1
|
Qi M, Wu Q, Liu T, Hou Y, Miao Y, Hu M, Liu Q. Hepatopancreas Transcriptome Profiling Analysis Reveals Physiological Responses to Acute Hypoxia and Reoxygenation in Juvenile Qingtian Paddy Field Carp Cyprinus carpio var qingtianensis. Front Physiol 2020; 11:1110. [PMID: 33041847 PMCID: PMC7518031 DOI: 10.3389/fphys.2020.01110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022] Open
Abstract
The Qingtian paddy field carp (Cyprinus carpio var qingtianensis) is a local carp cultivated in the rice field of Qingtian county, Zhejiang province, China. Its high tolerance to hypoxia makes it an ideal organism for studying the molecular regulation mechanism during hypoxia process as well as reoxygenation following hypoxia in fish. In this study, we counted the differentially expressed genes (DEGs) altered during hypoxic exposure and reoxygenation process. The results indicated that 2236 genes (1506 up-regulated genes and 730 down-regulated genes) were differentially expressed between the control and hypoxic groups. The results from Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that 1152 of 2236 genes were enriched, and those genes participated in energy metabolism, reactive oxygen species (ROS) elimination, acceleration of cell apoptosis, inhibition of growth, and other processes. We found activation of the pentose phosphate pathway in hypoxia treatment, suggesting that carbohydrates not only provide energy for metabolism but also provide NADPH for protecting the body from oxidative damage and ribosomes for promoting RNA synthesis. During reoxygenation, 4509 genes (1865 up-regulated genes and 2644 down-regulated genes) were differentially expressed. The results of KEGG enrichment analysis indicated that 2392 of 4509 genes were enriched, and participated in pyruvate and lactic acid metabolism, synthesis of amino acids and lipids, inhibition of cell apoptosis, regulation of cell growth and differentiation, and other processes. These differentially expressed genes effectively alleviate the body acidosis and promote the normal growth and development of the body. Through the analysis of KEGG pathway enrichment, we observed that the physiological regulation of Qingtian paddy field carp during the processes of hypoxia and reoxygenation is not a simple and reversible process. This work first reported the adaptive mechanism of hypoxia and the recovery mechanism of reoxygenation after hypoxia in common carp, and also provided new insights for the physiological regulation of fish under hypoxia treatment.
Collapse
Affiliation(s)
- Ming Qi
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Qianqian Wu
- Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Tao Liu
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Yiling Hou
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Yixin Miao
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Menghong Hu
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Qigen Liu
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
2
|
Nie M, Lu Y, Zou C, Wang L, Zhang P, You F. Insight into AMPK regulation mechanism in vivo and in vitro: Responses to low temperatures in the olive flounder Paralichthys olivaceus. J Therm Biol 2020; 91:102640. [PMID: 32716881 DOI: 10.1016/j.jtherbio.2020.102640] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 05/04/2020] [Accepted: 06/11/2020] [Indexed: 01/07/2023]
Abstract
The olive flounder, Paralichthys olivaceus, is a commercially important maricultured fish in China, Japan, and Korea. Low winter temperatures influence its survival and growth and affect the output of the aquaculture industry. Energy metabolism is essential for fish survival, and the central energy-regulating factor - 5'-AMP-activated protein kinase (AMPK) - plays an important role in responses to cold stress. However, the mechanism of AMPK pathway regulation in fish coping with cold stress remains poorly understood. In the present study, the expression of AMPK and its upstream (LKB1 and CaMKKβ) and downstream genes (SITR1, FOXO1A, and TFAM) in the brain, muscle, and heart was analyzed while the flounder was under cold stress (0.2 ± 0.2 °C). The results showed that low temperatures activated LKB1, CaMKKβ, and AMPK genes in the brain, and the activated AMPK induced expression of SITR1, FOXO1A, and TFAM. In the muscle tissue, the expression patterns of these genes presented a trend of initially decreasing and then increasing, and there was a delay in the response to low temperatures. At the cellular level, comparative analysis of the effects of the activator 5-aminoimidazole-4-carboxamide1-β-D-ribofuranoside (AICAR) and inhibitor compound C of the AMPK pathway demonstrated that cold stress was similar to AICAR, which activated the AMPK pathway with hysteresis. Thus, the regulation mechanism of AMPK under cold stress was preliminarily analyzed. In general, AMPK was involved not only in responses to low temperatures but also in energy regulation under cold stress.
