jmammal/gyz167] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
The big crested mastiff bat, Promops centralis, occurs in Central and South America, but knowledge of its ecology is limited due to its open space hunting strategy, making captures extremely challenging. Notwithstanding, members of the species produce echolocation calls that are easy to identify. After recording calls of P. centralis 1,500 km away from its known range in Brazil, we hypothesized that the distribution range of this species was probably greatly underestimated. To improve the accuracy of P. centralis’ real distribution, we employed acoustic surveys throughout parts of Brazil, conducted after a bibliographic review to gather additional records, and used MaxEnt to model the species’ potential distribution. We have found that P. centralis has a much wider distribution in South America than previously thought, adding more than 3.8 million km2 to its former known area. We also describe an unusual vocalization pattern of P. centralis, with individuals emitting at least three very distinct but highly variable calls. This study shows that bioacoustic surveys and species distribution models can complement traditional methodologies in studying species that are difficult to capture, such as P. centralis, potentially contributing to more effective conservation and management plans.
Collapse
Affiliation(s)
- Frederico Hintze
- Laboratório de Ciência Aplicada à Conservação da Biodiversidade, Departamento de Zoologia, Universidade Federal de Pernambuco, Rua Professor Nelson Chaves s/n, Cidade Universitária, Recife, PE 50670-420, Brasil
- Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego s/n, Cidade Universitária, Recife, PE 50670-901, Brasil
| | - Adriana Arias-Aguilar
- Laboratório de Evolução, Sistemática e Ecologia de Aves e Mamíferos, Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Prédio 43435, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, RS 91540-000, Brasil
| | - Leonardo Dias-Silva
- Laboratório de Ecologia & Conservação, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos 6.627, Campus UFMG, Pampulha, Belo Horizonte, MG 31270-901, Brasil
| | - Mariana Delgado-Jaramillo
- Laboratório de Ciência Aplicada à Conservação da Biodiversidade, Departamento de Zoologia, Universidade Federal de Pernambuco, Rua Professor Nelson Chaves s/n, Cidade Universitária, Recife, PE 50670-420, Brasil
- Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego s/n, Cidade Universitária, Recife, PE 50670-901, Brasil
| | - Carina Rodrigues Silva
- Laboratório de Ciência Aplicada à Conservação da Biodiversidade, Departamento de Zoologia, Universidade Federal de Pernambuco, Rua Professor Nelson Chaves s/n, Cidade Universitária, Recife, PE 50670-420, Brasil
- Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego s/n, Cidade Universitária, Recife, PE 50670-901, Brasil
| | - Thays Jucá
- Laboratório de Etologia, Departamento de Zoologia, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego s/n, Cidade Universitária, Recife, PE 50670-901, Brasil
- Instituto de Ciências Biológicas, Universidade de Pernambuco, Rua Arnóbio Marques, 310, Santo Amaro, Recife, PE 50100-130, Brasil
| | - Francyne Lyrio Mischiatti
- Laboratório de Estudos em Quirópteros, Departamento de Ciências Biológicas, Edifício Lydia Behar, Centro de Ciências Humanas e Naturais, Universidade Federal do Espírito Santo, Avenida Fernando Ferrari, 514, Goiabeiras, Vitória, ES 29075-910, Brasil
| | - Márcio Almeida
- Laboratório de Estudos em Quirópteros, Departamento de Ciências Biológicas, Edifício Lydia Behar, Centro de Ciências Humanas e Naturais, Universidade Federal do Espírito Santo, Avenida Fernando Ferrari, 514, Goiabeiras, Vitória, ES 29075-910, Brasil
| | - Bruna Bezerra
- Laboratório de Etologia, Departamento de Zoologia, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego s/n, Cidade Universitária, Recife, PE 50670-901, Brasil
| | - Ludmilla M S Aguiar
- Laboratório de Biologia e Conservação de Morcegos, Departamento de Zoologia, Instituto de Ciências Biológicas, Campus Darcy Ribeiro, Universidade de Brasília, Brasília, DF 70910-900, Brasil
| | - Maria João Ramos Pereira
- Laboratório de Evolução, Sistemática e Ecologia de Aves e Mamíferos, Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Prédio 43435, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, RS 91540-000, Brasil
- Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Enrico Bernard
- Laboratório de Ciência Aplicada à Conservação da Biodiversidade, Departamento de Zoologia, Universidade Federal de Pernambuco, Rua Professor Nelson Chaves s/n, Cidade Universitária, Recife, PE 50670-420, Brasil
| |
Collapse
|
9
|
