1
|
Moezzi SA, Rastgar S, Faghani M, Ghiasvand Z, Javanshir Khoei A. Optimization of carbon membrane performance in reverse osmosis systems for reducing salinity, nitrates, phosphates, and ammonia in aquaculture wastewater. CHEMOSPHERE 2025; 376:144304. [PMID: 40090114 DOI: 10.1016/j.chemosphere.2025.144304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/18/2025]
Abstract
This study investigates the performance of various types of carbon membranes in reverse osmosis systems aimed at reducing salinity, nitrates, phosphates, and ammonia in aquaculture wastewater. As sustainable aquaculture practices become increasingly essential, effective treatment solutions are needed to mitigate pollution from nutrient-rich effluents. The research highlights several carbon membranes types, including carbon molecular sieves, activated carbon membranes, carbon nanotube membranes, and graphene oxide membranes, all of which demonstrate exceptional filtration capabilities due to their unique structural properties. Findings reveal that these carbon membranes can achieve removal efficiencies exceeding 90 % for critical pollutants, thereby significantly improving water quality and supporting environmental sustainability. The study also explores the development of hybrid membranes and nanocomposites, which enhance performance by combining the strengths of different materials, allowing for customized solutions tailored to the specific requirements of aquaculture wastewater treatment. Additionally, operational parameters such as pH, temperature, and feed water characteristics are crucial for maximizing membrane efficiency. The integration of real-time monitoring technologies is proposed to enable prompt adjustments to treatment processes, thereby improving system performance and reliability. Overall, this research emphasizes the importance of interdisciplinary collaboration among researchers and industry stakeholders to drive innovation in advanced filtration technologies. The findings underscore the substantial potential of carbon membranes in tackling the pressing water quality challenges faced by the aquaculture sector, ultimately contributing to the sustainability of aquatic ecosystems and ensuring compliance with environmental standards for future generations.
Collapse
Affiliation(s)
- Sayyed Ali Moezzi
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Saeedeh Rastgar
- Department of Environmental Sciences, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 49189-43464, Iran.
| | - Monireh Faghani
- Water Science and Engineering-Irrigation and Drainage, Faculty of Water and Soil Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 49189-43464, Iran
| | - Zahra Ghiasvand
- Faculty of Agriculture, Department of Animal Sciences and Aquaculture, Dalhousie University, Halifax, Canada
| | - Arash Javanshir Khoei
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
| |
Collapse
|
2
|
Sîrbulescu RF, Ilieş I, Amelung L, Zupanc GKH. Proteomic characterization of spontaneously regrowing spinal cord following injury in the teleost fish Apteronotus leptorhynchus, a regeneration-competent vertebrate. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:671-706. [PMID: 36445471 DOI: 10.1007/s00359-022-01591-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/30/2022]
Abstract
In adult mammals, spontaneous repair after spinal cord injury (SCI) is severely limited. By contrast, teleost fish successfully regenerate injured axons and produce new neurons from adult neural stem cells after SCI. The molecular mechanisms underlying this high regenerative capacity are largely unknown. The present study addresses this gap by examining the temporal dynamics of proteome changes in response to SCI in the brown ghost knifefish (Apteronotus leptorhynchus). Two-dimensional difference gel electrophoresis (2D DIGE) was combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and tandem mass spectrometry (MS/MS) to collect data during early (1 day), mid (10 days), and late (30 days) phases of regeneration following caudal amputation SCI. Forty-two unique proteins with significant differences in abundance between injured and intact control samples were identified. Correlation analysis uncovered six clusters of spots with similar expression patterns over time and strong conditional dependences, typically within functional families or between isoforms. Significantly regulated proteins were associated with axon development and regeneration; proliferation and morphogenesis; neuronal differentiation and re-establishment of neural connections; promotion of neuroprotection, redox homeostasis, and membrane repair; and metabolism or energy supply. Notably, at all three time points examined, significant regulation of proteins involved in inflammatory responses was absent.
Collapse
Affiliation(s)
- Ruxandra F Sîrbulescu
- School of Engineering and Science, Jacobs University Bremen, 28725, Bremen, Germany
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, 02115, USA
- Vaccine and Immunotherapy Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Iulian Ilieş
- School of Humanities and Social Sciences, Jacobs University Bremen, 28725, Bremen, Germany
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Lisa Amelung
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Günther K H Zupanc
- School of Engineering and Science, Jacobs University Bremen, 28725, Bremen, Germany.