Collapse
Affiliation(s)
- Miaomiao Nie
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao. China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yunliang Lu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, China
| | - Congcong Zou
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao. China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Lijuan Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao. China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Peijun Zhang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao. China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Feng You
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao. China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.
| |
Collapse
|
3
|
Craig PM, Moyes CD, LeMoine CM. Sensing and responding to energetic stress: Evolution of the AMPK network. Comp Biochem Physiol B Biochem Mol Biol 2018; 224:156-169. [DOI: 10.1016/j.cbpb.2017.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/01/2017] [Accepted: 11/01/2017] [Indexed: 01/24/2023]
|
4
|
Gilmour KM, Craig PM, Dhillon RS, Lau GY, Richards JG. Regulation of energy metabolism during social interactions in rainbow trout: a role for AMP-activated protein kinase. Am J Physiol Regul Integr Comp Physiol 2017; 313:R549-R559. [PMID: 28768660 DOI: 10.1152/ajpregu.00341.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 01/01/2023]
Abstract
Rainbow trout (Oncorhynchus mykiss) confined in pairs form social hierarchies in which subordinate fish typically experience fasting and high circulating cortisol levels, resulting in low growth rates. The present study investigated the role of AMP-activated protein kinase (AMPK) in mediating metabolic adjustments associated with social status in rainbow trout. After 3 days of social interaction, liver AMPK activity was significantly higher in subordinate than dominant or sham (fish handled in the same fashion as paired fish but held individually) trout. Elevated liver AMPK activity in subordinate fish likely reflected a significantly higher ratio of phosphorylated AMPK (phospho-AMPK) to total AMPK protein, which was accompanied by significantly higher AMPKα1 relative mRNA abundance. Liver ATP and creatine phosphate concentrations in subordinate fish also were elevated, perhaps as a result of AMPK activity. Sham fish that were fasted for 3 days exhibited effects parallel to those of subordinate fish, suggesting that low food intake was an important trigger of elevated AMPK activity in subordinate fish. Effects on white muscle appeared to be influenced by the physical activity associated with social interaction. Overall, muscle AMPK activity was significantly higher in dominant and subordinate than sham fish. The ratio of phospho-AMPK to total AMPK protein in muscle was highest in subordinate fish, while muscle AMPKα1 relative mRNA abundance was elevated by social dominance. Muscle ATP and creatine phosphate concentrations were high in dominant and subordinate fish at 6 h of interaction and decreased significantly thereafter. Collectively, the findings of the present study support a role for AMPK in mediating liver and white muscle metabolic adjustments associated with social hierarchy formation in rainbow trout.
Collapse
Affiliation(s)
- K M Gilmour
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada; and
| | - P M Craig
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada; and
| | - R S Dhillon
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - G Y Lau
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - J G Richards
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Gillis TE, Regan MD, Cox GK, Harter TS, Brauner CJ, Richards JG, Farrell AP. Characterizing the metabolic capacity of the anoxic hagfish heart. ACTA ACUST UNITED AC 2015; 218:3754-61. [PMID: 26486366 DOI: 10.1242/jeb.125070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/28/2015] [Indexed: 01/31/2023]
Abstract
Pacific hagfish, Eptatretus stoutii, can recover from 36 h of anoxia at 10°C. Such anoxia tolerance demands the mobilization of anaerobic fuels and the removal of metabolic wastes--processes that require a functional heart. The purpose of this study was to measure the metabolic response of the excised, cannulated hagfish heart to anoxia using direct calorimetry. These experiments were coupled with measurements of cardiac pH and metabolite concentrations, at multiple time points, to monitor acid-base balance and anaerobic ATP production. We also exposed hagfish to anoxia to compare the in vitro responses of the excised hearts with the in vivo responses. The calorimetry results revealed a significant reduction in the rate of metabolic heat production over the first hour of anoxia exposure, and a recovery over the subsequent 6 h. This response is likely attributable to a rapid anoxia-induced depression of aerobic ATP-production pathways followed by an upregulation of anaerobic ATP-production pathways such that the ATP production rate was restored to that measured in normoxia. Glycogen-depletion measurements suggest that metabolic processes were initially supported by glycolysis but that an alternative fuel source was used to support the sustained rates of ATP production. The maintenance of intracellular pH during anoxia indicates a remarkable ability of the myocytes to buffer/regulate protons and thus protect cardiac function. Altogether, these results illustrate that the low metabolic demand of the hagfish heart allows for near-routine levels of cardiac metabolism to be supported anaerobically. This is probably a significant contributor to the hagfish's exceptional anoxia tolerance.