Hörpel SG, Firzlaff U. Processing of fast amplitude modulations in bat auditory cortex matches communication call-specific sound features. J Neurophysiol 2019; 121:1501-1512. [PMID: 30785811 DOI: 10.1152/jn.00748.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bats use a large repertoire of calls for social communication. In the bat Phyllostomus discolor, social communication calls are often characterized by sinusoidal amplitude and frequency modulations with modulation frequencies in the range of 100-130 Hz. However, peaks in mammalian auditory cortical modulation transfer functions are typically limited to modulation frequencies below 100 Hz. We investigated the coding of sinusoidally amplitude modulated sounds in auditory cortical neurons in P. discolor by constructing rate and temporal modulation transfer functions. Neuronal responses to playbacks of various communication calls were additionally recorded and compared with the neurons' responses to sinusoidally amplitude-modulated sounds. Cortical neurons in the posterior dorsal field of the auditory cortex were tuned to unusually high modulation frequencies: rate modulation transfer functions often peaked around 130 Hz (median: 87 Hz), and the median of the highest modulation frequency that evoked significant phase-locking was also 130 Hz. Both values are much higher than reported from the auditory cortex of other mammals, with more than 51% of the units preferring modulation frequencies exceeding 100 Hz. Conspicuously, the fast modulations preferred by the neurons match the fast amplitude and frequency modulations of prosocial, and mostly of aggressive, communication calls in P. discolor. We suggest that the preference for fast amplitude modulations in the P. discolor dorsal auditory cortex serves to reliably encode the fast modulations seen in their communication calls. NEW & NOTEWORTHY Neural processing of temporal sound features is crucial for the analysis of communication calls. In bats, these calls are often characterized by fast temporal envelope modulations. Because auditory cortex neurons typically encode only low modulation frequencies, it is unclear how species-specific vocalizations are cortically processed. We show that auditory cortex neurons in the bat Phyllostomus discolor encode fast temporal envelope modulations. This property improves response specificity to communication calls and thus might support species-specific communication.
Collapse
Affiliation(s)
- Stephen Gareth Hörpel
- Chair of Zoology, Department of Animal Sciences, Technical University of Munich , Freising , Germany
| | - Uwe Firzlaff
- Chair of Zoology, Department of Animal Sciences, Technical University of Munich , Freising , Germany
| |
Collapse
|
10
|
Martin MJ, Elwen SH, Kassanjee R, Gridley T. To buzz or burst-pulse? The functional role of Heaviside's dolphin, Cephalorhynchus heavisidii, rapidly pulsed signals. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
Petersen H, Finger N, Bastian A, Jacobs D. The Behaviour and Vocalisations of Captive Geoffroy's Horseshoe Bats, Rhinolophus clivosus (Chiroptera: Rhinolophidae). ACTA CHIROPTEROLOGICA 2019. [DOI: 10.3161/15081109acc2018.20.2.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Hana Petersen
- Animal Evolution and Systematics Group, Department of Biological Sciences, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| | - Nikita Finger
- Animal Evolution and Systematics Group, Department of Biological Sciences, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| | - Anna Bastian
- School of Life Sciences, University of KwaZulu-Natal, Durban 4001, KwaZulu-Natal, South Africa
| | - David Jacobs
- Animal Evolution and Systematics Group, Department of Biological Sciences, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| |
Collapse
|
12
|
Smotherman M, Bakshi K. Forward masking enhances the auditory brainstem response in the free-tailed bat, Tadarida brasiliensis, during a critical time window for sonar reception. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 145:EL19. [PMID: 30710968 DOI: 10.1121/1.5087278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
Forward masking is a widespread auditory phenomenon in which the response to one sound transiently reduces the response to a succeeding sound. This study used auditory brainstem responses to measure temporal masking effects in the free-tailed bat, Tadarida brasiliensis. A digital subtraction protocol was used to isolate responses to the second of a pair of pulses varying in interval, revealing a suppression phase lasting <4 ms followed by an enhancement phase lasting 4-15 ms during which the ABR waveform was amplified up to 100%. The results suggest echolocating bats possess adaptations for enhancing sonar receiver gain shortly after pulse emission.