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Schadt T, Prantl V, Grosbusch AL, Bertemes P, Egger B. Regeneration of the flatworm Prosthiostomum siphunculus (Polycladida, Platyhelminthes). Cell Tissue Res 2020; 383:1025-1041. [PMID: 33159580 PMCID: PMC7960593 DOI: 10.1007/s00441-020-03302-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/14/2020] [Indexed: 01/07/2023]
Abstract
Fueled by the discovery of head regeneration in triclads (planarians) two and a half centuries ago, flatworms have been the focus of regeneration research. But not all flatworms can regenerate equally well and to obtain a better picture of the characteristics and evolution of regeneration in flatworms other than planarians, the regeneration capacity and stem cell dynamics during regeneration in the flatworm order Polycladida are studied. Here, we show that as long as the brain remained at least partially intact, the polyclad Prosthiostomum siphunculus was able to regenerate submarginal eyes, cerebral eyes, pharynx, intestine and sucker. In the complete absence of the brain only wound closure was observed but no regeneration of missing organs. Amputated parts of the brain could not be regenerated. The overall regeneration capacity of P. siphunculus is a good fit for category III after a recently established system, in which most polyclads are currently classified. Intact animals showed proliferating cells in front of the brain which is an exception compared with most of the other free-living flatworms that have been observed so far. Proliferating cells could be found within the regeneration blastema, similar to all other flatworm taxa except triclads. No proliferation was observed in epidermis and pharynx. In pulse-chase experiments, the chased cells were found in all regenerated tissues and thereby shown to differentiate and migrate to replace the structures lost upon amputation.
Collapse
Affiliation(s)
- Tamara Schadt
- Research Unit Evolutionary and Developmental Biology, Institute of Zoology, University of Innsbruck, Technikerstr. 25, 6020, Innsbruck, Austria
| | - Veronika Prantl
- Research Unit Evolutionary and Developmental Biology, Institute of Zoology, University of Innsbruck, Technikerstr. 25, 6020, Innsbruck, Austria
| | - Alexandra L Grosbusch
- Research Unit Evolutionary and Developmental Biology, Institute of Zoology, University of Innsbruck, Technikerstr. 25, 6020, Innsbruck, Austria
| | - Philip Bertemes
- Research Unit Evolutionary and Developmental Biology, Institute of Zoology, University of Innsbruck, Technikerstr. 25, 6020, Innsbruck, Austria
| | - Bernhard Egger
- Research Unit Evolutionary and Developmental Biology, Institute of Zoology, University of Innsbruck, Technikerstr. 25, 6020, Innsbruck, Austria.
| |
Collapse
|
4
|
Zupanc GK. Stem‐Cell‐Driven Growth and Regrowth of the Adult Spinal Cord in Teleost Fish. Dev Neurobiol 2019; 79:406-423. [DOI: 10.1002/dneu.22672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/12/2019] [Accepted: 02/25/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Günther K.H. Zupanc
- Laboratory of Neurobiology, Department of Biology Northeastern University Boston Massachusetts
| |
Collapse
|
5
|
Benes JA, House KN, Burks FN, Conaway KP, Julien DP, Donley JP, Iyamu MA, McClellan AD. Regulation of axonal regeneration following spinal cord injury in the lamprey. J Neurophysiol 2017; 118:1439-1456. [PMID: 28469003 DOI: 10.1152/jn.00986.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/24/2017] [Accepted: 04/29/2017] [Indexed: 12/12/2022] Open
Abstract
Following rostral spinal cord injury (SCI) in larval lampreys, injured descending brain neurons, particularly reticulospinal (RS) neurons, regenerate their axons, and locomotor behavior recovers in a few weeks. However, axonal regeneration of descending brain neurons is mostly limited to relatively short distances, but the mechanisms for incomplete axonal regeneration are unclear. First, lampreys with rostral SCI exhibited greater axonal regeneration of descending brain neurons, including RS neurons, as well as more rapid recovery of locomotor muscle activity right below the lesion site, compared with animals with caudal SCI. In addition, following rostral SCI, most injured RS neurons displayed the "injury phenotype," whereas following caudal SCI, most injured neurons displayed normal electrical properties. Second, following rostral SCI, at cold temperatures (~4-5°C), axonal transport was suppressed, axonal regeneration and behavioral recovery were blocked, and injured RS neurons displayed normal electrical properties. Cold temperatures appear to prevent injured RS neurons from detecting and/or responding to SCI. It is hypothesized that following rostral SCI, injured descending brain neurons are strongly stimulated to regenerate their axons, presumably because of elimination of spinal synapses and reduced neurotrophic support. However, when these neurons regenerate their axons and make synapses right below the lesion site, restoration of neurotrophic support very likely suppress further axonal regeneration. In contrast, caudal SCI is a weak stimulus for axonal regeneration, presumably because of spared synapses above the lesion site. These results may have implications for mammalian SCI, which can spare synapses above the lesion site for supraspinal descending neurons and propriospinal neurons.NEW & NOTEWORTHY Lampreys with rostral spinal cord injury (SCI) exhibited greater axonal regeneration of descending brain neurons and more rapid recovery of locomotor muscle activity below the lesion site compared with animals with caudal SCI. In addition, following rostral SCI, most injured reticulospinal (RS) neurons displayed the "injury phenotype," whereas following caudal SCI, most injured neurons had normal electrical properties. We hypothesize that following caudal SCI, the spared synapses of injured RS neurons might limit axonal regeneration and behavioral recovery.
