1
|
Matsuo Y, Matsuo R. A photosensory structure in the brain of the systellomatophoran gastropod Peronia verruculata. J Exp Biol 2025; 228:jeb249890. [PMID: 39935392 DOI: 10.1242/jeb.249890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/08/2025] [Indexed: 02/13/2025]
Abstract
Most animals detect ambient light using their cephalic eyes as photosensory organs. However, some animals have different types of photosensors in other parts of their body. The marine gastropod Peronia verruculata possesses several types of extraocular photosensors such as dorsal eyes, dermal photoreceptors and brain photosensory neurons. In the present study, we identified a pair of follicle-shaped structures expressing Gq-rhodopsin in the lateral lobe of the brain in P. verruculata. This structure had numerous microvilli and a few cilia in its interior, which is reminiscent of the follicle gland in the lateral lobe of the brain of the pond snail Lymnaea. Retinal binding protein and retinochrome were localized to the cell bodies of the neurons that constitute this structure. Photoresponses were recorded in an isolated brain by extracellular recording, and the spike frequency increased in a light intensity-dependent manner. We thus named this structure the follicle photoreceptive organ (FPO). We also found that the FPO was positioned close to the optic nerve projecting from the stalk eye and had nerve connections with the optic nerve. We discuss our findings in the context of the epistellar body of octopus and the parolfactory vesicles of squid, as well as the follicle gland of Lymnaea.
Collapse
Affiliation(s)
- Yuko Matsuo
- Department of Environmental Sciences, International College of Arts and Sciences, Fukuoka Women's University, 1-1-1, Kasumigaoka, Higashi-ku, Fukuoka, 813-8529, Japan
| | - Ryota Matsuo
- Department of Environmental Sciences, International College of Arts and Sciences, Fukuoka Women's University, 1-1-1, Kasumigaoka, Higashi-ku, Fukuoka, 813-8529, Japan
| |
Collapse
|
2
|
Matsuo R, Kwon H, Takishita K, Nishi T, Matsuo Y. Expression of proteins supporting visual function in heterobranch gastropods. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2025; 211:19-34. [PMID: 39120725 DOI: 10.1007/s00359-024-01712-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/15/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
To sense light, animals often utilize mechanisms that rely on visual pigments composed of opsin and retinal. The photon-induced isomerization of 11-cis-retinal to the all-trans configuration triggers phototransduction cascades, resulting in a change in the membrane potential of the photoreceptor. In mollusks, the most abundant opsin in the eye is Gq-coupled rhodopsin (Gq-rhodopsin). The Gq-rhodopsin-based visual pigment is bistable, with the regeneration of 11-cis-retinal occurring in a light-dependent manner without leaving the opsin moiety. 11-cis-retinal is also regenerated by the action of retinochrome in the cell bodies. Retinal binding protein (RALBP) mediates retinal transport between Gq-rhodopsin and retinochrome in the cytoplasm. However, recent studies have identified additional bistable opsins in mollusks, including Opn5 and xenopsin. It is unknown whether these bistable opsins require RALBP and retinochrome for the continuous regeneration of 11-cis-retinal. In the present study, we examined the expression of RALBP and retinochrome in the photoreceptors expressing Opn5 or Xenopsin in the heterobranch gastropods Limax and Peronia. Our findings revealed that retinochrome, but not RALBP, was present in some of the Opn5A-positive brain photosensory neurons of Limax. The ciliary cells in the dorsal eye of Peronia, which express Xenopsin2, lacked both retinochrome and RALBP. Therefore, bistable opsins do not necessarily depend on the RALBP-retinochrome system in a cell. We also examined the expression of other proteins that support visual function, such as β-arrestin, Gq, and Go, in all types of photoreceptors in these animals, and uncovered differences in the molecular composition among the photoreceptors.
Collapse
Affiliation(s)
- Ryota Matsuo
- Department of Environmental Sciences, International College of Arts and Sciences, Laboratory of Neurobiology, Fukuoka Women's University, 1-1-1 Kasumigaoka, Higashi-Ku, Fukuoka, 813-8529, Japan.
| | - Haeri Kwon
- Department of Environmental Sciences, International College of Arts and Sciences, Laboratory of Neurobiology, Fukuoka Women's University, 1-1-1 Kasumigaoka, Higashi-Ku, Fukuoka, 813-8529, Japan
| | - Kiyotaka Takishita
- Department of Environmental Sciences, International College of Arts and Sciences, Laboratory of Neurobiology, Fukuoka Women's University, 1-1-1 Kasumigaoka, Higashi-Ku, Fukuoka, 813-8529, Japan
| | - Takako Nishi
- Institute of Natural Sciences, Senshu University, Kawasaki, Japan
| | - Yuko Matsuo
- Department of Environmental Sciences, International College of Arts and Sciences, Laboratory of Neurobiology, Fukuoka Women's University, 1-1-1 Kasumigaoka, Higashi-Ku, Fukuoka, 813-8529, Japan
| |
Collapse
|
3
|
Sato K, Ohuchi H. Molecular Property, Manipulation, and Potential Use of Opn5 and Its Homologs. J Mol Biol 2024; 436:168319. [PMID: 37865286 DOI: 10.1016/j.jmb.2023.168319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/08/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
Animal opsin is a G-protein coupled receptor (GPCR) and binds retinal as a chromophore to form a photopigment. The Opsin 5 (Opn5) group within the animal opsin family comprises a diverse array of related proteins, such as Opn5m, a protein conserved across all vertebrate lineages including mammals, and other members like Opn5L1 and Opn5L2 found in non-mammalian vertebrate genomes, and Opn6 found in non-therian vertebrate genomes, along with Opn5 homologs present in invertebrates. Although these proteins collectively constitute a single clade within the molecular phylogenetic tree of animal opsins, they exhibit markedly distinct molecular characteristics in areas such as retinal binding properties, photoreaction, and G-protein coupling specificity. Based on their molecular features, they are believed to play a significant role in physiological functions. However, our understanding of their precise physiological functions and molecular characteristics is still developing and only partially realized. Furthermore, their unique molecular characteristics of Opn5-related proteins suggest a high potential for their use as optogenetic tools through more specialized manipulations. This review intends to encapsulate our current understanding of Opn5, discuss potential manipulations of its molecular attributes, and delve into its prospective utility in the burgeoning field of animal opsin optogenetics.
