1
|
Salles A, Neunuebel J. What do mammals have to say about the neurobiology of acoustic communication? MOLECULAR PSYCHOLOGY : BRAIN, BEHAVIOR, AND SOCIETY 2023; 2:5. [PMID: 38827277 PMCID: PMC11141777 DOI: 10.12688/molpsychol.17539.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Auditory communication is crucial across taxa, including humans, because it enables individuals to convey information about threats, food sources, mating opportunities, and other social cues necessary for survival. Comparative approaches to auditory communication will help bridge gaps across taxa and facilitate our understanding of the neural mechanisms underlying this complex task. In this work, we briefly review the field of auditory communication processing and the classical champion animal, the songbird. In addition, we discuss other mammalian species that are advancing the field. In particular, we emphasize mice and bats, highlighting the characteristics that may inform how we think about communication processing.
Collapse
Affiliation(s)
- Angeles Salles
- Biological Sciences, University of Illinois Chicago, Chicago, Illinois, USA
| | - Joshua Neunuebel
- Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
2
|
Olfactory learning and memory in the greater short-nosed fruit bat Cynopterus sphinx: the influence of conspecifics distress calls. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:667-679. [PMID: 34426872 DOI: 10.1007/s00359-021-01505-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 07/13/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
This study was designed to test whether Cynopterus sphinx distress calls influence olfactory learning and memory in conspecifics. Bats were exposed to distress calls/playbacks (PBs) of distress calls/modified calls and were then trained to novel odors. Bats exposed to distress calls/PBs made significantly fewer feeding attempts and bouts of PBs exposed to modified calls, which significantly induced the expression of c-Fos in the caudomedial neostriatum (NCM) and the amygdala compared to bats exposed to modified calls and trained controls. However, the expression of c-Fos in the hippocampus was not significantly different between the experimental groups. Further, protein phosphatase-1 (PP-1) expression was significantly lower, and the expression levels of E1A homologue of CREB-binding protein (CBP) (P300), brain-derived neurotrophic factor (BDNF) and its tyrosine kinase B1 (TrkB1) receptor were significantly higher in the hippocampus of control/bats exposed to modified calls compared to distress calls/PBs of distress call-exposed bats. Exposure to the call possibly alters the reciprocal interaction between the amygdala and the hippocampus, accordingly regulating the expression levels of PP1, P300 and BDNF and its receptor TrkB1 following training to the novel odor. Thus, the learning and memory consolidation processes were disrupted and showed fewer feeding attempts and bouts. This model may be helpful for understanding the contributions of stressful social communications to human disorders.
Collapse
|
3
|
The role of learning, acoustic similarity and phylogenetic relatedness in the recognition of distress calls in birds. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Sivasangari K, Rajan KE. Standardized Bacopa monnieri Extract Ameliorates Learning and Memory Impairments through Synaptic Protein, Neurogranin, Pro-and Mature BDNF Signaling, and HPA Axis in Prenatally Stressed Rat Offspring. Antioxidants (Basel) 2020; 9:antiox9121229. [PMID: 33291595 PMCID: PMC7761874 DOI: 10.3390/antiox9121229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 01/10/2023] Open
Abstract
Prenatal stress (PNS) influences offspring neurodevelopment, inducing anxiety-like behavior and memory deficits. We investigated whether pretreatment of Bacopa monnieri extract (CDRI-08/BME) ameliorates PNS-induced changes in signaling molecules, and changes in the behavior of Wistar rat offspring. Pregnant rats were randomly assigned into control (CON)/prenatal stress (PNS)/PNS and exposed to BME treatment (PNS + BME). Dams were exposed to stress by placing them in a social defeat cage, where they observed social defeat from gestational day (GD)-16–18. Pregnant rats in the PNS + BME group were given BME treatment from GD-10 to their offspring’s postnatal day (PND)-23, and to their offspring from PND-15 to -30. PNS led to anxiety-like behavior; impaired memory; increased the level of corticosterone (CORT), adrenocorticotropic hormone, glucocorticoid receptor, pro-apoptotic Casepase-3, and 5-HT2C receptor; decreased anti-apoptotic Bcl-2, synaptic proteins (synaptophysin, synaptotagmin-1), 5-HT1A, receptor, phosphorylation of calmodulin-dependent protein kinase II/neurogranin, N-methyl-D-aspartate receptors (2A,2B), postsynaptic density protein 95; and conversion of pro and mature brain derived neurotropic factor in their offspring. The antioxidant property of BME possibly inhibiting the PNS-induced changes in observed molecules, anxiety-like behavior, and memory deficits. The observed results suggest that pretreatment of BME could be an effective coping strategy to prevent PNS-induced behavioral impairments in their offspring.
Collapse
|
5
|
Ruiz-Monachesi MR, Labra A. Complex distress calls sound frightening: the case of the weeping lizard. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Hechavarría JC, Jerome Beetz M, García-Rosales F, Kössl M. Bats distress vocalizations carry fast amplitude modulations that could represent an acoustic correlate of roughness. Sci Rep 2020; 10:7332. [PMID: 32355293 PMCID: PMC7192923 DOI: 10.1038/s41598-020-64323-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/04/2020] [Indexed: 02/07/2023] Open
Abstract
Communication sounds are ubiquitous in the animal kingdom, where they play a role in advertising physiological states and/or socio-contextual scenarios. Human screams, for example, are typically uttered in fearful contexts and they have a distinctive feature termed as "roughness", which depicts amplitude fluctuations at rates from 30-150 Hz. In this article, we report that the occurrence of fast acoustic periodicities in harsh sounding vocalizations is not unique to humans. A roughness-like structure is also present in vocalizations emitted by bats (species Carollia perspicillata) in distressful contexts. We report that 47.7% of distress calls produced by bats carry amplitude fluctuations at rates ~1.7 kHz (>10 times faster than temporal modulations found in human screams). In bats, rough-like vocalizations entrain brain potentials and are more effective in accelerating the bats' heart rate than slow amplitude modulated sounds. Our results are consistent with a putative role of fast amplitude modulations (roughness in humans) for grabbing the listeners attention in situations in which the emitter is in distressful, potentially dangerous, contexts.
