1
|
Li CY, Boldt H, Parent E, Ficklin J, James A, Anlage TJ, Boyer LM, Pierce BR, Siegfried KR, Harris MP, Haag ES. Genetic tools for the study of the mangrove killifish, Kryptolebias marmoratus, an emerging vertebrate model for phenotypic plasticity. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:164-177. [PMID: 37553824 DOI: 10.1002/jez.b.23216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/04/2023] [Accepted: 07/21/2023] [Indexed: 08/10/2023]
Abstract
Kryptolebias marmoratus (Kmar), a teleost fish of the order Cyprinodontiformes, has a suite of unique phenotypes and behaviors not observed in other fishes. Many of these phenotypes are discrete and highly plastic-varying over time within an individual, and in some cases reversible. Kmar and its interfertile sister species, K. hermaphroditus, are the only known self-fertile vertebrates. This unusual sexual mode has the potential to provide unique insights into the regulation of vertebrate sexual development, and also lends itself to genetics. Kmar is easily adapted to the lab and requires little maintenance. However, its internal fertilization and small clutch size limits its experimental use. To support Kmar as a genetic model, we compared alternative husbandry techniques to maximize recovery of early cleavage-stage embryos. We find that frequent egg collection enhances yield, and that protease treatment promotes the greatest hatching success. We completed a forward mutagenesis screen and recovered several mutant lines that serve as important tools for genetics in this model. Several will serve as useful viable recessive markers for marking crosses. Importantly, the mutant kissylips lays embryos at twice the rate of wild-type. Combining frequent egg collection with the kissylips mutant background allows for a substantial enhancement of early embryo yield. These improvements were sufficient to allow experimental analysis of early development and the successful mono- and bi-allelic targeted knockout of an endogenous tyrosinase gene with CRISPR/Cas9 nucleases. Collectively, these tools will facilitate modern developmental genetics in this fascinating fish, leading to future insights into the regulation of plasticity.
Collapse
Affiliation(s)
- Cheng-Yu Li
- Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Helena Boldt
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Emily Parent
- Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Jax Ficklin
- Department of Biology, University of Maryland, College Park, Maryland, USA
- College of Computer, Mathematical, and Natural Sciences, Biological Sciences Graduate Program, University of Maryland, College Park, Maryland, USA
| | - Althea James
- Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Troy J Anlage
- Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Lena M Boyer
- Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Brianna R Pierce
- Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Kellee R Siegfried
- Department of Biology, University of Massachusetts, Boston, Massachusetts, USA
| | - Matthew P Harris
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Eric S Haag
- Department of Biology, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
2
|
Tunnah L, Turko AJ, Wright PA. Skin ionocyte density of amphibious killifishes is shaped by phenotypic plasticity and constitutive interspecific differences. J Comp Physiol B 2022; 192:701-711. [PMID: 36056931 DOI: 10.1007/s00360-022-01457-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/13/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
Abstract
When amphibious fishes are on land, gill function is reduced or eliminated and the skin is hypothesized to act as a surrogate site of ionoregulation. Skin ionocytes are present in many fishes, particularly those with amphibious life histories. We used nine closely related killifishes spanning a range of amphibiousness to first test the hypothesis that amphibious killifishes have evolved constitutively increased skin ionocyte density to promote ionoregulation on land. We found that skin ionocyte densities were constitutively higher in five of seven amphibious species examined relative to exclusively water-breathing species when fish were prevented from leaving water, strongly supporting our hypothesis. Next, to examine the scope for plasticity, we tested the hypothesis that skin ionocyte density in amphibious fishes would respond plastically to air-exposure to promote ionoregulation in terrestrial environments. We found that air-exposure induced plasticity in skin ionocyte density only in the two species classified as highly amphibious, but not in moderately amphibious species. Specifically, skin ionocyte density significantly increased in Anablepsoides hartii (168%) and Kryptolebias marmoratus (37%) following a continuous air-exposure, and only in K. marmoratus (43%) following fluctuating air-exposure. Collectively, our data suggest that highly amphibious killifishes have evolved both increased skin ionocyte density as well as skin that is more responsive to air-exposure compared to exclusively water-breathing and less amphibious species. Our findings are consistent with the idea that gaining the capacity for cutaneous ionoregulation is a key evolutionary step that enables amphibious fishes to survive on land.