Collapse
Affiliation(s)
- Jessica A Benes
- Division of Biological Sciences, University of Missouri, Columbia, Missouri; and
| | - Kylie N House
- Division of Biological Sciences, University of Missouri, Columbia, Missouri; and
| | - Frank N Burks
- Division of Biological Sciences, University of Missouri, Columbia, Missouri; and
| | - Kris P Conaway
- Division of Biological Sciences, University of Missouri, Columbia, Missouri; and
| | - Donald P Julien
- Division of Biological Sciences, University of Missouri, Columbia, Missouri; and
| | - Jeffrey P Donley
- Division of Biological Sciences, University of Missouri, Columbia, Missouri; and
| | - Michael A Iyamu
- Division of Biological Sciences, University of Missouri, Columbia, Missouri; and
| | - Andrew D McClellan
- Division of Biological Sciences, University of Missouri, Columbia, Missouri; and .,Interdisciplinary Neuroscience Program, University of Missouri, Columbia, Missouri
| |
Collapse
|
6
|
Jacyniak K, McDonald RP, Vickaryous MK. Tail regeneration and other phenomena of wound healing and tissue restoration in lizards. J Exp Biol 2017; 220:2858-2869. [DOI: 10.1242/jeb.126862] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
ABSTRACT
Wound healing is a fundamental evolutionary adaptation with two possible outcomes: scar formation or reparative regeneration. Scars participate in re-forming the barrier with the external environment and restoring homeostasis to injured tissues, but are well understood to represent dysfunctional replacements. In contrast, reparative regeneration is a tissue-specific program that near-perfectly replicates that which was lost or damaged. Although regeneration is best known from salamanders (including newts and axolotls) and zebrafish, it is unexpectedly widespread among vertebrates. For example, mice and humans can replace their digit tips, while many lizards can spontaneously regenerate almost their entire tail. Whereas the phenomenon of lizard tail regeneration has long been recognized, many details of this process remain poorly understood. All of this is beginning to change. This Review provides a comparative perspective on mechanisms of wound healing and regeneration, with a focus on lizards as an emerging model. Not only are lizards able to regrow cartilage and the spinal cord following tail loss, some species can also regenerate tissues after full-thickness skin wounds to the body, transections of the optic nerve and even lesions to parts of the brain. Current investigations are advancing our understanding of the biological requirements for successful tissue and organ repair, with obvious implications for biomedical sciences and regenerative medicine.
