1
|
Gil-Guevara O, Riveros AJ. Stimulus intensity and temporal configuration interact during bimodal learning and memory in honey bees. PLoS One 2024; 19:e0309129. [PMID: 39361581 PMCID: PMC11449348 DOI: 10.1371/journal.pone.0309129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 08/07/2024] [Indexed: 10/05/2024] Open
Abstract
Multimodal integration is a core neural process with a keen relevance during ecological tasks requiring learning and memory, such as foraging. The benefits of learning multimodal signals imply solving whether the components come from a single event. This challenge presumably depends on the timing and intensity of the stimuli. Here, we used simultaneous and alternate presentations of olfactory and visual stimuli, at low and high intensities, to understand how temporal and intensity variations affect the learning of a bimodal stimulus and its components. We relied on the conditioning of the proboscis extension response (PER) to train honey bees to an appetitive learning task with bimodal stimuli precisely controlled. We trained bees to stimuli with different synchronicity and intensity levels. We found that synchronicity, order of presentation, and intensity significantly impacted the probability of exhibiting conditioned PER responses and the latency of the conditioned responses. At low intensities, synchronous bimodal inputs produced maximal multisensory enhancement, while asynchronous temporal orders led to lower performances. At high intensities, the relative advantage of the synchronous stimulation diminished, and asynchronous stimuli produced similar performances. Memory retention was higher for the olfactory component and bimodal stimuli compared to the visual component, irrespective of the training's temporal configuration. Bees retained the asynchronous bimodal configuration to a lesser extent than the synchronous one, depending on the stimulus intensity. We conclude that time (synchrony), order of presentation, and intensity have interdependent effects on bee learning and memory performance. This suggests caution when assessing the independent effects of each factor.
Collapse
Affiliation(s)
- Oswaldo Gil-Guevara
- Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Andre J. Riveros
- Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Department of Neuroscience, College of Science, University of Arizona, Tucson, AZ, United States of America
| |
Collapse
|
2
|
Sun Y, Yao L, Fu Q. Crossmodal Correspondence Mediates Crossmodal Transfer from Visual to Auditory Stimuli in Category Learning. J Intell 2024; 12:80. [PMID: 39330459 PMCID: PMC11433196 DOI: 10.3390/jintelligence12090080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
This article investigated whether crossmodal correspondence, as a sensory translation phenomenon, can mediate crossmodal transfer from visual to auditory stimuli in category learning and whether multimodal category learning can influence the crossmodal correspondence between auditory and visual stimuli. Experiment 1 showed that the category knowledge acquired from elevation stimuli affected the categorization of pitch stimuli when there were robust crossmodal correspondence effects between elevation and size, indicating that crossmodal transfer occurred between elevation and pitch stimuli. Experiments 2 and 3 revealed that the size category knowledge could not be transferred to the categorization of pitches, but interestingly, size and pitch category learning determined the direction of the pitch-size correspondence, suggesting that the pitch-size correspondence was not stable and could be determined using multimodal category learning. Experiment 4 provided further evidence that there was no crossmodal transfer between size and pitch, due to the absence of a robust pitch-size correspondence. These results demonstrated that crossmodal transfer can occur between audio-visual stimuli with crossmodal correspondence, and multisensory category learning can change the corresponding relationship between audio-visual stimuli. These findings suggest that crossmodal transfer and crossmodal correspondence share similar abstract representations, which can be mediated by semantic content such as category labels.
Collapse
Affiliation(s)
- Ying Sun
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; (Y.S.); (L.Y.)
