1
|
Wagner H, Egelhaaf M, Carr C. Model organisms and systems in neuroethology: one hundred years of history and a look into the future. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:227-242. [PMID: 38227005 PMCID: PMC10995084 DOI: 10.1007/s00359-023-01685-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/17/2024]
Abstract
The Journal of Comparative Physiology lived up to its name in the last 100 years by including more than 1500 different taxa in almost 10,000 publications. Seventeen phyla of the animal kingdom were represented. The honeybee (Apis mellifera) is the taxon with most publications, followed by locust (Locusta migratoria), crayfishes (Cambarus spp.), and fruitfly (Drosophila melanogaster). The representation of species in this journal in the past, thus, differs much from the 13 model systems as named by the National Institutes of Health (USA). We mention major accomplishments of research on species with specific adaptations, specialist animals, for example, the quantitative description of the processes underlying the axon potential in squid (Loligo forbesii) and the isolation of the first receptor channel in the electric eel (Electrophorus electricus) and electric ray (Torpedo spp.). Future neuroethological work should make the recent genetic and technological developments available for specialist animals. There are many research questions left that may be answered with high yield in specialists and some questions that can only be answered in specialists. Moreover, the adaptations of animals that occupy specific ecological niches often lend themselves to biomimetic applications. We go into some depth in explaining our thoughts in the research of motion vision in insects, sound localization in barn owls, and electroreception in weakly electric fish.
Collapse
Affiliation(s)
- Hermann Wagner
- Institute of Biology II, RWTH Aachen University, 52074, Aachen, Germany.
| | - Martin Egelhaaf
- Department of Neurobiology, Bielefeld University, Bielefeld, Germany
| | - Catherine Carr
- Department of Biology, University of Maryland at College Park, College Park, USA
| |
Collapse
|
2
|
Ogawa Y, Nicholas S, Thyselius M, Leibbrandt R, Nowotny T, Knight JC, Nordström K. Descending neurons of the hoverfly respond to pursuits of artificial targets. Curr Biol 2023; 33:4392-4404.e5. [PMID: 37776861 DOI: 10.1016/j.cub.2023.08.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/11/2023] [Accepted: 08/31/2023] [Indexed: 10/02/2023]
Abstract
Many animals use motion vision information to control dynamic behaviors. Predatory animals, for example, show an exquisite ability to detect rapidly moving prey, followed by pursuit and capture. Such target detection is not only used by predators but is also important in conspecific interactions, such as for male hoverflies defending their territories against conspecific intruders. Visual target detection is believed to be subserved by specialized target-tuned neurons found in a range of species, including vertebrates and arthropods. However, how these target-tuned neurons respond to actual pursuit trajectories is currently not well understood. To redress this, we recorded extracellularly from target-selective descending neurons (TSDNs) in male Eristalis tenax hoverflies. We show that they have dorso-frontal receptive fields with a preferred direction up and away from the visual midline. We reconstructed visual flow fields as experienced during pursuits of artificial targets (black beads). We recorded TSDN responses to six reconstructed pursuits and found that each neuron responded consistently at remarkably specific time points but that these time points differed between neurons. We found that the observed spike probability was correlated with the spike probability predicted from each neuron's receptive field and size tuning. Interestingly, however, the overall response rate was low, with individual neurons responding to only a small part of each reconstructed pursuit. In contrast, the TSDN population responded to substantially larger proportions of the pursuits but with lower probability. This large variation between neurons could be useful if different neurons control different parts of the behavioral output.
