1
|
Emerling CA, Springer MS, Gatesy J, Jones Z, Hamilton D, Xia-Zhu D, Collin M, Delsuc F. Genomic evidence for the parallel regression of melatonin synthesis and signaling pathways in placental mammals. OPEN RESEARCH EUROPE 2021; 1:75. [PMID: 35967080 PMCID: PMC7613276 DOI: 10.12688/openreseurope.13795.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/25/2021] [Indexed: 11/20/2022]
Abstract
Background: The study of regressive evolution has yielded a wealth of examples where the underlying genes bear molecular signatures of trait degradation, such as pseudogenization or deletion. Typically, it appears that such disrupted genes are limited to the function of the regressed trait, whereas pleiotropic genes tend to be maintained by natural selection to support their myriad purposes. One such set of pleiotropic genes is involved in the synthesis ( AANAT, ASMT) and signaling ( MTNR1A, MTNR1B) of melatonin, a hormone secreted by the vertebrate pineal gland. Melatonin provides a signal of environmental darkness, thereby influencing the circadian and circannual rhythmicity of numerous physiological traits. Therefore, the complete loss of a pineal gland and the underlying melatonin pathway genes seems likely to be maladaptive, unless compensated by extrapineal sources of melatonin. Methods: We examined AANAT, ASMT, MTNR1A and MTNR1B in 123 vertebrate species, including pineal-less placental mammals and crocodylians. We searched for inactivating mutations and modelled selective pressures (dN/dS) to test whether the genes remain functionally intact. Results: We report that crocodylians retain intact melatonin genes and express AANAT and ASMT in their eyes, whereas all four genes have been repeatedly inactivated in the pineal-less xenarthrans, pangolins, sirenians, and whales. Furthermore, colugos have lost these genes, and several lineages of subterranean mammals have partial melatonin pathway dysfunction. These results are supported by the presence of shared inactivating mutations across clades and analyses of selection pressure based on the ratio of non-synonymous to synonymous substitutions (dN/dS), suggesting extended periods of relaxed selection on these genes. Conclusions: The losses of melatonin synthesis and signaling date to tens of millions of years ago in several lineages of placental mammals, raising questions about the evolutionary resilience of pleiotropic genes, and the causes and consequences of losing melatonin pathways in these species.
Collapse
Affiliation(s)
- Christopher A. Emerling
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, 94720, USA
- Institut des Sciences de l’Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
- Biology Department, Reedley College, Reedley, CA, 93654, USA
| | - Mark S. Springer
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, 92521, USA
| | - John Gatesy
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY, 10024, USA
| | - Zachary Jones
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Deana Hamilton
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - David Xia-Zhu
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Matt Collin
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, 92521, USA
| | - Frédéric Delsuc
- Institut des Sciences de l’Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| |
Collapse
|
2
|
Abstract
Artificial light at night (ALAN) is increasing exponentially worldwide, accelerated by the transition to new efficient lighting technologies. However, ALAN and resulting light pollution can cause unintended physiological consequences. In vertebrates, production of melatonin—the “hormone of darkness” and a key player in circadian regulation—can be suppressed by ALAN. In this paper, we provide an overview of research on melatonin and ALAN in vertebrates. We discuss how ALAN disrupts natural photic environments, its effect on melatonin and circadian rhythms, and different photoreceptor systems across vertebrate taxa. We then present the results of a systematic review in which we identified studies on melatonin under typical light-polluted conditions in fishes, amphibians, reptiles, birds, and mammals, including humans. Melatonin is suppressed by extremely low light intensities in many vertebrates, ranging from 0.01–0.03 lx for fishes and rodents to 6 lx for sensitive humans. Even lower, wavelength-dependent intensities are implied by some studies and require rigorous testing in ecological contexts. In many studies, melatonin suppression occurs at the minimum light levels tested, and, in better-studied groups, melatonin suppression is reported to occur at lower light levels. We identify major research gaps and conclude that, for most groups, crucial information is lacking. No studies were identified for amphibians and reptiles and long-term impacts of low-level ALAN exposure are unknown. Given the high sensitivity of vertebrate melatonin production to ALAN and the paucity of available information, it is crucial to research impacts of ALAN further in order to inform effective mitigation strategies for human health and the wellbeing and fitness of vertebrates in natural ecosystems.
