1
|
Pan YK, Perry SF. The control of breathing in fishes - historical perspectives and the path ahead. J Exp Biol 2023; 226:307288. [PMID: 37097020 DOI: 10.1242/jeb.245529] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
The study of breathing in fishes has featured prominently in Journal of Experimental Biology (JEB), particularly during the latter half of the past century. Indeed, many of the seminal discoveries in this important sub-field of comparative respiratory physiology were reported first in JEB. The period spanning 1960-1990 (the 'golden age of comparative respiratory physiology') witnessed intense innovation in the development of methods to study the control of breathing. Many of the guiding principles of piscine ventilatory control originated during this period, including our understanding of the dominance of O2 as the driver of ventilation in fish. However, a critical issue - the identity of the peripheral O2 chemoreceptors - remained unanswered until methods for cell isolation, culture and patch-clamp recording established that gill neuroepithelial cells (NECs) respond to hypoxia in vitro. Yet, the role of the NECs and other putative peripheral or central chemoreceptors in the control of ventilation in vivo remains poorly understood. Further progress will be driven by the implementation of genetic tools, most of which can be used in zebrafish (Danio rerio). These tools include CRISPR/Cas9 for selective gene knockout, and Tol2 systems for transgenesis, the latter of which enables optogenetic stimulation of cellular pathways, cellular ablation and in vivo cell-specific biosensing. Using these methods, the next period of discovery will see the identification of the peripheral sensory pathways that initiate ventilatory responses, and will elucidate the nature of their integration within the central nervous system and their link to the efferent motor neurons that control breathing.
Collapse
Affiliation(s)
- Yihang Kevin Pan
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| | - Steve F Perry
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| |
Collapse
|
2
|
Astrocytic contribution to glutamate-related central respiratory chemoreception in vertebrates. Respir Physiol Neurobiol 2021; 294:103744. [PMID: 34302992 DOI: 10.1016/j.resp.2021.103744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/01/2021] [Accepted: 07/18/2021] [Indexed: 12/24/2022]
Abstract
Central respiratory chemoreceptors play a key role in the respiratory homeostasis by sensing CO2 and H+ in brain and activating the respiratory neural network. This ability of specific brain regions to respond to acidosis and hypercapnia is based on neuronal and glial mechanisms. Several decades ago, glutamatergic transmission was proposed to be involved as a main mechanism in central chemoreception. However, a complete identification of mechanism has been elusive. At the rostral medulla, chemosensitive neurons of the retrotrapezoid nucleus (RTN) are glutamatergic and they are stimulated by ATP released by RTN astrocytes in response to hypercapnia. In addition, recent findings show that caudal medullary astrocytes in brainstem can also contribute as CO2 and H+ sensors that release D-serine and glutamate, both gliotransmitters able to activate the respiratory neural network. In this review, we describe the mammalian astrocytic glutamatergic contribution to the central respiratory chemoreception trying to trace in vertebrates the emergence of several components involved in this process.
Collapse
|
3
|
Gam LTH, Thanh Huong DT, Tuong DD, Phuong NT, Jensen FB, Wang T, Bayley M. Effects of temperature on acid-base regulation, gill ventilation and air breathing in the clown knifefish, Chitala ornata. J Exp Biol 2020; 223:jeb216481. [PMID: 32001546 DOI: 10.1242/jeb.216481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/23/2020] [Indexed: 11/20/2022]
Abstract
Chitala ornata is a facultative air-breathing fish, which at low temperatures shows an arterial PCO2 (PaCO2 ) level only slightly elevated above that of water breathers. By holding fish with in-dwelling catheters at temperatures from 25 to 36°C and measuring blood gasses, we show that this animal follows the ubiquitous poikilotherm pattern of reducing arterial pH with increasing temperature. Surprisingly, the temperature increase caused an elevation of PaCO2 from 5 to 12 mmHg while the plasma bicarbonate concentration remained constant at around 8 mmol l-1 The temperature increase also gave rise to a larger fractional increase in air breathing than in gill ventilation frequency. These findings suggest that air breathing, and hence the partitioning of gas exchange, is to some extent regulated by acid-base status in air-breathing fish and that these bimodal breathers will be increasingly likely to adopt respiratory pH control as temperature rises, providing an interesting avenue for future research.