Collapse
Affiliation(s)
- Michael Smotherman
- Institute for Neuroscience, Texas A&M University, College Station, Texas 77843-3258, ,
| | - Kushal Bakshi
- Institute for Neuroscience, Texas A&M University, College Station, Texas 77843-3258, ,
| |
Collapse
|
13
|
Bohn K, Gillam E. In-flight social calls: a primer for biologists and managers studying echolocation. CAN J ZOOL 2018. [DOI: 10.1139/cjz-2017-0188] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent technological advances have permitted collection of immense data sets through automated recordings that are primarily aimed at capturing bat echolocation. Analyses of echolocation calls are used to identify species, relative abundance, and some aspects of behaviour, such as foraging or commuting. Here we propose that social calls recorded in flight are also valuable tools for understanding bat ecology and behaviour. First, we examine how and why the acoustic structure of social calls differ from echolocation. Differences in form make social calls often, but not always, easy to identify. We then use a case study on in-flight song in Brazilian free-tailed bat (Tadarida brasiliensis (I. Geoffroy, 1824)) to show that what may appear as echolocation may instead be predominantly used for social communication. Next, we review three basic functions of in-flight social calls, including examples of each, and develop a framework for testing these alternative functions using automated recordings. In a second case study, we use automated recordings of the endangered Florida bonneted bat (Eumops floridanus (G.M. Allen, 1932)) to illustrate how behavioural information can be gleaned by examining patterns of social call production. Finally, we discuss why and how social calls provide novel information that can be crucial for conservation and management efforts.
Collapse
Affiliation(s)
- K.M. Bohn
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21211, USA
| | - E.H. Gillam
- Department of Biological Sciences, North Dakota State University, 218 Stevens Hall, Fargo, ND 58102, USA
| |
Collapse
|
14
|
Moore LH, Best TL. Impact of vegetation on activity of bats over wetlands in coastal South Carolina. J Mammal 2018. [DOI: 10.1093/jmammal/gyy086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Lydia H Moore
- Department of Biological Sciences, Auburn University, AL, USA
| | - Troy L Best
- Department of Biological Sciences, Auburn University, AL, USA
| |
Collapse
|
15
|
Lattenkamp EZ, Vernes SC, Wiegrebe L. Volitional control of social vocalisations and vocal usage learning in bats. ACTA ACUST UNITED AC 2018; 221:jeb.180729. [PMID: 29880634 DOI: 10.1242/jeb.180729] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/30/2018] [Indexed: 11/20/2022]
Abstract
Bats are gregarious, highly vocal animals that possess a broad repertoire of social vocalisations. For in-depth studies of their vocal behaviours, including vocal flexibility and vocal learning, it is necessary to gather repeatable evidence from controlled laboratory experiments on isolated individuals. However, such studies are rare for one simple reason: eliciting social calls in isolation and under operant control is challenging and has rarely been achieved. To overcome this limitation, we designed an automated setup that allows conditioning of social vocalisations in a new context and tracks spectro-temporal changes in the recorded calls over time. Using this setup, we were able to reliably evoke social calls from temporarily isolated lesser spear-nosed bats (Phyllostomus discolor). When we adjusted the call criteria that could result in a food reward, bats responded by adjusting temporal and spectral call parameters. This was achieved without the help of an auditory template or social context to direct the bats. Our results demonstrate vocal flexibility and vocal usage learning in bats. Our setup provides a new paradigm that allows the controlled study of the production and learning of social vocalisations in isolated bats, overcoming limitations that have, until now, prevented in-depth studies of these behaviours.