- University of Chinese Academy of Sciences, Beijing 101408, China
- College of Humanities and Education, Inner Mongolia Medical University, Hohhot 010110, China
| | - Liansheng Yao
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; (Y.S.); (L.Y.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Qiufang Fu
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; (Y.S.); (L.Y.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
3
|
Reeves LA, Jarvis EM, Lawson DA, Rands SA. The behavioural responses of bumblebees Bombus terrestris to simulated rain. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231882. [PMID: 39076813 PMCID: PMC11285764 DOI: 10.1098/rsos.231882] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 07/31/2024]
Abstract
Bumblebee activity typically decreases during rainfall, putting them under the threat of the increased frequency of precipitation due to climate change. A novel rain machine was used within a flight arena to observe the behavioural responses of bumblebees (Bombus terrestris) to simulated rain at both a colony and individual level. During rainfall, a greater proportion of workers left the arena than entered, the opposite of which was seen during dry periods, implying that they compensate for their lack of activity when conditions improve. The proportion of workers flying and foraging decreased while resting increased in rain. This pattern reversed during dry periods, providing further evidence for compensatory activity. The increase in resting behaviour during rain is thought to evade the high energetic costs of flying while wet without unnecessarily returning to the nest. This effect was not repeated in individual time budgets, measured with lone workers, suggesting that the presence of conspecifics accelerates the decision of their behavioural response, perhaps via local enhancement. Bumblebees probably use social cues to strategize their energetic expenditure during precipitation, allowing them to compensate for the reduced foraging activity during rainfall when conditions improve.
Collapse
Affiliation(s)
- Laura A. Reeves
- School of Biological Science, University of Bristol, BristolBS8 1TQ, UK
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, ReadingRG6 6AJ, UK
| | - Ellie M. Jarvis
- School of Biological Science, University of Bristol, BristolBS8 1TQ, UK
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, BathBA2 7AY, UK
| | - David A. Lawson
- School of Biological Science, University of Bristol, BristolBS8 1TQ, UK
| | - Sean A. Rands
- School of Biological Science, University of Bristol, BristolBS8 1TQ, UK
| |
Collapse
|
4
|
Lafon G, Paoli M, Paffhausen BH, Sanchez GDB, Lihoreau M, Avarguès-Weber A, Giurfa M. Efficient visual learning by bumble bees in virtual-reality conditions: Size does not matter. INSECT SCIENCE 2023; 30:1734-1748. [PMID: 36734172 DOI: 10.1111/1744-7917.13181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Recent developments allowed establishing virtual-reality (VR) setups to study multiple aspects of visual learning in honey bees under controlled experimental conditions. Here, we adopted a VR environment to investigate the visual learning in the buff-tailed bumble bee Bombus terrestris. Based on responses to appetitive and aversive reinforcements used for conditioning, we show that bumble bees had the proper appetitive motivation to engage in the VR experiments and that they learned efficiently elemental color discriminations. In doing so, they reduced the latency to make a choice, increased the proportion of direct paths toward the virtual stimuli and walked faster toward them. Performance in a short-term retention test showed that bumble bees chose and fixated longer on the correct stimulus in the absence of reinforcement. Body size and weight, although variable across individuals, did not affect cognitive performances and had a mild impact on motor performances. Overall, we show that bumble bees are suitable experimental subjects for experiments on visual learning under VR conditions, which opens important perspectives for invasive studies on the neural and molecular bases of such learning given the robustness of these insects and the accessibility of their brain.
Collapse
Affiliation(s)
- Gregory Lafon
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Marco Paoli
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Benjamin H Paffhausen
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Gabriela de Brito Sanchez
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Mathieu Lihoreau
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Aurore Avarguès-Weber
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Martin Giurfa
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
- French Academy of Sciences for University Professors, Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
5
|
Rands SA, Whitney HM, Hempel de Ibarra N. Multimodal floral recognition by bumblebees. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101086. [PMID: 37468044 DOI: 10.1016/j.cois.2023.101086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
Flowers present information to their insect visitors in multiple simultaneous sensory modalities. Research has commonly focussed on information presented in visual and olfactory modalities. Recently, focus has shifted towards additional 'invisible' information, and whether information presented in multiple modalities enhances the interaction between flowers and their visitors. In this review, we highlight work that addresses how multimodality influences behaviour, focussing on work conducted on bumblebees (Bombus spp.), which are often used due to both their learning abilities and their ability to use multiple sensory modes to identify and differentiate between flowers. We review the evidence for bumblebees being able to use humidity, electrical potential, surface texture and temperature as additional modalities, and consider how multimodality enhances their performance. We consider mechanisms, including the cross-modal transfer of learning that occurs when bees are able to transfer patterns learnt in one modality to an additional modality without additional learning.