Collapse
Affiliation(s)
- Le Thi Hong Gam
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Do Thi Thanh Huong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Dang Diem Tuong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Nguyen Thanh Phuong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Frank Bo Jensen
- Department of Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Tobias Wang
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark
- Aarhus Institute of Advanced Studies, 8000 Aarhus C, Denmark
| | - Mark Bayley
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
4
|
Wang T, Wood S. Mogens Lesner Glass (1946-2018). Braz J Med Biol Res 2020. [PMCID: PMC7679110 DOI: 10.1590/1414-431x202010838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Tobias Wang
- Aarhus University, C.F. Møllers Allé 3, Denmark
| | | |
Collapse
|
5
|
Nunan BL, Silva AS, Wang T, da Silva GS. Respiratory control of acid-base status in lungfish. Comp Biochem Physiol A Mol Integr Physiol 2019; 237:110533. [DOI: 10.1016/j.cbpa.2019.110533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/02/2019] [Accepted: 07/31/2019] [Indexed: 01/19/2023]
|
6
|
Dospinescu VM, Nijjar S, Spanos F, Cook J, de Wolf E, Biscotti MA, Gerdol M, Dale N. Structural determinants of CO 2-sensitivity in the β connexin family suggested by evolutionary analysis. Commun Biol 2019; 2:331. [PMID: 31508505 PMCID: PMC6726660 DOI: 10.1038/s42003-019-0576-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/08/2019] [Indexed: 12/24/2022] Open
Abstract
A subclade of connexins comprising Cx26, Cx30, and Cx32 are directly sensitive to CO2. CO2 binds to a carbamylation motif present in these connexins and causes their hemichannels to open. Cx26 may contribute to CO2-dependent regulation of breathing in mammals. Here, we show that the carbamylation motif occurs in a wide range of non-mammalian vertebrates and was likely present in the ancestor of all gnathostomes. While the carbamylation motif is essential for connexin CO2-sensitivity, it is not sufficient. In Cx26 of amphibia and lungfish, an extended C-terminal tail prevents CO2-evoked hemichannel opening despite the presence of the motif. Although Cx32 has a long C-terminal tail, Cx32 hemichannels open to CO2 because the tail is conformationally restricted by the presence of proline residues. The loss of the C-terminal tail of Cx26 in amniotes was an evolutionary innovation that created a connexin hemichannel with CO2-sensing properties suitable for the regulation of breathing.
Collapse
Affiliation(s)
| | - Sarbjit Nijjar
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL UK
| | - Fokion Spanos
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL UK
| | - Jonathan Cook
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL UK
| | - Elizabeth de Wolf
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL UK
| | - Maria Assunta Biscotti
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Marco Gerdol
- Dipartimento di Scienze della Vita, Università di Trieste, 34127 Trieste, Italy
| | - Nicholas Dale
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL UK
| |
Collapse
|
7
|
Minto WJ, Giusti H, Glass ML, Klein W, da Silva GSF. Buccal jet streaming and dead space determination in the South American lungfish, Lepidosiren paradoxa. Comp Biochem Physiol A Mol Integr Physiol 2019; 235:159-165. [PMID: 31195123 DOI: 10.1016/j.cbpa.2019.05.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/08/2019] [Accepted: 05/20/2019] [Indexed: 11/29/2022]
Abstract
The "jet stream" model predicts an expired flow within the dorsal part of the buccal cavity with small air mixing during buccal pump ventilation, and has been suggested for some anuran amphibians but no other species of air breathing animal using a buccal force pump has been investigated. The presence of a two-stroke buccal pump in lungfish, i.e. expiration followed by inspiration, was described previously, but no quantitative data are available for the dead-space of their respiratory system and neither a detailed description of airflow throughout a breathing cycle. The present study aimed to assess the degree of mixing of fresh air and expired gas during the breathing cycle of Lepidosiren paradoxa and to verify the possible presence of a jet stream during expiration in this species. To do so, simultaneous measurements of buccal pressure and ventilatory airflows were carried out. Buccal and lung gases (PCO2 and PO2) were also measured. The effective ventilation was calculated and the dead space estimated using Bohr equations. The results confirmed that the two-stroke buccal pump is present in lungfish, as it is in anuran amphibians. The present approaches were coherent with a small dead space, with a very small buccal-lung PCO2 difference. In the South American lungfish the dead space (VD) as a percentage of tidal volume (VT) (VD / VT) ranged from 4.1 to 12.5%. Our data support the presence of a jet stream and indicate a small degree of air mixing in the buccal cavity. Comparisons with the literature indicate that these data are similar to previous data reported for the toad Rhinella schneideri.