Collapse
Affiliation(s)
- Yuri Ogawa
- Flinders Health and Medical Research Institute, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - Sarah Nicholas
- Flinders Health and Medical Research Institute, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - Malin Thyselius
- Department of Medical Cell Biology, Uppsala University, 75123 Uppsala, Sweden; School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro 701 82, Sweden
| | - Richard Leibbrandt
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - Thomas Nowotny
- School of Engineering and Informatics, University of Sussex, Brighton BN1 9QJ, UK
| | - James C Knight
- School of Engineering and Informatics, University of Sussex, Brighton BN1 9QJ, UK
| | - Karin Nordström
- Flinders Health and Medical Research Institute, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia; Department of Medical Cell Biology, Uppsala University, 75123 Uppsala, Sweden.
| |
Collapse
|
3
|
Nicholas S, Ogawa Y, Nordström K. Dual Receptive Fields Underlying Target and Wide-Field Motion Sensitivity in Looming-Sensitive Descending Neurons. eNeuro 2023; 10:ENEURO.0188-23.2023. [PMID: 37429705 PMCID: PMC10368147 DOI: 10.1523/eneuro.0188-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 07/12/2023] Open
Abstract
Responding rapidly to visual stimuli is fundamental for many animals. For example, predatory birds and insects alike have amazing target detection abilities, with incredibly short neural and behavioral delays, enabling efficient prey capture. Similarly, looming objects need to be rapidly avoided to ensure immediate survival, as these could represent approaching predators. Male Eristalis tenax hoverflies are nonpredatory, highly territorial insects that perform high-speed pursuits of conspecifics and other territorial intruders. During the initial stages of the pursuit, the retinal projection of the target is very small, but this grows to a larger object before physical interaction. Supporting such behaviors, E. tenax and other insects have both target-tuned and loom-sensitive neurons in the optic lobes and the descending pathways. We here show that these visual stimuli are not necessarily encoded in parallel. Indeed, we describe a class of descending neurons that respond to small targets, to looming and to wide-field stimuli. We show that these descending neurons have two distinct receptive fields where the dorsal receptive field is sensitive to the motion of small targets and the ventral receptive field responds to larger objects or wide-field stimuli. Our data suggest that the two receptive fields have different presynaptic input, where the inputs are not linearly summed. This novel and unique arrangement could support different behaviors, including obstacle avoidance, flower landing, and target pursuit or capture.
Collapse
Affiliation(s)
- Sarah Nicholas
- Flinders Health and Medical Research Institute, Flinders University, Adelaide 5001, Australia
| | - Yuri Ogawa
- Flinders Health and Medical Research Institute, Flinders University, Adelaide 5001, Australia
| | - Karin Nordström
- Flinders Health and Medical Research Institute, Flinders University, Adelaide 5001, Australia
- Department of Medical Cell Biology, Uppsala University, 75123 Uppsala, Sweden
| |
Collapse
|
4
|
Impact of walking speed and motion adaptation on optokinetic nystagmus-like head movements in the blowfly Calliphora. Sci Rep 2022; 12:11540. [PMID: 35799051 PMCID: PMC9262929 DOI: 10.1038/s41598-022-15740-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/25/2022] [Indexed: 11/30/2022] Open
Abstract
The optokinetic nystagmus is a gaze-stabilizing mechanism reducing motion blur by rapid eye rotations against the direction of visual motion, followed by slower syndirectional eye movements minimizing retinal slip speed. Flies control their gaze through head turns controlled by neck motor neurons receiving input directly, or via descending neurons, from well-characterized directional-selective interneurons sensitive to visual wide-field motion. Locomotion increases the gain and speed sensitivity of these interneurons, while visual motion adaptation in walking animals has the opposite effects. To find out whether flies perform an optokinetic nystagmus, and how it may be affected by locomotion and visual motion adaptation, we recorded head movements of blowflies on a trackball stimulated by progressive and rotational visual motion. Flies flexibly responded to rotational stimuli with optokinetic nystagmus-like head movements, independent of their locomotor state. The temporal frequency tuning of these movements, though matching that of the upstream directional-selective interneurons, was only mildly modulated by walking speed or visual motion adaptation. Our results suggest flies flexibly control their gaze to compensate for rotational wide-field motion by a mechanism similar to an optokinetic nystagmus. Surprisingly, the mechanism is less state-dependent than the response properties of directional-selective interneurons providing input to the neck motor system.