Collapse
Affiliation(s)
- Keita Sato
- Department of Cytology and Histology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama City, Okayama 700-8558, Japan.
| | - Hideyo Ohuchi
- Department of Cytology and Histology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama City, Okayama 700-8558, Japan
| |
Collapse
|
4
|
Matsuo R, Kotoh S, Takishita K, Sakamoto K, Uebi T, Ozaki M, Matsuo Y, Nishi T. Opsins in the Cephalic and Extracephalic Photoreceptors in the Marine Gastropod Onchidium verruculatum. THE BIOLOGICAL BULLETIN 2022; 243:339-352. [PMID: 36716483 DOI: 10.1086/723013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
AbstractThe marine gastropod Onchidium verruculatum has a pair of ocular photoreceptors, the stalk eyes, on the tip of its stalk near the head, as well as several extracephalic photosensory organs. The retinas of the stalk eye consist of two morphologically distinct visual cells, namely, the type I cells equipped with well-developed microvilli and the type II cells with less developed microvilli. The extracephalic photosensors comprise the dorsal eye, dermal photoreceptor, and brain photosensitive neurons. The characteristics of these cephalic and extracephalic photosensory organs have been studied from morphological and electrophysiological perspectives. However, little is known about the visual pigment molecules responsible for light detection in these organs. In the present study, we searched for opsin molecules that are expressed in the neural tissues of Onchidium and identified six putative signaling-competent opsin species, including Xenopsin1, Xenopsin2, Gq-coupled rhodopsin1, Gq-coupled rhodopsin2, Opsin-5B, and Gq-coupled rhodopsin-like. Immunohistochemical staining of four of the six opsins revealed that Xenopsin1, Gq-coupled rhodopsin1, and Gq-coupled rhodopsin2 are expressed in the rhabdomere of the stalk eye and in the dermal photoreceptor. Xenopsin2 was expressed in the type II photoreceptors of the stalk eye and in the ciliary photoreceptors of the dorsal eye. These immunohistochemical data were consistent with the results of the expression analysis, revealed by quantitative reverse transcription polymerase chain reaction. This study clarified the identities of opsins expressed in the extracephalic photosensory organs of Onchidium and the distinct molecular compositions among the photoreceptors.
Collapse
|
5
|
Matsuo R, Matsuo Y. Regional expression of neuropeptides in the retina of the terrestrial slug Limax valentianus (Gastropoda, Stylommatophora, Limacidae). J Comp Neurol 2022; 530:1551-1568. [PMID: 34979594 DOI: 10.1002/cne.25296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 11/12/2022]
Abstract
Gastropods use lens-bearing eyes to detect ambient light. The retina contains photoreceptors that directly project to the brain. Here we identified the neurotransmitters that the retinal cells use for projection to the brain in the terrestrial slug Limax. We identified 12 genes encoding neuropeptides as well as a novel vesicular glutamate transporter, a marker of glutamatergic neuron, expressed in the retinal cells. Spatial expression profiles of the neuropeptide genes were determined by in situ hybridization. WWamide/MIP1/Pedal peptide2 were co-expressed in the neurons of the accessory retina. In the main retina, prohormone-4 was expressed in the ventro-lateral region. Clionin was expressed in the ventro-medial region. Pedal peptide was expressed in the anterior region of the main retina and in the accessory retina. Enterin was expressed in many neurons, including the accessory retina, but not in the dorsal region. FxRIamide1 and 2 were co-expressed in the posterior region. Prohormone-4 variant was uniformly expressed in many neurons but scarcely in the accessory retina. MIP2 was widely expressed throughout the dorso-ventral axis in the posterio-lateral region of the main retina. Myo1 was expressed in many neurons of the main retina but predominantly in the dorsal region. These expression patterns were confirmed by immunohistochemistry with specific antibodies against the neuropeptides. Projections of these peptidergic retinal neurons were confirmed by immunostaining of the optic nerve. Our present study revealed regional differentiation of the retina with respect to the neurotransmitters that the retinal cells use. neuropeptides, retina, neurotransmitter, gastropod, Lehmannia This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ryota Matsuo
- Department of Environmental Sciences, International College of Arts and Sciences, Fukuoka Women's University
| | - Yuko Matsuo
- Department of Environmental Sciences, International College of Arts and Sciences, Fukuoka Women's University
| |
Collapse
|