Collapse
Affiliation(s)
- Walter J Minto
- Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirao Preto, SP, Brazil
| | - Humberto Giusti
- Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirao Preto, SP, Brazil
| | - Mogens L Glass
- Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirao Preto, SP, Brazil
| | - Wilfried Klein
- School of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; National Institute of Science and Technology on Comparative Physiology, Rio Claro, SP, Brazil
| | - Glauber S F da Silva
- National Institute of Science and Technology on Comparative Physiology, Rio Claro, SP, Brazil; Institute of Biological Science, Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
8
|
Florindo LH, Armelin VA, McKenzie DJ, Rantin FT. Control of air-breathing in fishes: Central and peripheral receptors. Acta Histochem 2018; 120:642-653. [PMID: 30219242 DOI: 10.1016/j.acthis.2018.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This review considers the environmental and systemic factors that can stimulate air-breathing responses in fishes with bimodal respiration, and how these may be controlled by peripheral and central chemoreceptors. The systemic factors that stimulate air-breathing in fishes are usually related to conditions that increase the O2 demand of these animals (e.g. physical exercise, digestion and increased temperature), while the environmental factors are usually related to conditions that impair their capacity to meet this demand (e.g. aquatic/aerial hypoxia, aquatic/aerial hypercarbia, reduced aquatic hidrogenionic potential and environmental pollution). It is now well-established that peripheral chemoreceptors, innervated by cranial nerves, drive increased air-breathing in response to environmental hypoxia and/or hypercarbia. These receptors are, in general, sensitive to O2 and/or CO2/H+ levels in the blood and/or the environment. Increased air-breathing in response to elevated O2 demand may also be driven by the peripheral chemoreceptors that monitor O2 levels in the blood. Very little is known about central chemoreception in air-breathing fishes, the data suggest that central chemosensitivity to CO2/H+ is more prominent in sarcopterygians than in actinopterygians. A great deal remains to be understood about control of air-breathing in fishes, in particular to what extent control systems may show commonalities (or not) among species or groups that have evolved air-breathing independently, and how information from the multiple peripheral (and possibly central) chemoreceptors is integrated to control the balance of aerial and aquatic respiration in these animals.
Collapse
Affiliation(s)
- Luiz Henrique Florindo
- Department of Zoology and Botany, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil; Aquaculture Center (CAUNESP), São Paulo State University (UNESP), Rodovia Prof. Paulo Donato Castellane, n/n, Jaboticabal, SP, 14884-900, Brazil
| | - Vinicius Araújo Armelin
- Department of Zoology and Botany, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil
| | - David John McKenzie
- Centre for Marine Biodiversity Exploitation and Conservation, UMR9190 (IRD, Ifremer, UM, CNRS), Université Montpellier, Place Eugène Bataillon cc 093, 34095 Montpellier Cedex 5, France; Department of Physiological Sciences, Federal University of São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil
| | - Francisco Tadeu Rantin
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
9
|
da Silva GSF, Ventura DADN, Zena LA, Giusti H, Glass ML, Klein W. Effects of aerial hypoxia and temperature on pulmonary breathing pattern and gas exchange in the South American lungfish, Lepidosiren paradoxa. Comp Biochem Physiol A Mol Integr Physiol 2017; 207:107-115. [PMID: 28263885 DOI: 10.1016/j.cbpa.2017.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 02/13/2017] [Accepted: 03/01/2017] [Indexed: 10/20/2022]
Abstract
The South American lungfish Lepidosiren paradoxa is an obligatory air-breathing fish possessing well-developed bilateral lungs, and undergoing seasonal changes in its habitat, including temperature changes. In the present study we aimed to evaluate gas exchange and pulmonary breathing pattern in L. paradoxa at different temperatures (25 and 30°C) and different inspired O2 levels (21, 12, 10, and 7%). Normoxic breathing pattern consisted of isolated ventilatory cycles composed of an expiration followed by 2.4±0.2 buccal inspirations. Both expiratory and inspiratory tidal volumes reached a maximum of about 35mlkg-1, indicating that L. paradoxa is able to exchange nearly all of its lung air in a single ventilatory cycle. At both temperatures, hypoxia caused a significant increase in pulmonary ventilation (V̇E), mainly due to an increase in respiratory frequency. Durations of the ventilatory cycle and expiratory and inspiratory tidal volumes were not significantly affected by hypoxia. Expiratory time (but not inspiratory) was significantly shorter at 30°C and at all O2 levels. While a small change in oxygen consumption (V̇O2) could be noticed, the carbon dioxide release (V̇CO2, P=0.0003) and air convection requirement (V̇E/V̇O2, P=0.0001) were significantly affected by hypoxia (7% O2) at both temperatures, when compared to normoxia, and pulmonary diffusion capacity increased about four-fold due to hypoxic exposure. These data highlight important features of the respiratory system of L. paradoxa, capable of matching O2 demand and supply under different environmental change, as well as help to understand the evolution of air breathing in lungfish.