Collapse
Affiliation(s)
- Ella Z Lattenkamp
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands.,Division of Neurobiology, Dept Biologie II, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Sonja C Vernes
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
| | - Lutz Wiegrebe
- Division of Neurobiology, Dept Biologie II, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| |
Collapse
|
16
|
The origins and diversity of bat songs. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:535-54. [DOI: 10.1007/s00359-016-1105-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 01/08/2023]
|
17
|
Smarsh GC, Smotherman M. Intra- and Interspecific Variability of Echolocation Pulse Acoustics in the African Megadermatid Bats. ACTA CHIROPTEROLOGICA 2015. [DOI: 10.3161/15081109acc2015.17.2.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Abstract
Communication signals are susceptible to interference ("jamming") from conspecifics and other sources. Many active sensing animals, including bats and electric fish, alter the frequency of their emissions to avoid inadvertent jamming from conspecifics. We demonstrated that echolocating bats adaptively jam conspecifics during competitions for food. Three-dimensional flight path reconstructions and audio-video field recordings of foraging bats (Tadarida brasiliensis) revealed extended interactions in which bats emitted sinusoidal frequency-modulated ultrasonic signals that interfered with the echolocation of conspecifics attacking insect prey. Playbacks of the jamming call, but not of control sounds, caused bats to miss insect targets. This study demonstrates intraspecific food competition through active disruption of a competitor's sensing during food acquisition.
Collapse
Affiliation(s)
- Aaron J Corcoran
- Department of Biology, Wake Forest University, 030 Winston Hall, Winston Salem, NC 27106, USA. Department of Biology, University of Maryland, Biology-Psychology Building, College Park, MD 20742, USA.
| | - William E Conner
- Department of Biology, Wake Forest University, 030 Winston Hall, Winston Salem, NC 27106, USA
| |
Collapse
|
19
|
Fenton B, Jensen FH, Kalko EKV, Tyack PL. Sonar Signals of Bats and Toothed Whales. BIOSONAR 2014. [DOI: 10.1007/978-1-4614-9146-0_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
20
|
Griffiths SR. Echolocating bats emit terminal phase buzz calls while drinking on the wing. Behav Processes 2013; 98:58-60. [PMID: 23701945 DOI: 10.1016/j.beproc.2013.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/10/2013] [Accepted: 05/11/2013] [Indexed: 10/26/2022]
Abstract
Echolocating bats are known to produce terminal buzz calls during pursuit and capture of airborne prey, however the use of buzz calls while drinking on the wing has not been previously investigated. In this study I recorded the first empirical evidence that bats produce terminal phase buzz calls while drinking on the wing. Every drinking pass recorded during this study was characterised by a terminal buzz which bats emitted immediately prior to touching the water surface with their mouth. The characteristic frequency (the frequency at the end or flattest portion of the pulse) of echolocation call sequences containing drinking buzzes varied from 25kHz to 50kHz, suggesting multiple bat species present at the study site emit buzzes while drinking on the wing. As feeding buzz calls appear to be ubiquitous among echolocating bat taxa, the prevalence of drinking buzzes clearly warrants further investigation. Drinking buzzes could potentially be used to document rates of drinking by bats in the same way that feeding buzzes are used to infer foraging activity.
Collapse
Affiliation(s)
- Stephen R Griffiths
- Department of Zoology, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
21
|
|
22
|
Genzel D, Geberl C, Dera T, Wiegrebe L. Coordination of bat sonar activity and flight for the exploration of three-dimensional objects. J Exp Biol 2012; 215:2226-35. [DOI: 10.1242/jeb.064535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The unique combination of flight and echolocation has opened the nocturnal air space as a rich ecological niche for bats. By analysing echoes of their sonar emissions, bats discriminate and recognize three-dimensional (3-D) objects. However, in contrast to vision, the 3-D information that can be gained by ensonifying an object from only one observation angle is sparse. To date, it is unclear how bats synchronize echolocation and flight activity to explore the 3-D shape of ensonified objects. We have devised an experimental design that allows creating 3-D virtual echo-acoustic objects by generating in real-time echoes from the bat's emissions that depend on the bat's position relative to the virtual object. Bats were trained to evaluate these 3-D virtual objects differing in their azimuthal variation of either echo amplitude or spectral composition. The data show that through a very effective coordination of sonar and flight activity, bats analyse an azimuthal variation of echo amplitude with a resolution of approximately 16 dB and a variation of echo centre frequency of approximately 19%. Control experiments show that the bats can detect not only these variations but also perturbations in the spatial arrangement of these variations. The current experimental paradigm shows that echolocating bats assemble echo-acoustic object information – acquired sequentially in flight – to reconstruct the 3-D shape of the ensonified object. Unlike previous approaches, the recruitment of virtual objects allows for a direct quantification of this reconstruction success in a highly controlled experimental approach.