Collapse
Affiliation(s)
- Kathy Jacyniak
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Rebecca P. McDonald
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Matthew K. Vickaryous
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
7
|
Sîrbulescu RF, Ilieş I, Meyer A, Zupanc GKH. Additive neurogenesis supported by multiple stem cell populations mediates adult spinal cord development: A spatiotemporal statistical mapping analysis in a teleost model of indeterminate growth. Dev Neurobiol 2017; 77:1269-1307. [PMID: 28707354 DOI: 10.1002/dneu.22511] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/07/2017] [Accepted: 07/09/2017] [Indexed: 01/15/2023]
Abstract
The knifefish Apteronotus leptorhynchus exhibits indeterminate growth throughout adulthood. This phenomenon extends to the spinal cord, presumably through the continuous addition of new neurons and glial cells. However, little is known about the developmental dynamics of cells added during adult growth. The present work characterizes the structural and functional development of the adult spinal cord in this model organism through a comprehensive quantitative analysis of the spatial and temporal dynamics of new cells at various developmental stages. This analysis, based on a novel statistical mapping approach, revealed within the adult spinal cord a wide distribution of both mitotically active and quiescent Sox2-expressing stem/progenitor cells (SPCs). While such cells are particularly concentrated within the ependymal layer near the central canal, the majority of them reside in the parenchyma, resembling the distribution of SPCs observed in the mammalian spinal cord. The active SPCs in the adult knifefish spinal cord give rise to transit amplifying progenitor cells that undergo a few additional mitotic divisions before developing into Hu C/D+ neurons and S100+ glial cells. There is no evidence of long-distance migration of the newborn cells. The persistence of cell proliferation and differentiation, combined with low levels of apoptosis, leads to a continuous addition of cells to the existing tissue. Newly generated neurons have functional and behavioral relevance, as indicated by the integration of axons of new electromotor neurons into the electric organ of these weakly electric fish. This results in a gradual increase in the amplitude of the electric organ discharge during adult development. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1269-1307, 2017.
Collapse
Affiliation(s)
- Ruxandra F Sîrbulescu
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, Massachusetts
| | - Iulian Ilieş
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, Massachusetts
| | - Annette Meyer
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, Massachusetts
| | - Günther K H Zupanc
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, Massachusetts
| |
Collapse
|
8
|
Salisbury JP, Sîrbulescu RF, Moran BM, Auclair JR, Zupanc GKH, Agar JN. The central nervous system transcriptome of the weakly electric brown ghost knifefish (Apteronotus leptorhynchus): de novo assembly, annotation, and proteomics validation. BMC Genomics 2015; 16:166. [PMID: 25879418 PMCID: PMC4424500 DOI: 10.1186/s12864-015-1354-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/18/2015] [Indexed: 11/10/2022] Open
Abstract
Background The brown ghost knifefish (Apteronotus leptorhynchus) is a weakly electric teleost fish of particular interest as a versatile model system for a variety of research areas in neuroscience and biology. The comprehensive information available on the neurophysiology and neuroanatomy of this organism has enabled significant advances in such areas as the study of the neural basis of behavior, the development of adult-born neurons in the central nervous system and their involvement in the regeneration of nervous tissue, as well as brain aging and senescence. Despite substantial scientific interest in this species, no genomic resources are currently available. Results Here, we report the de novo assembly and annotation of the A. leptorhynchus transcriptome. After evaluating several trimming and transcript reconstruction strategies, de novo assembly using Trinity uncovered 42,459 unique contigs containing at least a partial protein-coding sequence based on alignment to a reference set of known Actinopterygii sequences. As many as 11,847 of these contigs contained full or near-full length protein sequences, providing broad coverage of the proteome. A variety of non-coding RNA sequences were also identified and annotated, including conserved long intergenic non-coding RNA and other long non-coding RNA observed previously to be expressed in adult zebrafish (Danio rerio) brain, as well as a variety of miRNA, snRNA, and snoRNA. Shotgun proteomics confirmed translation of open reading frames from over 2,000 transcripts, including alternative splice variants. Assignment of tandem mass spectra was greatly improved by use of the assembly compared to databases of sequences from closely related organisms. The assembly and raw reads have been deposited at DDBJ/EMBL/GenBank under the accession number GBKR00000000. Tandem mass spectrometry data is available via ProteomeXchange with identifier PXD001285. Conclusions Presented here is the first release of an annotated de novo transcriptome assembly from Apteronotus leptorhynchus, providing a broad overview of RNA expressed in central nervous system tissue. The assembly, which includes substantial coverage of a wide variety of both protein coding and non-coding transcripts, will allow the development of better tools to understand the mechanisms underlying unique characteristics of the knifefish model system, such as their tremendous regenerative capacity and negligible brain senescence. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1354-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joseph P Salisbury
- Barnett Institute, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, 412 TF, Boston, MA, 02115, USA.
| | - Ruxandra F Sîrbulescu
- Laboratory of Neurobiology, Department of Biology, Northeastern University, 360 Huntington Avenue, 134 Mugar Life Sciences, Boston, MA, 02115, USA.
| | - Benjamin M Moran
- Laboratory of Neurobiology, Department of Biology, Northeastern University, 360 Huntington Avenue, 134 Mugar Life Sciences, Boston, MA, 02115, USA.