Collapse
Affiliation(s)
- Sean A Rands
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom.
| | - Heather M Whitney
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom
| | - Natalie Hempel de Ibarra
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, United Kingdom
| |
Collapse
|
6
|
Neuroplasticity enables bio-cultural feedback in Paleolithic stone-tool making. Sci Rep 2023; 13:2877. [PMID: 36807588 PMCID: PMC9938911 DOI: 10.1038/s41598-023-29994-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/14/2023] [Indexed: 02/20/2023] Open
Abstract
Stone-tool making is an ancient human skill thought to have played a key role in the bio-cultural co-evolutionary feedback that produced modern brains, culture, and cognition. To test the proposed evolutionary mechanisms underpinning this hypothesis we studied stone-tool making skill learning in modern participants and examined interactions between individual neurostructural differences, plastic accommodation, and culturally transmitted behavior. We found that prior experience with other culturally transmitted craft skills increased both initial stone tool-making performance and subsequent neuroplastic training effects in a frontoparietal white matter pathway associated with action control. These effects were mediated by the effect of experience on pre-training variation in a frontotemporal pathway supporting action semantic representation. Our results show that the acquisition of one technical skill can produce structural brain changes conducive to the discovery and acquisition of additional skills, providing empirical evidence for bio-cultural feedback loops long hypothesized to link learning and adaptive change.
Collapse
|
7
|
Abstract
There is no agreement on whether any invertebrates are conscious and no agreement on a methodology that could settle the issue. How can the debate move forward? I distinguish three broad types of approach: theory-heavy, theory-neutral and theory-light. Theory-heavy and theory-neutral approaches face serious problems, motivating a middle path: the theory-light approach. At the core of the theory-light approach is a minimal commitment about the relation between phenomenal consciousness and cognition that is compatible with many specific theories of consciousness: the hypothesis that phenomenally conscious perception of a stimulus facilitates, relative to unconscious perception, a cluster of cognitive abilities in relation to that stimulus. This "facilitation hypothesis" can productively guide inquiry into invertebrate consciousness. What is needed? At this stage, not more theory, and not more undirected data gathering. What is needed is a systematic search for consciousness-linked cognitive abilities, their relationships to each other, and their sensitivity to masking.
Collapse
|
8
|
Harrap MJM, Hempel de Ibarra N, Knowles HD, Whitney HM, Rands SA. Bumblebees can detect floral humidity. J Exp Biol 2021; 224:jeb240861. [PMID: 34161560 PMCID: PMC8246344 DOI: 10.1242/jeb.240861] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/10/2021] [Indexed: 11/20/2022]
Abstract
Floral humidity, a region of elevated humidity in the headspace of the flower, occurs in many plant species and may add to their multimodal floral displays. So far, the ability to detect and respond to floral humidity cues has been only established for hawkmoths when they locate and extract nectar while hovering in front of some moth-pollinated flowers. To test whether floral humidity can be used by other more widespread generalist pollinators, we designed artificial flowers that presented biologically relevant levels of humidity similar to those shown by flowering plants. Bumblebees showed a spontaneous preference for flowers that produced higher floral humidity. Furthermore, learning experiments showed that bumblebees are able to use differences in floral humidity to distinguish between rewarding and non-rewarding flowers. Our results indicate that bumblebees are sensitive to different levels of floral humidity. In this way floral humidity can add to the information provided by flowers and could impact pollinator behaviour more significantly than previously thought.