Collapse
Affiliation(s)
- Louise Tunnah
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Andy J Turko
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
3
|
Snead AA, Earley RL. Predicting the in-between: Present and future habitat suitability of an intertidal euryhaline fish. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2021.101523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Ridgway MR, Tunnah L, Bernier NJ, Wilson JM, Wright PA. Novel spikey ionocytes are regulated by cortisol in the skin of an amphibious fish. Proc Biol Sci 2021; 288:20212324. [PMID: 34933603 PMCID: PMC8692953 DOI: 10.1098/rspb.2021.2324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/26/2021] [Indexed: 12/24/2022] Open
Abstract
Cortisol is a major osmoregulatory hormone in fishes. Cortisol acts upon the gills, the primary site of ionoregulation, through modifications to specialized ion-transporting cells called ionocytes. We tested the hypothesis that cortisol also acts as a major regulator of skin ionocyte remodelling in the amphibious mangrove rivulus (Kryptolebias marmoratus) when gill function ceases during the water-to-land transition. When out of water, K. marmoratus demonstrated a robust cortisol response, which was linked with the remodelling of skin ionocytes to increase cell cross-sectional area and Na+-K+-ATPase (NKA) content, but not when cortisol synthesis was chemically inhibited by metyrapone. Additionally, we discovered a novel morphology of skin-specific ionocyte that are spikey with multiple cell processes. Spikey ionocytes increased in density, cell cross-sectional area and NKA content during air exposure, but not in metyrapone-treated fish. Our findings demonstrate that skin ionocyte remodelling during the water-to-land transition in amphibious fish is regulated by cortisol, the same hormone that regulates gill ionocyte remodelling in salinity-challenged teleosts, suggesting conserved hormonal function across diverse environmental disturbances and organs in fishes.
Collapse
Affiliation(s)
- Megan R. Ridgway
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Louise Tunnah
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Nicholas J. Bernier
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jonathan M. Wilson
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| | - Patricia A. Wright
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
5
|
Turko AJ, Rossi GS, Wright PA. More than Breathing Air: Evolutionary Drivers and Physiological Implications of an Amphibious Lifestyle in Fishes. Physiology (Bethesda) 2021; 36:307-314. [PMID: 34431416 DOI: 10.1152/physiol.00012.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Amphibious and aquatic air-breathing fishes both exchange respiratory gasses with the atmosphere, but these fishes differ in physiology, ecology, and possibly evolutionary origins. We introduce a scoring system to characterize interspecific variation in amphibiousness and use this system to highlight important unanswered questions about the evolutionary physiology of amphibious fishes.
Collapse
Affiliation(s)
- Andy J Turko
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Giulia S Rossi
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
6
|
Cochrane PV, Jonz MG, Wright PA. The development of the O 2-sensing system in an amphibious fish: consequences of variation in environmental O 2 levels. J Comp Physiol B 2021; 191:681-699. [PMID: 34023926 DOI: 10.1007/s00360-021-01379-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/04/2021] [Accepted: 05/07/2021] [Indexed: 11/25/2022]
Abstract
Proper development of the O2-sensing system is essential for survival. Here, we characterized the development of the O2-sensing system in the mangrove rivulus (Kryptolebias marmoratus), an amphibious fish that transitions between hypoxic aquatic environments and O2-rich terrestrial environments. We found that NECs formed in the gills and skin of K. marmoratus during embryonic development and that both NEC populations are retained from the embryonic stage to adulthood. We also found that the hyperventilatory response to acute hypoxia was present in embryonic K. marmoratus, indicating that functional O2-sensing pathways are formed during embryonic development. We then exposed embryos to aquatic normoxia, aquatic hyperoxia, aquatic hypoxia, or terrestrial conditions for the first 30 days of embryonic development and tested the hypothesis that environmental O2 availability during embryonic development modulates the development of the O2-sensing system in amphibious fishes. Surprisingly, we found that O2 availability during embryonic development had little impact on the density and morphology of NECs in the gills and skin of K. marmoratus. Collectively, our results demonstrate that, unlike the only other species of fish in which NEC development has been studied to date (i.e., zebrafish), NEC development in K. marmoratus is largely unaffected by environmental O2 levels during the embryonic stage, indicating that there is interspecies variation in O2-induced plasticity in the O2-sensing system of fishes.