| | - Jared R Auclair
- Barnett Institute, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, 412 TF, Boston, MA, 02115, USA.
| | - Günther K H Zupanc
- Laboratory of Neurobiology, Department of Biology, Northeastern University, 360 Huntington Avenue, 134 Mugar Life Sciences, Boston, MA, 02115, USA.
| | - Jeffrey N Agar
- Barnett Institute, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, 412 TF, Boston, MA, 02115, USA. .,Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, 412 TF, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
Unguez GA. Electric fish: new insights into conserved processes of adult tissue regeneration. J Exp Biol 2013; 216:2478-86. [PMID: 23761473 PMCID: PMC3680508 DOI: 10.1242/jeb.082396] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/13/2012] [Indexed: 02/06/2023]
Abstract
Biology is replete with examples of regeneration, the process that allows animals to replace or repair cells, tissues and organs. As on land, vertebrates in aquatic environments experience the occurrence of injury with varying frequency and to different degrees. Studies demonstrate that ray-finned fishes possess a very high capacity to regenerate different tissues and organs when they are adults. Among fishes that exhibit robust regenerative capacities are the neotropical electric fishes of South America (Teleostei: Gymnotiformes). Specifically, adult gymnotiform electric fishes can regenerate injured brain and spinal cord tissues and restore amputated body parts repeatedly. We have begun to identify some aspects of the cellular and molecular mechanisms of tail regeneration in the weakly electric fish Sternopygus macrurus (long-tailed knifefish) with a focus on regeneration of skeletal muscle and the muscle-derived electric organ. Application of in vivo microinjection techniques and generation of myogenic stem cell markers are beginning to overcome some of the challenges owing to the limitations of working with non-genetic animal models with extensive regenerative capacity. This review highlights some aspects of tail regeneration in S. macrurus and discusses the advantages of using gymnotiform electric fishes to investigate the cellular and molecular mechanisms that produce new cells during regeneration in adult vertebrates.
Collapse
Affiliation(s)
- Graciela A Unguez
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA.
| |
Collapse
|
10
|
Teleost fish as a model system to study successful regeneration of the central nervous system. Curr Top Microbiol Immunol 2012; 367:193-233. [PMID: 23239273 DOI: 10.1007/82_2012_297] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Traumatic brain injury and spinal cord injury are devastating conditions that may result in death or long-term disability. A promising strategy for the development of effective cell replacement therapies involves the study of regeneration-competent organisms. Among this group, teleost fish are distinguished by their excellent potential to regenerate nervous tissue and to regain function after injury to the central nervous system. In this chapter, we summarize our current understanding of the cellular processes that mediate this regenerative potential, and we show that several of these processes are shared with the normal development of the intact central nervous system; we describe how the spontaneous self-repair of the teleostean central nervous system leads to functional recovery, at physiological and behavioral levels; we discuss the possible function of molecular factors associated with the degenerative and regenerative processes after injury; and, finally, we speculate on evolutionary aspects of adult neurogenesis and neuronal regeneration, and on how a better understanding of these aspects could catalyze the development of therapeutic strategies to overcome the regenerative limits of the mammalian CNS.
Collapse
|
11
|
Zupanc GKH, Sîrbulescu RF. Adult neurogenesis and neuronal regeneration in the central nervous system of teleost fish. Eur J Neurosci 2011; 34:917-29. [DOI: 10.1111/j.1460-9568.2011.07854.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Spinal cord repair in regeneration-competent vertebrates: adult teleost fish as a model system. ACTA ACUST UNITED AC 2010; 67:73-93. [PMID: 21059372 DOI: 10.1016/j.brainresrev.2010.11.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/26/2010] [Accepted: 11/01/2010] [Indexed: 12/28/2022]
Abstract
Spinal cord injuries in mammals, including humans, have devastating long-term consequences. Despite substantial research, therapeutic approaches developed in mammalian model systems have had limited success to date. An alternative strategy in the search for treatment of spinal cord lesions is provided by regeneration-competent vertebrates. These organisms, which include fish, urodele amphibians, and certain reptiles, have a spinal cord very similar in structure to that of mammals, but are capable of spontaneous structural and functional recovery after spinal cord injury. The present review aims to provide an overview of the current status of our knowledge of spinal cord regeneration in one of these groups, teleost fish. The findings are discussed from a comparative perspective, with reference to other taxa of regeneration-competent vertebrates, as well as to mammals.
Collapse
|