Collapse
Affiliation(s)
- Daria Genzel
- Division of Neurobiology, Department of Biology II, Ludwig-Maximilians-Universitaet Munich, Großhaderner Str. 2-4, D-82152 Martinsried-Planegg, Germany
| | - Cornelia Geberl
- Division of Neurobiology, Department of Biology II, Ludwig-Maximilians-Universitaet Munich, Großhaderner Str. 2-4, D-82152 Martinsried-Planegg, Germany
| | - Thomas Dera
- Department of Neurology, University of Munich Hospital, Munich, Marchioninistr. 23, D-81377 Munich, Germany
| | - Lutz Wiegrebe
- Division of Neurobiology, Department of Biology II, Ludwig-Maximilians-Universitaet Munich, Großhaderner Str. 2-4, D-82152 Martinsried-Planegg, Germany
| |
Collapse
|
23
|
Tressler J, Schwartz C, Wellman P, Hughes S, Smotherman M. Regulation of bat echolocation pulse acoustics by striatal dopamine. ACTA ACUST UNITED AC 2012; 214:3238-47. [PMID: 21900471 DOI: 10.1242/jeb.058149] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ability to control the bandwidth, amplitude and duration of echolocation pulses is a crucial aspect of echolocation performance but few details are known about the neural mechanisms underlying the control of these voice parameters in any mammal. The basal ganglia (BG) are a suite of forebrain nuclei centrally involved in sensory-motor control and are characterized by their dependence on dopamine. We hypothesized that pharmacological manipulation of brain dopamine levels could reveal how BG circuits might influence the acoustic structure of bat echolocation pulses. A single intraperitoneal injection of a low dose (5 mg kg(-1)) of the neurotoxin 1-methyl-4-phenylpyridine (MPTP), which selectively targets dopamine-producing cells of the substantia nigra, produced a rapid degradation in pulse acoustic structure and eliminated the bat's ability to make compensatory changes in pulse amplitude in response to background noise, i.e. the Lombard response. However, high-performance liquid chromatography (HPLC) measurements of striatal dopamine concentrations revealed that the main effect of MPTP was a fourfold increase rather than the predicted decrease in striatal dopamine levels. After first using autoradiographic methods to confirm the presence and location of D(1)- and D(2)-type dopamine receptors in the bat striatum, systemic injections of receptor subtype-specific agonists showed that MPTP's effects on pulse acoustics were mimicked by a D(2)-type dopamine receptor agonist (Quinpirole) but not by a D(1)-type dopamine receptor agonist (SKF82958). The results suggest that BG circuits have the capacity to influence echolocation pulse acoustics, particularly via D(2)-type dopamine receptor-mediated pathways, and may therefore represent an important mechanism for vocal control in bats.