Collapse
Affiliation(s)
- Todd E Gillis
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Matthew D Regan
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Georgina K Cox
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Till S Harter
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Colin J Brauner
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Jeff G Richards
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Anthony P Farrell
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
6
|
Rider MH. Role of AMP-activated protein kinase in metabolic depression in animals. J Comp Physiol B 2015; 186:1-16. [PMID: 26174210 DOI: 10.1007/s00360-015-0920-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/23/2015] [Accepted: 07/01/2015] [Indexed: 01/24/2023]
Abstract
AMP-activated protein kinase (AMPK) is a highly conserved eukaryotic protein serine/threonine kinase that controls cellular and whole body energy homoeostasis. AMPK is activated during energy stress by a rise in AMP:ATP ratio and maintains energy balance by phosphorylating targets to switch on catabolic ATP-generating pathways, while at the same time switching off anabolic ATP-consuming processes. Metabolic depression is a strategy used by many animals to survive environmental stress and has been extensively studied across phylogeny by comparative biochemists and physiologists, but the role of AMPK has only recently been addressed. This review first deals with the evolution of AMPK in eukaryotes (excluding plants and fungi) and its regulation. Changes in adenine nucleotides and AMPK activation are described in animals during environmental energy stress, before considering the involvement of AMPK in controlling β-oxidation, fatty acid synthesis, triacylglycerol mobilization and protein synthesis. Lastly, strategies are presented to validate the role of AMPK in mediating metabolic depression by phosphorylating downstream targets.
Collapse
Affiliation(s)
- Mark H Rider
- de Duve Institute and Université Catholique de Louvain, Avenue Hippocrate 75, 1200, Brussels, Belgium.
| |
Collapse
|
7
|
Gillis T, Regan M, Cox G, Harter T, Brauner C, Richards J, Farrell A. Characterizing the metabolic capacity of the anoxic hagfish heart. J Exp Biol 2015. [DOI: 10.https://doi.org/10.1242/jeb.125070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Pacific hagfish, Eptatretus stoutii, can recover from 36 h of anoxia at 10°C. Such anoxia tolerance demands the mobilization of anaerobic fuels and the removal of metabolic wastes, processes that require a functional heart. The purpose of this study was to measure the metabolic response of the excised, cannulated hagfish heart to anoxia using direct calorimetry. These experiments were coupled with measurements of cardiac pH and metabolite concentrations, at multiple time points, to monitor acid-base balance and anaerobic ATP-production. We also exposed hagfish to anoxia to compare the in vitro responses of the excised hearts with the in vivo responses. The calorimetry results revealed a significant reduction in the rate of metabolic heat production over the first hour of anoxia exposure, and a recovery over the subsequent 6 h. This response was likely attributable to a rapid anoxia-induced depression of aerobic ATP-production pathways followed by an up-regulation of anaerobic ATP-production pathways such that the ATP production rate was restored to that measured in normoxia. Glycogen-depletion measurements suggest that metabolic processes were initially supported by glycolysis but that an alternate fuel source was used to support the sustained rates of ATP production. The maintenance of intracellular pH during anoxia indicates a remarkable ability of the myocytes to buffer/regulate protons and thus protect cardiac function. Altogether, these results illustrate that the low metabolic demand of the hagfish heart allows for near-routine levels of cardiac metabolism to be supported anaerobically. This is likely a significant contributor to the hagfish's exceptional anoxia tolerance.