Collapse
|
5
|
Zupanc GKH, Arikawa K, Helfrich-Förster C, Homberg U, Narins PM, Rössler W, Simmons AM, Warrant EJ. It's all about seeing and hearing: the Editors' and Readers' Choice Awards 2022. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:351-353. [PMID: 35107606 DOI: 10.1007/s00359-022-01541-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 10/19/2022]
Abstract
This year marks the inauguration of the annual Editors' Choice Award and the Readers' Choice Award, each presented for outstanding original papers and review articles published in the Journal of Comparative Physiology A. The winners of the 2022 Editors' Choice Award were determined by vote of the Editorial Board for the most highly recommended papers published in Volume 207 in 2021. They are 'Visual discrimination and resolution in freshwater stingrays (Potamotrygon motoro)' by Daniel et al. (J Comp Physiol A 207, 43-58, 2021) in the Original Paper category; and 'Neurophysiology goes wild: from exploring sensory coding in sound proof rooms to natural environments' by Römer (J Comp Physiol A 207, 303-319, 2021) in the Review Article category. The 2022 Readers' Choice Award was based on access number of articles published in Volume 206 in 2020, to ensure at least 12-month online presence. It is given to Nicholas et al. for their original paper titled 'Visual motion sensitivity in descending neurons in the hoverfly' (J Comp Physiol A 206, 149-163, 2020); and to Schnaitmann et al. for their review article entitled 'Color vision in insects: insights from Drosophila' (J Comp Physiol A 206, 183-198, 2020).
Collapse
Affiliation(s)
| | - Kentaro Arikawa
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, 240-0115, Kanagawa, Japan
| | | | - Uwe Homberg
- Department of Biology, Philipps-University of Marburg, 35032, Marburg, Germany
| | - Peter M Narins
- Departments of Integrative Biology & Physiology, and Ecology & Evolutionary Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biocentre, University of Würzburg, 97074, Würzburg, Germany
| | - Andrea Megela Simmons
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, RI, 02912, USA
| | - Eric J Warrant
- Department of Biology, University of Lund, 22362, Lund, Sweden
| |
Collapse
|
6
|
Leibbrandt R, Nicholas S, Nordström K. The impulse response of optic flow-sensitive descending neurons to roll m-sequences. J Exp Biol 2021; 224:273641. [PMID: 34870706 PMCID: PMC8714074 DOI: 10.1242/jeb.242833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/05/2021] [Indexed: 11/23/2022]
Abstract
When animals move through the world, their own movements generate widefield optic flow across their eyes. In insects, such widefield motion is encoded by optic lobe neurons. These lobula plate tangential cells (LPTCs) synapse with optic flow-sensitive descending neurons, which in turn project to areas that control neck, wing and leg movements. As the descending neurons play a role in sensorimotor transformation, it is important to understand their spatio-temporal response properties. Recent work shows that a relatively fast and efficient way to quantify such response properties is to use m-sequences or other white noise techniques. Therefore, here we used m-sequences to quantify the impulse responses of optic flow-sensitive descending neurons in male Eristalis tenax hoverflies. We focused on roll impulse responses as hoverflies perform exquisite head roll stabilizing reflexes, and the descending neurons respond particularly well to roll. We found that the roll impulse responses were fast, peaking after 16.5–18.0 ms. This is similar to the impulse response time to peak (18.3 ms) to widefield horizontal motion recorded in hoverfly LPTCs. We found that the roll impulse response amplitude scaled with the size of the stimulus impulse, and that its shape could be affected by the addition of constant velocity roll or lift. For example, the roll impulse response became faster and stronger with the addition of excitatory stimuli, and vice versa. We also found that the roll impulse response had a long return to baseline, which was significantly and substantially reduced by the addition of either roll or lift. Summary: The impulse response of hoverfly optic flow-sensitive descending neurons to roll m-sequences reaches its time to peak within 20 ms and slowly returns to baseline over the next 100 ms.