Collapse
|
3
|
Genario R, Giacomini AC, Demin KA, dos Santos BE, Marchiori NI, Volgin AD, Bashirzade A, Amstislavskaya TG, de Abreu MS, Kalueff AV. The evolutionarily conserved role of melatonin in CNS disorders and behavioral regulation: Translational lessons from zebrafish. Neurosci Biobehav Rev 2019; 99:117-127. [DOI: 10.1016/j.neubiorev.2018.12.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/12/2018] [Accepted: 12/20/2018] [Indexed: 12/14/2022]
|
4
|
viviD D, Bentley GE. Seasonal Reproduction in Vertebrates: Melatonin Synthesis, Binding, and Functionality Using Tinbergen's Four Questions. Molecules 2018; 23:E652. [PMID: 29534047 PMCID: PMC6017951 DOI: 10.3390/molecules23030652] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/11/2018] [Accepted: 02/13/2018] [Indexed: 12/15/2022] Open
Abstract
One of the many functions of melatonin in vertebrates is seasonal reproductive timing. Longer nights in winter correspond to an extended duration of melatonin secretion. The purpose of this review is to discuss melatonin synthesis, receptor subtypes, and function in the context of seasonality across vertebrates. We conclude with Tinbergen's Four Questions to create a comparative framework for future melatonin research in the context of seasonal reproduction.
Collapse
Affiliation(s)
- Dax viviD
- Berkeley Department of Integrative Biology, University of California, Berkeley, CA 94720, USA.
| | - George E Bentley
- Berkeley Department of Integrative Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
5
|
Adamson KJ, Wang T, Rotgans BA, Kruangkum T, Kuballa AV, Storey KB, Cummins SF. Genes and associated peptides involved with aestivation in a land snail. Gen Comp Endocrinol 2017; 246:88-98. [PMID: 26497253 DOI: 10.1016/j.ygcen.2015.10.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/14/2015] [Accepted: 10/19/2015] [Indexed: 01/01/2023]
Abstract
Some animals can undergo a remarkable transition from active normal life to a dormant state called aestivation; entry into this hypometabolic state ensures that life continues even during long periods of environmental hardship. In this study, we aimed to identify those central nervous system (CNS) peptides that may regulate metabolic suppression leading to aestivation in land snails. Mass spectral-based neuropeptidome analysis of the CNS comparing active and aestivating states, revealed 19 differentially produced peptides; 2 were upregulated in active animals and 17 were upregulated in aestivated animals. Of those, the buccalin neuropeptide was further investigated since there is existing evidence in molluscs that buccalin modulates physiology by muscle contraction. The Theba pisana CNS contains two buccalin transcripts that encode precursor proteins that are capable of releasing numerous buccalin peptides. Of these, Tpi-buccalin-2 is most highly expressed within our CNS transcriptome derived from multiple metabolic states. No significant difference was observed at the level of gene expression levels for Tpi-buccalin-2 between active and aestivated animals, suggesting that regulation may reside at the level of post-translational control of peptide abundance. Spatial gene and peptide expression analysis of aestivated snail CNS demonstrated that buccalin-2 has widespread distribution within regions that control several physiological roles. In conclusion, we provide the first detailed molecular analysis of the peptides and associated genes that are related to hypometabolism in a gastropod snail known to undergo extended periods of aestivation.
Collapse
Affiliation(s)
- K J Adamson
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - T Wang
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - B A Rotgans
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - T Kruangkum
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - A V Kuballa
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - K B Storey
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - S F Cummins
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia.
| |
Collapse
|
6
|
Shirley MH, Burtner B, Oslisly R, Sebag D, Testa O. Diet and body condition of cave-dwelling dwarf crocodiles (Osteolaemus tetraspis
, Cope 1861) in Gabon. Afr J Ecol 2016. [DOI: 10.1111/aje.12365] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Matthew H. Shirley
- Department of Wildlife Ecology & Conservation; University of Florida; 110 Newins-Ziegler Hall Gainesville FL 32611-0430 U.S.A
- Rare Species Conservatory Foundation; P.O. Box 1371 Loxahatchee FL 33470 U.S.A
| | - Brittany Burtner
- Department of Wildlife Ecology & Conservation; University of Florida; 110 Newins-Ziegler Hall Gainesville FL 32611-0430 U.S.A
- Department of Environmental Resources; Monroe County; 2798 Overseas Highway Marathon FL 33050 U.S.A
| | - Richard Oslisly
- UMR 208 PALOC; Institut de Recherche pour le Développement; B.P. 1857 Yaoundé Cameroon
- Agence Nationale des Parcs Nationaux; B.P. 20379 Libreville Gabon
| | - David Sebag
- Department of Geosciences and Environment; University of Rouen; UMR M2C CNRS; 76130 Mont-Saint-Aignan France
- Department of Earth Sciences; University of Ngaoundéré; UMR HSM IRD; Ngaoundéré Cameroon
| | - Olivier Testa
- Association Hommes des Cavernes; 8 Rue Charrel 38000 Grenoble France
- Fédération Française de Spéléologie; 28 Rue Delandine 69002 Lyon France