Collapse
Affiliation(s)
- Jedediah Tressler
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, USA
| | | | | | | | | |
Collapse
|
24
|
|
25
|
Fenton MB, Skowronski MD, McGuire LP, Faure PA. Variation in the use of Harmonics in the Calls of Laryngeally Echolocating Bats. ACTA CHIROPTEROLOGICA 2011. [DOI: 10.3161/150811011x578714] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Gillam EH, Hristov NI, Kunz TH, McCracken GF. Echolocation behavior of Brazilian free-tailed bats during dense emergence flights. J Mammal 2010. [DOI: 10.1644/09-mamm-a-302.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
27
|
Jarvis J, Bohn KM, Tressler J, Smotherman M. A mechanism for antiphonal echolocation by Free-tailed bats. Anim Behav 2010; 79:787-796. [PMID: 20419063 PMCID: PMC2858338 DOI: 10.1016/j.anbehav.2010.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bats are highly social and spend much of their lives echolocating in the presence of other bats. To reduce the effects of acoustic interferences from other bats' echolocation calls, we hypothesized that bats might shift the timing of their pulse emissions to minimize temporal overlap with another bat's echolocation pulses. To test this hypothesis we investigated whether free-tailed bats (Tadarida brasiliensis) echolocating in the lab would shift the timing of their own pulse emissions in response to regularly repeating artificial acoustic stimuli. A robust phase-locked temporal pattern in pulse emissions was displayed by every bat tested which included an initial suppressive phase lasting more than 60 ms after stimulus onset, during which the probability of emitting pulses was reduced by more than fifty percent, followed by a compensatory rebound phase, the timing and amplitude of which were dependent on the temporal pattern of the stimulus. The responses were non-adapting and were largely insensitive to broad changes in the acoustic properties of the stimulus. Randomly occurring noise-bursts also suppressed calling for up to 60 ms, but the time-course of the compensatory rebound phase was more rapid than when the bats were responding to regularly repeating patterns of noise bursts. These findings provide the first quantitative description of how external stimuli may cause echolocating bats to alter the timing of subsequent pulse emissions.
Collapse
Affiliation(s)
- Jenna Jarvis
- Department of Biology, Texas A&M University, College Station, TX 77843-3258
| | | | | | | |
Collapse
|
28
|
Bohn KM, Schmidt-French B, Schwartz C, Smotherman M, Pollak GD. Versatility and stereotypy of free-tailed bat songs. PLoS One 2009; 4:e6746. [PMID: 19707550 PMCID: PMC2727915 DOI: 10.1371/journal.pone.0006746] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 07/09/2009] [Indexed: 11/18/2022] Open
Abstract
In mammals, complex songs are uncommon and few studies have examined song composition or the order of elements in songs, particularly with respect to regional and individual variation. In this study we examine how syllables and phrases are ordered and combined, ie “syntax”, of the song of Tadarida brasiliensis, the Brazilian free-tailed bat. Specifically, we test whether phrase and song composition differ among individuals and between two regions, we determine variability across renditions within individuals, and test whether phrases are randomly ordered and combined. We report three major findings. First, song phrases were highly stereotyped across two regions, so much so that some songs from the two colonies were almost indistinguishable. All males produced songs with the same four types of syllables and the same three types of phrases. Second, we found that although song construction was similar across regions, the number of syllables within phrases, and the number and order of phrases in songs varied greatly within and among individuals. Last, we determined that phrase order, although diverse, deviated from random models. We found broad scale phrase-order rules and certain higher order combinations that were highly preferred. We conclude that free-tailed bat songs are composed of highly stereotyped phrases hierarchically organized by a common set of syntactical rules. However, within global species-specific patterns, songs male free-tailed bats dynamically vary syllable number, phrase order, and phrase repetitions across song renditions.
Collapse
Affiliation(s)
- Kirsten M Bohn
- Department of Biology, Texas A&M University, College Station, Texas, USA.
| | | | | | | | | |
Collapse
|
29
|
Tressler J, Smotherman MS. Context-dependent effects of noise on echolocation pulse characteristics in free-tailed bats. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2009; 195:923-34. [PMID: 19672604 DOI: 10.1007/s00359-009-0468-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 07/22/2009] [Accepted: 07/24/2009] [Indexed: 11/29/2022]
Abstract
Background noise evokes a similar suite of adaptations in the acoustic structure of communication calls across a diverse range of vertebrates. Echolocating bats may have evolved specialized vocal strategies for echolocating in noise, but also seem to exhibit generic vertebrate responses such as the ubiquitous Lombard response. We wondered how bats balance generic and echolocation-specific vocal responses to noise. To address this question, we first characterized the vocal responses of flying free-tailed bats (Tadarida brasiliensis) to broadband noises varying in amplitude. Secondly, we measured the bats' responses to band-limited noises that varied in the extent of overlap with their echolocation pulse bandwidth. We hypothesized that the bats' generic responses to noise would be graded proportionally with noise amplitude, total bandwidth and frequency content, and consequently that more selective responses to band-limited noise such as the jamming avoidance response could be explained by a linear decomposition of the response to broadband noise. Instead, the results showed that both the nature and the magnitude of the vocal responses varied with the acoustic structure of the outgoing pulse as well as non-linearly with noise parameters. We conclude that free-tailed bats utilize separate generic and specialized vocal responses to noise in a context-dependent fashion.