Collapse
Affiliation(s)
- Richard Leibbrandt
- Neuroscience, Flinders Health and Medical Research Institute, Flinders University, GPO Box 2100, 5001 Adelaide, SA, Australia
| | - Sarah Nicholas
- Neuroscience, Flinders Health and Medical Research Institute, Flinders University, GPO Box 2100, 5001 Adelaide, SA, Australia
| | - Karin Nordström
- Neuroscience, Flinders Health and Medical Research Institute, Flinders University, GPO Box 2100, 5001 Adelaide, SA, Australia.,Department of Neuroscience, Uppsala University, Box 593, 751 24 Uppsala, Sweden
| |
Collapse
|
7
|
Facilitation of neural responses to targets moving against optic flow. Proc Natl Acad Sci U S A 2021; 118:2024966118. [PMID: 34531320 PMCID: PMC8463850 DOI: 10.1073/pnas.2024966118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 01/08/2023] Open
Abstract
Target detection in visual clutter is a difficult computational task that insects, with their poor spatial resolution compound eyes and small brains, do successfully and with extremely short behavioral delays. We here show that the responses of target selective descending neurons are attenuated by background motion in the same direction as target motion but facilitated by background motion in the opposite direction. This finding is important for understanding how target pursuit can occur in tandem with gaze stabilization. Indeed, the neural facilitation would come into effect if the hoverfly is subjected to background motion in one direction but the target it is pursuing moves in the opposite direction and could therefore be used to override gaze stabilizing corrective turns. For the human observer, it can be difficult to follow the motion of small objects, especially when they move against background clutter. In contrast, insects efficiently do this, as evidenced by their ability to capture prey, pursue conspecifics, or defend territories, even in highly textured surrounds. We here recorded from target selective descending neurons (TSDNs), which likely subserve these impressive behaviors. To simulate the type of optic flow that would be generated by the pursuer’s own movements through the world, we used the motion of a perspective corrected sparse dot field. We show that hoverfly TSDN responses to target motion are suppressed when such optic flow moves syn-directional to the target. Indeed, neural responses are strongly suppressed when targets move over either translational sideslip or rotational yaw. More strikingly, we show that TSDNs are facilitated by optic flow moving counterdirectional to the target, if the target moves horizontally. Furthermore, we show that a small, frontal spatial window of optic flow is enough to fully facilitate or suppress TSDN responses to target motion. We argue that such TSDN response facilitation could be beneficial in modulating corrective turns during target pursuit.
Collapse
|
8
|
Persistent Firing and Adaptation in Optic-Flow-Sensitive Descending Neurons. Curr Biol 2020; 30:2739-2748.e2. [PMID: 32470368 DOI: 10.1016/j.cub.2020.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/22/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023]
Abstract
A general principle of sensory systems is that they adapt to prolonged stimulation by reducing their response over time. Indeed, in many visual systems, including higher-order motion sensitive neurons in the fly optic lobes and the mammalian visual cortex, a reduction in neural activity following prolonged stimulation occurs. In contrast to this phenomenon, the response of the motor system controlling flight maneuvers persists following the offset of visual motion. It has been suggested that this gap is caused by a lingering calcium signal in the output synapses of fly optic lobe neurons. However, whether this directly affects the responses of the post-synaptic descending neurons, leading to the observed behavioral output, is not known. We use extracellular electrophysiology to record from optic-flow-sensitive descending neurons in response to prolonged wide-field stimulation. We find that, as opposed to most sensory and visual neurons, and in particular to the motion vision sensitive neurons in the brains of both flies and mammals, the descending neurons show little adaption during stimulus motion. In addition, we find that the optic-flow-sensitive descending neurons display persistent firing, or an after-effect, following the cessation of visual stimulation, consistent with the lingering calcium signal hypothesis. However, if the difference in after-effect is compensated for, subsequent presentation of stimuli in a test-adapt-test paradigm reveals adaptation to visual motion. Our results thus show a combination of adaptation and persistent firing in the neurons that project to the thoracic ganglia and thereby control behavioral output.
Collapse
|
9
|
Visual circuits in arthropod brains. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:105-107. [PMID: 32036403 PMCID: PMC7069899 DOI: 10.1007/s00359-020-01407-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 11/21/2022]
|