Collapse
Affiliation(s)
- T.E. Gillis
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada, N1G-2W1
| | - M.D. Regan
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - G.K. Cox
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - T.S. Harter
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - C.J. Brauner
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - J.G. Richards
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - A.P. Farrell
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
8
|
Gillis T, Regan M, Cox G, Harter T, Brauner C, Richards J, Farrell A. Characterizing the metabolic capacity of the anoxic hagfish heart. J Exp Biol 2015. [DOI: 10.https:/doi.org/10.1242/jeb.125070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Pacific hagfish, Eptatretus stoutii, can recover from 36 h of anoxia at 10°C. Such anoxia tolerance demands the mobilization of anaerobic fuels and the removal of metabolic wastes, processes that require a functional heart. The purpose of this study was to measure the metabolic response of the excised, cannulated hagfish heart to anoxia using direct calorimetry. These experiments were coupled with measurements of cardiac pH and metabolite concentrations, at multiple time points, to monitor acid-base balance and anaerobic ATP-production. We also exposed hagfish to anoxia to compare the in vitro responses of the excised hearts with the in vivo responses. The calorimetry results revealed a significant reduction in the rate of metabolic heat production over the first hour of anoxia exposure, and a recovery over the subsequent 6 h. This response was likely attributable to a rapid anoxia-induced depression of aerobic ATP-production pathways followed by an up-regulation of anaerobic ATP-production pathways such that the ATP production rate was restored to that measured in normoxia. Glycogen-depletion measurements suggest that metabolic processes were initially supported by glycolysis but that an alternate fuel source was used to support the sustained rates of ATP production. The maintenance of intracellular pH during anoxia indicates a remarkable ability of the myocytes to buffer/regulate protons and thus protect cardiac function. Altogether, these results illustrate that the low metabolic demand of the hagfish heart allows for near-routine levels of cardiac metabolism to be supported anaerobically. This is likely a significant contributor to the hagfish's exceptional anoxia tolerance.
Collapse
Affiliation(s)
- T.E. Gillis
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada, N1G-2W1
| | - M.D. Regan
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - G.K. Cox
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - T.S. Harter
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - C.J. Brauner
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - J.G. Richards
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - A.P. Farrell
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
9
|
Abstract
Decreased oxygen availability impairs cellular energy production and, without a coordinated and matched decrease in energy consumption, cellular and whole organism death rapidly ensues. Of particular interest are mechanisms that protect brain from low oxygen injury, as this organ is not only the most sensitive to hypoxia, but must also remain active and functional during low oxygen stress. As a result of natural selective pressures, some species have evolved molecular and physiological mechanisms to tolerate prolonged hypoxia with no apparent detriment. Among these mechanisms are a handful of responses that are essential for hypoxia tolerance, including (i) sensors that detect changes in oxygen availability and initiate protective responses; (ii) mechanisms of energy conservation; (iii) maintenance of basic brain function; and (iv) avoidance of catastrophic cell death cascades. As the study of hypoxia-tolerant brain progresses, it is becoming increasingly apparent that mitochondria play a central role in regulating all of these critical mechanisms. Furthermore, modulation of mitochondrial function to mimic endogenous neuroprotective mechanisms found in hypoxia-tolerant species confers protection against otherwise lethal hypoxic stresses in hypoxia-intolerant organs and organisms. Therefore, lessons gleaned from the investigation of endogenous mechanisms of hypoxia tolerance in hypoxia-tolerant organisms may provide insight into clinical pathologies related to low oxygen stress.