Collapse
Affiliation(s)
- Michael J. M. Harrap
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
- Centre for Research in Animal Behaviour, School of Psychology, University of Exeter, Exeter, EX4 4QG, UK
| | - Natalie Hempel de Ibarra
- Centre for Research in Animal Behaviour, School of Psychology, University of Exeter, Exeter, EX4 4QG, UK
| | - Henry D. Knowles
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
- Natural Resources Wales, Maes Newydd, Llandarcy, Neath Port Talbot, SA10 6JQ, UK
| | - Heather M. Whitney
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Sean A. Rands
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| |
Collapse
|
9
|
Harrap MJM, Rands SA. Floral infrared emissivity estimates using simple tools. PLANT METHODS 2021; 17:23. [PMID: 33632239 PMCID: PMC7905901 DOI: 10.1186/s13007-021-00721-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/09/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Floral temperature has important consequences for plant biology, and accurate temperature measurements are therefore important to plant research. Thermography, also referred to as thermal imaging, is beginning to be used more frequently to measure and visualize floral temperature. Accurate thermographic measurements require information about the object's emissivity (its capacity to emit thermal radiation with temperature), to obtain accurate temperature readings. However, there are currently no published estimates of floral emissivity available. This is most likely to be due to flowers being unsuitable for the most common protocols for emissivity estimation. Instead, researchers have used emissivity estimates collected on vegetative plant tissue when conducting floral thermography, assuming these tissues to have the same emissivity. As floral tissue differs from vegetative tissue, it is unclear how appropriate and accurate these vegetative tissue emissivity estimates are when they are applied to floral tissue. RESULTS We collect floral emissivity estimates using two protocols, using a thermocouple and a water bath, providing a guide for making estimates of floral emissivity that can be carried out without needing specialist equipment (apart from the thermal camera). Both protocols involve measuring the thermal infrared radiation from flowers of a known temperature, providing the required information for emissivity estimation. Floral temperature is known within these protocols using either a thermocouple, or by heating the flowers within a water bath. Emissivity estimates indicate floral emissivity is high, near 1, at least across petals. While the two protocols generally indicated the same trends, the water bath protocol gave more realistic and less variable estimates. While some variation with flower species and location on the flower is observed in emissivity estimates, these are generally small or can be explained as resulting from artefacts of these protocols, relating to thermocouple or water surface contact quality. CONCLUSIONS Floral emissivity appears to be high, and seems quite consistent across most flowers and between species, at least across petals. A value near 1, for example 0.98, is recommended for accurate thermographic measurements of floral temperature. This suggests that the similarly high values based on vegetation emissivity estimates used by previous researchers were appropriate.
Collapse
Affiliation(s)
- Michael J M Harrap
- University of Bristol, Life Sciences Building, Tyndall Ave, Bristol, BS8 1TQ, UK.
| | - Sean A Rands
- University of Bristol, Life Sciences Building, Tyndall Ave, Bristol, BS8 1TQ, UK
| |
Collapse
|
10
|
Rands SA, Harrap MJM. Phylogenetic signal in floral temperature patterns. BMC Res Notes 2021; 14:39. [PMID: 33509265 PMCID: PMC7844958 DOI: 10.1186/s13104-021-05455-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/16/2021] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVES Floral structures may be warmer than their environment, and can show thermal patterning, where individual floral structures show different temperatures across their surface. Pollinators can differentiate between artificial flowers that mimic both naturally warmed and thermally patterned ones, but it has yet to be demonstrated that these patterns are biologically meaningful. To explore the relationship between pollinators and temperature patterning, we need to know whether there is diversity in patterning, and that these patterns are not simply a by-product of floral architecture constrained by ancestry. We analysed a dataset of 97 species to explore whether intrafloral temperature differences were correlated within clades (phylogenetic signal), or whether the variation seen was diverse enough to suggest that floral temperature patterns are influenced by the abiotic or pollinator-related niches to which plant species are adapted. RESULTS Some phylogenetic signal was observed, with both the Asteraceae and species of Pelargonium being more similar than expected by chance, but with other species surveyed not showing signal. The Asteraceae tend to have large temperature differences across the floral surface, which may be due to floral architecture constraints within the family. Other families show no correlation, suggesting that patterning is influenced by pollinators and the environment.