| |
Collapse
|
7
|
Adamson KJ, Wang T, Rotgans BA, Kuballa AV, Storey KB, Cummins SF. Differential peptide expression in the central nervous system of the land snail Theba pisana, between active and aestivated. Peptides 2016; 80:61-71. [PMID: 26303007 DOI: 10.1016/j.peptides.2015.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 08/16/2015] [Accepted: 08/17/2015] [Indexed: 12/25/2022]
Abstract
Hypometabolism is a physiological state of dormancy entered by many animals in times of environmental stress. There are gaps in our understanding of the molecular components used by animals to achieve this metabolic state. The availability of genomic and transcriptome data can be useful to study the process of hypometabolism at the molecular level. In this study, we use the land snail Theba pisana to identify peptides that may be involved in the hypometabolic state known as aestivation. We found a total of 22 neuropeptides in the central nervous system (CNS) that were differentially produced during activity and aestivation based on mass spectral-based neuropeptidome analysis. Of these, 4 were upregulated in active animals and 18 were upregulated in aestivation. A neuropeptide known to regulate muscle contractions in a variety of molluscs, the small cardioactive peptide A (sCAPA), and a peptide of yet unknown function (termed Aestivation Associated Peptide 12) were chosen for further investigation using temporal and spatial expression analysis of the precursor gene and peptide. Both peptides share expression within regions of the CNS cerebral ganglia and suboesophageal ganglia. Relative transcript abundance suggests that regulation of peptide synthesis and secretion is post-transcriptional. In summary, we provide new insights into the molecular basis of the regulation of aestivation in land snails through CNS peptide control.
Collapse
Affiliation(s)
- K J Adamson
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - T Wang
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - B A Rotgans
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - A V Kuballa
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - K B Storey
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - S F Cummins
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia.
| |
Collapse
|
8
|
Vriend J, Reiter RJ. Melatonin feedback on clock genes: a theory involving the proteasome. J Pineal Res 2015; 58:1-11. [PMID: 25369242 DOI: 10.1111/jpi.12189] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 10/30/2014] [Indexed: 12/11/2022]
Abstract
The expression of 'clock' genes occurs in all tissues, but especially in the suprachiasmatic nuclei (SCN) of the hypothalamus, groups of neurons in the brain that regulate circadian rhythms. Melatonin is secreted by the pineal gland in a circadian manner as influenced by the SCN. There is also considerable evidence that melatonin, in turn, acts on the SCN directly influencing the circadian 'clock' mechanisms. The most direct route by which melatonin could reach the SCN would be via the cerebrospinal fluid of the third ventricle. Melatonin could also reach the pars tuberalis (PT) of the pituitary, another melatonin-sensitive tissue, via this route. The major 'clock' genes include the period genes, Per1 and Per2, the cryptochrome genes, Cry1 and Cry2, the clock (circadian locomotor output cycles kaput) gene, and the Bmal1 (aryl hydrocarbon receptor nuclear translocator-like) gene. Clock and Bmal1 heterodimers act on E-box components of the promoters of the Per and Cry genes to stimulate transcription. A negative feedback loop between the cryptochrome proteins and the nucleus allows the Cry and Per proteins to regulate their own transcription. A cycle of ubiquitination and deubiquitination controls the levels of CRY protein degraded by the proteasome and, hence, the amount of protein available for feedback. Thus, it provides a post-translational component to the circadian clock mechanism. BMAL1 also stimulates transcription of REV-ERBα and, in turn, is also partially regulated by negative feedback by REV-ERBα. In the 'black widow' model of transcription, proteasomes destroy transcription factors that are needed only for a particular period of time. In the model proposed herein, the interaction of melatonin and the proteasome is required to adjust the SCN clock to changes in the environmental photoperiod. In particular, we predict that melatonin inhibition of the proteasome interferes with negative feedback loops (CRY/PER and REV-ERBα) on Bmal1 transcription genes in both the SCN and PT. Melatonin inhibition of the proteasome would also tend to stabilize BMAL1 protein itself in the SCN, particularly at night when melatonin is naturally elevated. Melatonin inhibition of the proteasome could account for the effects of melatonin on circadian rhythms associated with molecular timing genes. The interaction of melatonin with the proteasome in the hypothalamus also provides a model for explaining the dramatic 'time of day' effect of melatonin injections on reproductive status of seasonal breeders. Finally, the model predicts that a proteasome inhibitor such as bortezomib would modify circadian rhythms in a manner similar to melatonin.
Collapse
Affiliation(s)
- Jerry Vriend
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | | |
Collapse
|