Collapse
Affiliation(s)
- Matthew E. Pamenter
- Department of Zoology, The University of British Columbia, #4200-6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
10
|
Spangenburg EE, Jackson KC, Schuh RA. AICAR inhibits oxygen consumption by intact skeletal muscle cells in culture. J Physiol Biochem 2013; 69:909-17. [PMID: 23813470 DOI: 10.1007/s13105-013-0269-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 06/14/2013] [Indexed: 11/30/2022]
Abstract
Activation of 5' adenosine monophosphate-activated protein kinase (AMPK) with aminoimidazole carboxamide ribonucleotide (AICAR) increases skeletal muscle glucose uptake and fatty acid oxidation. The purpose of these experiments was to utilize AICAR to enhance palmitate consumption by mitochondria in cultured skeletal muscle cells. In these experiments, we treated C2C12 myotubes or adult single skeletal muscle fibers with varying concentrations of AICAR for different lengths of time. Surprisingly, acute AICAR exposure at most concentrations (0.25-1.5 mM), but not all (0.1 mM), modestly inhibited oxygen consumption even though AICAR increased AMPK phosphorylation. The data suggest that AICAR inhibited oxygen consumption by the cultured muscle in a non-specific manner. The results of these experiments are expected to provide valuable information to investigators interested in using AICAR in cell culture studies.
Collapse
Affiliation(s)
- Espen E Spangenburg
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, 21045, USA,
| | | | | |
Collapse
|
11
|
Abstract
Fish muscle responds to aerobic exercise training and cold acclimation with a more aerobic muscle phenotype than mammalian muscle but through both conserved and distinct molecular events. Differences from mammals in exercise metabolism and diversity in protein isoforms suggest that the regulation of muscle fuel use is more complex in fish. This review considers fish as powerful models for exercise and muscle physiology.
Collapse
|
12
|
Magnoni LJ, Vraskou Y, Palstra AP, Planas JV. AMP-activated protein kinase plays an important evolutionary conserved role in the regulation of glucose metabolism in fish skeletal muscle cells. PLoS One 2012; 7:e31219. [PMID: 22359576 PMCID: PMC3281052 DOI: 10.1371/journal.pone.0031219] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 01/04/2012] [Indexed: 12/16/2022] Open
Abstract
AMPK, a master metabolic switch, mediates the observed increase of glucose uptake in locomotory muscle of mammals during exercise. AMPK is activated by changes in the intracellular AMP:ATP ratio when ATP consumption is stimulated by contractile activity but also by AICAR and metformin, compounds that increase glucose transport in mammalian muscle cells. However, the possible role of AMPK in the regulation of glucose metabolism in skeletal muscle has not been investigated in other vertebrates, including fish. In this study, we investigated the effects of AMPK activators on glucose uptake, AMPK activity, cell surface levels of trout GLUT4 and expression of GLUT1 and GLUT4 as well as the expression of enzymes regulating glucose disposal and PGC1α in trout myotubes derived from a primary muscle cell culture. We show that AICAR and metformin significantly stimulated glucose uptake (1.6 and 1.3 fold, respectively) and that Compound C completely abrogated the stimulatory effects of the AMPK activators on glucose uptake. The combination of insulin and AMPK activators did not result in additive nor synergistic effects on glucose uptake. Moreover, exposure of trout myotubes to AICAR and metformin resulted in an increase in AMPK activity (3.8 and 3 fold, respectively). We also provide evidence suggesting that stimulation of glucose uptake by AMPK activators in trout myotubes may take place, at least in part, by increasing the cell surface and mRNA levels of trout GLUT4. Finally, AICAR increased the mRNA levels of genes involved in glucose disposal (hexokinase, 6-phosphofructokinase, pyruvate kinase and citrate synthase) and mitochondrial biogenesis (PGC-1α) and did not affect glycogen content or glycogen synthase mRNA levels in trout myotubes. Therefore, we provide evidence, for the first time in non-mammalian vertebrates, suggesting a potentially important role of AMPK in stimulating glucose uptake and utilization in the skeletal muscle of fish.
Collapse
Affiliation(s)
- Leonardo J. Magnoni
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona I Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Yoryia Vraskou
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona I Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Arjan P. Palstra
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona I Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Josep V. Planas
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona I Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
- * E-mail:
| |
Collapse
|