Collapse
Affiliation(s)
- Glauber S F da Silva
- College of Agricultural and Veterinarian Sciences, São Paulo State University, Brazil; National Institute of Science and Technology on Comparative Physiology, Rio Claro, Brazil
| | | | - Lucas A Zena
- College of Agricultural and Veterinarian Sciences, São Paulo State University, Brazil; National Institute of Science and Technology on Comparative Physiology, Rio Claro, Brazil
| | - Humberto Giusti
- Faculty of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | - Mogens L Glass
- Faculty of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | - Wilfried Klein
- School of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo, Brazil; National Institute of Science and Technology on Comparative Physiology, Rio Claro, Brazil.
| |
Collapse
|
10
|
de Wolf E, Cook J, Dale N. Evolutionary adaptation of the sensitivity of connexin26 hemichannels to CO2. Proc Biol Sci 2017; 284:20162723. [PMID: 28148750 PMCID: PMC5310615 DOI: 10.1098/rspb.2016.2723] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/06/2017] [Indexed: 11/12/2022] Open
Abstract
CO2 readily combines with H2O to form [Formula: see text] and H+ Because an increase of only 100 nM in the concentration of H+ (a decrease of 0.1 unit of pH) in blood can prove fatal, the regulated excretion of CO2 during breathing is an essential life-preserving process. In rodents and humans, this vital process is mediated in part via the direct sensing of CO2 via connexin26 (Cx26). CO2 binds to hemichannels of Cx26 causing them to open and allow release of the neurotransmitter ATP. If Cx26 were to be a universal and important CO2 sensor across all homeothermic animals, then a simple hypothesis would posit that it should exhibit evolutionary adaptation in animals with different homeostatic set points for the regulation of partial pressure of arterial CO2 (PaCO2). In humans and rats, PaCO2 is regulated around a set point of 40 mmHg. By contrast, birds are able to maintain cerebral blood flow and breathing at much lower levels of PaCO2 Fossorial mammals, such as the mole rat, live exclusively underground in burrows that are both hypoxic and hypercapnic and can thrive under very hypercapnic conditions. We have therefore compared the CO2 sensitivity of Cx26 from human, chicken, rat and mole rat (Heterocephalus glaber). We find that both the affinity and cooperativity of CO2 binding to Cx26 have been subjected to evolutionary adaption in a manner consistent with the homeostatic requirements of these four species. This is analogous to the evolutionary adaptation of haemoglobin to the needs of O2 transport across the animal kingdom and supports the hypothesis that Cx26 is an important and universal CO2 sensor in homeotherms.
Collapse
Affiliation(s)
- Elizabeth de Wolf
- School of Life Sciences, University of Warwick, Gibbet Hill Rd, Coventry CV4 7AL, UK
| | - Jonathan Cook
- School of Life Sciences, University of Warwick, Gibbet Hill Rd, Coventry CV4 7AL, UK
| | - Nicholas Dale
- School of Life Sciences, University of Warwick, Gibbet Hill Rd, Coventry CV4 7AL, UK
| |
Collapse
|
11
|
Zena LA, Bícego KC, da Silva GSF, Giusti H, Glass ML, Sanchez AP. Acute effects of temperature and hypercarbia on cutaneous and branchial gas exchange in the South American lungfish, Lepidosiren paradoxa. J Therm Biol 2016; 63:112-118. [PMID: 28010808 DOI: 10.1016/j.jtherbio.2016.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/21/2016] [Accepted: 12/01/2016] [Indexed: 11/25/2022]
Abstract
The South American lungfish, Lepidosiren paradoxa inhabits seasonal environments in the Central Amazon and Paraná-Paraguay basins that undergo significant oscillations in temperature throughout the year. They rely on different gas exchange organs, such as gills and skin for aquatic gas exchange while their truly bilateral lungs are responsible for aerial gas exchange; however, there are no data available on the individual contributions of the skin and the gills to total aquatic gas exchange in L. paradoxa. Thus, in the present study we quantify the relative contributions of skin and gills on total aquatic gas exchange during warm (35°C) and cold exposure (20°C) in addition to the effects of aerial and aquatic hypercarbia on aquatic gas exchange and gill ventilation rate (fG; 25°C), respectively. Elevated temperature (35°C) caused a significant increase in the contribution of cutaneous (from 0.61±0.13 to 1.34±0.26ml. STPD.h-1kg-1) and branchial (from 0.54±0.17 to 1.73±0.53ml. STPD.h-1kg-1) gas exchange for V̇CO2 relative to the lower temperature (20°C), while V̇O2 remained relatively unchanged. L. paradoxa exhibited a greater branchial contribution in relation to total aquatic gas exchange at lower temperatures (20 and 25°C) for oxygen uptake. Aerial hypercarbia decreased branchial V̇O2 whereas branchial V̇CO2 was significantly increased. Progressive increases in aquatic hypercarbia did not affect fG. This response is in contrast to increases in pulmonary ventilation that may offset any increase in arterial partial pressure of CO2 owing to CO2 loading through the animals' branchial surface. Thus, despite their reduced contribution to total gas exchange, cutaneous and branchial gas exchange in L. paradoxa can be significantly affected by temperature and aerial hypercarbia.
