1
|
Kolosov D, Kelly SP. Claudin-8d is a cortisol-responsive barrier protein in the gill epithelium of trout. J Mol Endocrinol 2017; 59:299-310. [PMID: 28739633 DOI: 10.1530/jme-17-0108] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 07/24/2017] [Indexed: 01/04/2023]
Abstract
The influence of claudin (Cldn) 8 tight junction (TJ) proteins on cortisol-mediated alterations in gill epithelium permeability was examined using a primary cultured trout gill epithelium model. Genes encoding three Cldn-8 proteins (cldn-8b, -8c and -8d) have been identified in trout and all are expressed in the model gill epithelium. Cortisol treatment 'tightened' the gill epithelium, as indicated by increased transepithelial resistance (TER) and reduced paracellular [3H]polyethylene glycol (MW 400 Da; PEG-400) flux. This occurred in association with elevated cldn-8d mRNA abundance, but no alterations in cldn-8b and -8c mRNA abundance were observed. Transcriptional knockdown (KD) of cldn-8d inhibited a cortisol-induced increase in Cldn-8d abundance and reduced the 'epithelium tightening' effect of cortisol in association with increased paracellular PEG-400 flux. Under simulated in vivo conditions (i.e. apical freshwater), cldn-8d KD hindered a cortisol-mediated reduction in basolateral to apical Na+ and Cl- flux (i.e. reduced the ability of cortisol to mitigate ion loss). However, cldn-8d KD did not abolish the tightening effect of cortisol on the gill epithelium. This is likely due, in part, to the effect of cortisol on genes encoding other TJ proteins, which in some cases appeared to exhibit a compensatory response. Data support the idea that Cldn-8d is a barrier protein of the gill epithelium TJ that contributes significantly to corticosteroid-mediated alterations in gill epithelium permeability.
Collapse
Affiliation(s)
- Dennis Kolosov
- Department of BiologyYork University, Toronto, Ontario, Canada
| | - Scott P Kelly
- Department of BiologyYork University, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Cozzi RRF, Robertson GN, Spieker M, Claus LN, Zaparilla GMM, Garrow KL, Marshall WS. Paracellular pathway remodeling enhances sodium secretion by teleost fish in hypersaline environments. ACTA ACUST UNITED AC 2015; 218:1259-69. [PMID: 25750413 DOI: 10.1242/jeb.117317] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/23/2015] [Indexed: 01/02/2023]
Abstract
In vertebrate salt-secreting epithelia, Na(+) moves passively down an electrochemical gradient via a paracellular pathway. We assessed how this pathway is modified to allow Na(+) secretion in hypersaline environments. Mummichogs (Fundulus heteroclitus) acclimated to hypersaline [2× seawater (2SW), 64‰] for 30 days developed invasive projections of accessory cells with an increased area of tight junctions, detected by punctate distribution of CFTR (cystic fibrosis transmembrane conductance regulator) immunofluorescence and transmission electron miscroscopy of the opercular epithelia, which form a gill-like tissue rich in ionocytes. Distribution of CFTR was not explained by membrane raft organization, because chlorpromazine (50 μmol l(-1)) and filipin (1.5 μmol l(-1)) did not affect opercular epithelia electrophysiology. Isolated opercular epithelia bathed in SW on the mucosal side had a transepithelial potential (Vt) of +40.1±0.9 mV (N=24), sufficient for passive Na(+) secretion (Nernst equilibrium voltage≡ENa=+24.11 mV). Opercular epithelia from fish acclimated to 2SW and bathed in 2SW had higher Vt of +45.1±1.2 mV (N=24), sufficient for passive Na(+) secretion (ENa=+40.74 mV), but with diminished net driving force. Bumetanide block of Cl(-) secretion reduced Vt by 45% and 29% in SW and 2SW, respectively, a decrease in the driving force for Na(+) extrusion. Estimates of shunt conductance from epithelial conductance (Gt) versus short-circuit current (Isc) plots (extrapolation to zero Isc) suggested a reduction in total epithelial shunt conductance in 2SW-acclimated fish. In contrast, the morphological elaboration of tight junctions, leading to an increase in accessory-cell-ionocyte contact points, suggests an increase in local paracellular conductance, compensating for the diminished net driving force for Na(+) and allowing salt secretion, even in extreme salinities.
Collapse
Affiliation(s)
- Regina R F Cozzi
- Department of Biology, St Francis Xavier University, J. Bruce Brown Hall, Room 214, 2320 Notre Dame Avenue, Antigonish, Nova Scotia, Canada B2G 2W5
| | - George N Robertson
- Department of Biology, St Francis Xavier University, J. Bruce Brown Hall, Room 214, 2320 Notre Dame Avenue, Antigonish, Nova Scotia, Canada B2G 2W5
| | - Melanie Spieker
- Department of Biology, St Francis Xavier University, J. Bruce Brown Hall, Room 214, 2320 Notre Dame Avenue, Antigonish, Nova Scotia, Canada B2G 2W5
| | - Lauren N Claus
- Department of Biology, St Francis Xavier University, J. Bruce Brown Hall, Room 214, 2320 Notre Dame Avenue, Antigonish, Nova Scotia, Canada B2G 2W5
| | - Gabriella M M Zaparilla
- Department of Biology, St Francis Xavier University, J. Bruce Brown Hall, Room 214, 2320 Notre Dame Avenue, Antigonish, Nova Scotia, Canada B2G 2W5
| | - Kelly L Garrow
- Department of Biology, St Francis Xavier University, J. Bruce Brown Hall, Room 214, 2320 Notre Dame Avenue, Antigonish, Nova Scotia, Canada B2G 2W5
| | - William S Marshall
- Department of Biology, St Francis Xavier University, J. Bruce Brown Hall, Room 214, 2320 Notre Dame Avenue, Antigonish, Nova Scotia, Canada B2G 2W5
| |
Collapse
|
3
|
Kolosov D, Kelly SP. A role for tricellulin in the regulation of gill epithelium permeability. Am J Physiol Regul Integr Comp Physiol 2013; 304:R1139-48. [PMID: 23594608 DOI: 10.1152/ajpregu.00086.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The apical-most region of cell-to-cell contact in a vertebrate epithelium is the tight junction (TJ) complex. It is composed of bicellular TJs (bTJs) that bridge two adjacent epithelial cells and tricellular TJs (tTJs) that are points of contact between three adjoining epithelial cells. Tricellulin (TRIC) is a transmembrane TJ protein of vertebrates that is found in the tTJ complex. Full-length cDNA encoding rainbow trout TRIC was cloned and sequenced. In silico analysis of rainbow trout TRIC revealed a tetraspannin protein with several putative posttranslational modification sites. TRIC mRNA was broadly expressed in rainbow trout tissues and exhibited moderately greater abundance in the gill. In a primary cultured gill epithelium, TRIC localized to tTJs and TRIC protein abundance increased in association with corticosteroid-induced reductions in paracellular permeability. Sodium caprate was used to compromise cultured gill epithelium integrity by disrupting the tTJ complex. Sodium caprate treatment caused a reversible reduction in transepithelial resistance, caused an increase in paracellular permeability (as measured by [³H]PEG-4000 flux), and displaced TRIC from tTJs while leaving bTJs intact. Data from this study support the view that tTJs and the TJ protein TRIC 1) play a role in maintaining gill epithelium integrity and 2) contribute to the regulation of gill epithelium permeability.
Collapse
Affiliation(s)
- Dennis Kolosov
- Department of Biology, York University, Toronto, Ontario, Canada.
| | | |
Collapse
|