Collapse
Affiliation(s)
- Sean A Rands
- School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK.
| | - Michael J M Harrap
- School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
11
|
Harrap MJM, Hempel de Ibarra N, Knowles HD, Whitney HM, Rands SA. Floral Humidity in Flowering Plants: A Preliminary Survey. FRONTIERS IN PLANT SCIENCE 2020; 11:249. [PMID: 32211004 PMCID: PMC7068853 DOI: 10.3389/fpls.2020.00249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 02/18/2020] [Indexed: 05/18/2023]
Abstract
The area of space immediately around the floral display is likely to have an increased level of humidity relative to the environment around it, due to both nectar evaporation and floral transpiration. This increased level of floral humidity could act as a close-distance cue for pollinators or influence thermoregulation, pollen viability and infection of flowers by fungal pathogens. However, with a few exceptions, not much is known about the patterns of floral humidity in flowering plants or the physiological traits that result in its generation. We conducted a survey of 42 radially symmetrical flower species (representing 21 widely spread families) under controlled conditions. Humidity was measured using a novel robot arm technique that allowed us to take measurements along transects across and above the floral surface. The intensity of floral humidity was found to vary between different flower species. Thirty of the species we surveyed presented levels of humidity exceeding a control comparable to background humidity levels, while twelve species did not. Patterns of floral humidity also differed across species. Nevertheless, floral humidity tended to be highest near the center of the flower, and decreased logarithmically with increasing distance above the flower, normally declining to background levels within 30 mm. It remains unclear how physiological traits influence the diversity of floral humidity discovered in this survey, but floral shape seems to also influence floral humidity. These results demonstrate that floral humidity may occur in a wide range of species and that there might be greater level of diversity and complexity in this floral trait than previously known.
Collapse
Affiliation(s)
| | - Natalie Hempel de Ibarra
- Centre for Research in Animal Behaviour, School of Psychology, University of Exeter, Exeter, United Kingdom
| | - Henry D. Knowles
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Heather M. Whitney
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Sean A. Rands
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
12
|
Harrap MJM, Hempel de Ibarra N, Whitney HM, Rands SA. Floral temperature patterns can function as floral guides. ARTHROPOD-PLANT INTERACTIONS 2020; 14:193-206. [PMID: 32215113 PMCID: PMC7073333 DOI: 10.1007/s11829-020-09742-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/03/2020] [Indexed: 05/25/2023]
Abstract
Floral guides are signal patterns that lead pollinators to floral rewards after they have located the flower, and increase foraging efficiency and pollen transfer. Patterns of several floral signalling modalities, particularly colour patterns, have been identified as being able to function as floral guides. Floral temperature frequently shows patterns that can be used by bumblebees for locating and recognising the flower, but whether these temperature patterns can function as a floral guide has not been explored. Furthermore, how combined patterns (using multiple signalling modalities) affect floral guide function has only been investigated in a few modality combinations. We assessed how artificial flowers induce behaviours in bumblebees when rewards are indicated by unimodal temperature patterns, unimodal colour patterns or multimodal combinations of these. Bees visiting flowers with unimodal temperature patterns showed an increased probability of finding rewards and increased learning of reward location, compared to bees visiting flowers without patterns. However, flowers with contrasting unimodal colour patterns showed further guide-related behavioural changes in addition to these, such as reduced reward search times and attraction to the rewarding feeder without learning. This shows that temperature patterns alone can function as a floral guide, but with reduced efficiency. When temperature patterns were added to colour patterns, bees showed similar improvements in learning reward location and reducing their number of failed visits in addition to the responses seen to colour patterns. This demonstrates that temperature pattern guides can have beneficial effects on flower handling both when alone or alongside colour patterns.
Collapse
Affiliation(s)
- Michael J. M. Harrap
- School of Biological Sciences, University of Bristol, 24 Tyndall Ave, Bristol, BS8 1TQ UK
| | | | - Heather M. Whitney
- School of Biological Sciences, University of Bristol, 24 Tyndall Ave, Bristol, BS8 1TQ UK
| | - Sean A. Rands
- School of Biological Sciences, University of Bristol, 24 Tyndall Ave, Bristol, BS8 1TQ UK
| |
Collapse
|