Collapse
Affiliation(s)
- Lucas A Zena
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, SP 14884-900, Brazil; National Institute of Science and Technology in Comparative Physiology (INCT Fisiologia Comparada), Brazil.
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, SP 14884-900, Brazil; National Institute of Science and Technology in Comparative Physiology (INCT Fisiologia Comparada), Brazil
| | - Glauber S F da Silva
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, SP 14884-900, Brazil; National Institute of Science and Technology in Comparative Physiology (INCT Fisiologia Comparada), Brazil
| | - Humberto Giusti
- Department of Physiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Mogens L Glass
- Department of Physiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Adriana P Sanchez
- Faculty of Health Sciences of Barretos Dr. Paulo Prata (FACISB), Barretos, SP, Brazil
| |
Collapse
|
12
|
Côté É, Rousseau JP, Fournier S, Kinkead R. Control of Breathing in In Vitro Brain Stem Preparation from Goldfish (Carassius auratus; Linnaeus). Physiol Biochem Zool 2014; 87:464-74. [DOI: 10.1086/675939] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
da Silva GS, Glass ML, Branco LG. Temperature and respiratory function in ectothermic vertebrates. J Therm Biol 2013. [DOI: 10.1016/j.jtherbio.2012.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Mechanisms and consequences of carbon dioxide sensing in fish. Respir Physiol Neurobiol 2012; 184:309-15. [DOI: 10.1016/j.resp.2012.06.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/09/2012] [Accepted: 06/10/2012] [Indexed: 11/20/2022]
|
15
|
da Silva GS, Giusti H, Branco LG, Glass ML. Combined ventilatory responses to aerial hypoxia and temperature in the South American lungfish Lepidosiren paradoxa. J Therm Biol 2011. [DOI: 10.1016/j.jtherbio.2011.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Bassi M, Giusti H, da Silva GS, Amin-Naves J, Glass ML. Blood gases and cardiovascular shunt in the South American lungfish (Lepidosiren paradoxa) during normoxia and hyperoxia. Respir Physiol Neurobiol 2010; 173:47-50. [DOI: 10.1016/j.resp.2010.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 06/08/2010] [Accepted: 06/10/2010] [Indexed: 11/29/2022]
|
17
|
Milsom WK. The phylogeny of central chemoreception. Respir Physiol Neurobiol 2010; 173:195-200. [PMID: 20594933 DOI: 10.1016/j.resp.2010.05.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 05/27/2010] [Accepted: 05/27/2010] [Indexed: 11/18/2022]
Abstract
Respiratory chemoreceptors responsive to changes in CO(2)/H(+) appear to be present in all vertebrates from fish to birds and mammals. They appear to have arisen first in the periphery sensitive to the external environment. Thus, in most fish CO(2)/H(+) chemoreceptors reside primarily in the gills and respond to changes in aquatic rather than arterial P(CO)₂ . In the air-breathing tetrapods (amphibians, mammals, reptiles and birds), the branchial arches regress developmentally and the derivatives of the branchial arteries are now exclusively internal. The receptors associated with these arteries now sense only arterial (not environmental) P(CO)₂/pH . Central CO(2)/H(+) chemoreception also appears to have arisen with the advent of air breathing, presumably as a second line of defense. These receptors may have arisen multiple times in association with several (but not all) of the independent origins of air breathing in fishes. There is strong evidence for multiple central sites of CO(2)/H(+) sensing, at least in amphibians and mammals, suggesting that it may not only have originated multiple times in different species but also multiple times within a single species.
Collapse
Affiliation(s)
- W K Milsom
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
18
|
Aestivation in the South American lungfish, Lepidosiren paradoxa: Effects on cardiovascular function, blood gases, osmolality and leptin levels. Respir Physiol Neurobiol 2008; 164:380-5. [DOI: 10.1016/j.resp.2008.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 08/26/2008] [Accepted: 08/29/2008] [Indexed: 11/20/2022]
|