Collapse
Affiliation(s)
- Jedediah Tressler
- Department of Biology, Texas A&M University, College Station, TX, 77843-3258, USA.
| | | |
Collapse
|
30
|
Bohn KM, Schmidt-French B, Ma ST, Pollak GD. Syllable acoustics, temporal patterns, and call composition vary with behavioral context in Mexican free-tailed bats. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2008; 124:1838-1848. [PMID: 19045674 PMCID: PMC2676615 DOI: 10.1121/1.2953314] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 05/22/2008] [Accepted: 06/07/2008] [Indexed: 05/27/2023]
Abstract
Recent research has shown that some bat species have rich vocal repertoires with diverse syllable acoustics. Few studies, however, have compared vocalizations across different behavioral contexts or examined the temporal emission patterns of vocalizations. In this paper, a comprehensive examination of the vocal repertoire of Mexican free-tailed bats, T. brasiliensis, is presented. Syllable acoustics and temporal emission patterns for 16 types of vocalizations including courtship song revealed three main findings. First, although in some cases syllables are unique to specific calls, other syllables are shared among different calls. Second, entire calls associated with one behavior can be embedded into more complex vocalizations used in entirely different behavioral contexts. Third, when different calls are composed of similar syllables, distinctive temporal emission patterns may facilitate call recognition. These results indicate that syllable acoustics alone do not likely provide enough information for call recognition; rather, the acoustic context and temporal emission patterns of vocalizations may affect meaning.
Collapse
Affiliation(s)
- Kirsten M Bohn
- Section of Neurobiology, University of Texas at Austin, Austin, Texas 78712, USA.
| | | | | | | |
Collapse
|
31
|
Bayefsky-Anand S, Skowronski MD, Fenton MB, Korine C, Holderied MW. Variations in the echolocation calls of the European free-tailed bat. J Zool (1987) 2008. [DOI: 10.1111/j.1469-7998.2008.00418.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Smotherman MS. Sensory feedback control of mammalian vocalizations. Behav Brain Res 2007; 182:315-26. [PMID: 17449116 PMCID: PMC1986653 DOI: 10.1016/j.bbr.2007.03.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 03/02/2007] [Accepted: 03/11/2007] [Indexed: 12/26/2022]
Abstract
Somatosensory and auditory feedback mechanisms are dynamic components of the vocal motor pattern generator in mammals. This review explores how sensory cues arising from central auditory and somatosensory pathways actively guide the production of both simple sounds and complex phrases in mammals. While human speech is a uniquely sophisticated example of mammalian vocal behavior, other mammals can serve as examples of how sensory feedback guides complex vocal patterns. Echolocating bats in particular are unique in their absolute dependence on voice control for survival: these animals must constantly adjust the acoustic and temporal patterns of their orientation sounds to efficiently navigate and forage for insects at high speeds under the cover of darkness. Many species of bats also utter a broad repertoire of communication sounds. The functional neuroanatomy of the bat vocal motor pathway is basically identical to other mammals, but the acute significance of sensory feedback in echolocation has made this a profitable model system for studying general principles of sensorimotor integration with regard to vocalizing. Bats and humans are similar in that they both maintain precise control of many different voice parameters, both exhibit a similar suite of responses to altered auditory feedback, and for both the efficacy of sensory feedback depends upon behavioral context. By comparing similarities and differences in the ways sensory feedback influences voice in humans and bats, we may shed light on the basic architecture of the mammalian vocal motor system and perhaps be able to better distinguish those features of human vocal control that evolved uniquely in support of speech and language.
Collapse
Affiliation(s)
- Michael S Smotherman
- Texas A&M University, Department of Biology, College Station, TX 77843-3258, USA.
| |
Collapse
|