Collapse
Affiliation(s)
- Julio C Hechavarría
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt/M., Germany.
| | - M Jerome Beetz
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt/M., Germany
- Zoology II Emmy-Noether Animal Navigation Group, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Manfred Kössl
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt/M., Germany
| |
Collapse
|
7
|
Jiang T, Huang X, Wu H, Feng J. Size and quality information in acoustic signals of Rhinolophus ferrumequinum in distress situations. Physiol Behav 2017; 173:252-257. [PMID: 28238774 DOI: 10.1016/j.physbeh.2017.02.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 11/19/2022]
Abstract
Many animals produce alarm or distress calls when they encounter predators. Previous studies have shown that the distress calls of some birds can also signal the quality of the bird as prey to predators. In this case, both predator and prey may benefit from sharing information about prey's ability to escape. However, little is known about whether echolocation pulses and distress calls in bats convey size and quality information in distress situations. This study investigates the relationship between echolocation, distress calls, and the health of the callers to determine whether these signals are reliable indicators of sender's attributes and quality. The spectro-temporal structure of echolocation pulses and distress calls from captured greater horseshoe bats, Rhinolophus ferrumequinum, were found to be correlated to their body size, body condition, and T-cell-mediated immunocompetence. The peak frequency of echolocation pulses was found to be positively correlated with the bats' forearm length. However, regression analysis has shown that no significant relationship exists between distress calls and overall body size, or between distress calls and overall health. These results suggest that the peak frequency of echolocation pulses may be a reliable index signal to attract conspecifics, but distress calls of bats may not convey information about their size or overall quality as conspecifics or prey. These results indicate that distress calls in bats may only convey their emotional state, to attract conspecifics and facilitate estimation of predation risk.
Collapse
Affiliation(s)
- Tinglei Jiang
- Jilin Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Jingyue St 2555, Changchun 130024, China
| | - Xiaobin Huang
- Jilin Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Jingyue St 2555, Changchun 130024, China
| | - Hui Wu
- Jilin Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Jingyue St 2555, Changchun 130024, China; College of Animal Science and Technology, Jilin Agricultural University, Xincheng ST 2888, Changchun 130118, China
| | - Jiang Feng
- Jilin Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Jingyue St 2555, Changchun 130024, China.
| |
Collapse
|
8
|
Vocal sequences suppress spiking in the bat auditory cortex while evoking concomitant steady-state local field potentials. Sci Rep 2016; 6:39226. [PMID: 27976691 PMCID: PMC5156950 DOI: 10.1038/srep39226] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/18/2016] [Indexed: 12/27/2022] Open
Abstract
The mechanisms by which the mammalian brain copes with information from natural vocalization streams remain poorly understood. This article shows that in highly vocal animals, such as the bat species Carollia perspicillata, the spike activity of auditory cortex neurons does not track the temporal information flow enclosed in fast time-varying vocalization streams emitted by conspecifics. For example, leading syllables of so-called distress sequences (produced by bats subjected to duress) suppress cortical spiking to lagging syllables. Local fields potentials (LFPs) recorded simultaneously to cortical spiking evoked by distress sequences carry multiplexed information, with response suppression occurring in low frequency LFPs (i.e. 2–15 Hz) and steady-state LFPs occurring at frequencies that match the rate of energy fluctuations in the incoming sound streams (i.e. >50 Hz). Such steady-state LFPs could reflect underlying synaptic activity that does not necessarily lead to cortical spiking in response to natural fast time-varying vocal sequences.
Collapse
|
9
|
Lin A, Jiang T, Feng J, Kanwal JS. Acoustically diverse vocalization repertoire in the Himalayan leaf-nosed bat, a widely distributed Hipposideros species. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:3765. [PMID: 27908088 DOI: 10.1121/1.4966286] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Insectivorous bats vocalize to both communicate with conspecifics and to echolocate. The communicative vocalizations or "calls" of bats either consist of or are constructed from discrete acoustic units, termed "syllables." This study examined syllable diversity in the Himalayan leaf-nosed bat, Hipposideros armiger, a species that is widely distributed across Southeast Asia. This social species' vocalizations were hypothesized to consist of a wide variety of syllables facilitating its social interactions. To test this hypothesis, multiple acoustic parameters were measured from recorded vocalizations to map the acoustic boundaries of syllables. Spectrographic signatures were used to classify all recorded sounds into 35 distinct syllable types-18 as simple syllables and 17 as composites. K-means clustering independently provided an optimal fit of simple syllables into 18 clusters with a good correspondence to 15 spectrographically assigned syllable types. Discriminant analysis further confirmed the spectrographic classification of constant frequency syllables (0% misclassification) and revealed a low (<15%) misclassification of spectrograms for all examples of frequency modulation syllables. Multidimensional scaling of mean values of multiple parameters provided a spectrographically constrained relational mapping of syllable types within two dimensions. These data suggest that H. armiger has a complex, well organized syllabic repertoire despite simple syllables being rarely emitted in isolation.
Collapse
Affiliation(s)
- Aiqing Lin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
| | - Tinglei Jiang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
| | - Jagmeet S Kanwal
- Department of Neurology, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
10
|
Hechavarría JC, Beetz MJ, Macias S, Kössl M. Distress vocalization sequences broadcasted by bats carry redundant information. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:503-15. [DOI: 10.1007/s00359-016-1099-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 10/21/2022]
|