Collapse
Affiliation(s)
- Paige V Cochrane
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Michael G Jonz
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
7
|
Wright PA. Cutaneous respiration and osmoregulation in amphibious fishes. Comp Biochem Physiol A Mol Integr Physiol 2021; 253:110866. [DOI: 10.1016/j.cbpa.2020.110866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 01/06/2023]
|
8
|
Dong YW, Blanchard TS, Noll A, Vasquez P, Schmitz J, Kelly SP, Wright PA, Whitehead A. Genomic and physiological mechanisms underlying skin plasticity during water to air transition in an amphibious fish. J Exp Biol 2021; 224:jeb235515. [PMID: 33328287 PMCID: PMC7860121 DOI: 10.1242/jeb.235515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022]
Abstract
The terrestrial radiation of vertebrates required changes in skin that resolved the dual demands of maintaining a mechanical and physiological barrier while also facilitating ion and gas transport. Using the amphibious killifish Kryptolebias marmoratus, we found that transcriptional regulation of skin morphogenesis was quickly activated upon air exposure (1 h). Rapid regulation of cell-cell adhesion complexes and pathways that regulate stratum corneum formation was consistent with barrier function and mechanical reinforcement. Unique blood vessel architecture and regulation of angiogenesis likely supported cutaneous respiration. Differences in ionoregulatory transcripts and ionocyte morphology were correlated with differences in salinity acclimation and resilience to air exposure. Evolutionary analyses reinforced the adaptive importance of these mechanisms. We conclude that rapid plasticity of barrier, respiratory and ionoregulatory functions in skin evolved to support the amphibious lifestyle of K. marmoratus; similar processes may have facilitated the terrestrial radiation of other contemporary and ancient fishes.
Collapse
Affiliation(s)
- Yun-Wei Dong
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, People's Republic of China
| | - Tessa S Blanchard
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Angela Noll
- Primate Genetics Laboratory, German Primate Center (DPZ), Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Picasso Vasquez
- Department of Environmental Toxicology, University of California Davis, Davis, CA 95616, USA
| | - Juergen Schmitz
- Institute of Experimental Pathology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, 48149 Münster, Germany
| | - Scott P Kelly
- Department of Biology, York University, Toronto, ON, Canada, M3J 1P3
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Andrew Whitehead
- Department of Environmental Toxicology, Center for Population Biology, Coastal and Marine Sciences Institute, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
9
|
Burggren W, Bautista N. Invited review: Development of acid-base regulation in vertebrates. Comp Biochem Physiol A Mol Integr Physiol 2019; 236:110518. [DOI: 10.1016/j.cbpa.2019.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/26/2022]
|
10
|
Blanchard TS, Whitehead A, Dong YW, Wright PA. Phenotypic flexibility in respiratory traits is associated with improved aerial respiration in an amphibious fish out of water. ACTA ACUST UNITED AC 2019; 222:jeb.186486. [PMID: 30446543 DOI: 10.1242/jeb.186486] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/14/2018] [Indexed: 01/17/2023]
Abstract
Amphibious fishes have evolved multiple adaptive strategies for respiring out of water, but there has been less focus on reversible plasticity. We tested the hypothesis that when amphibious fishes leave water, enhanced respiratory performance on land is the result of rapid functional phenotypic flexibility of respiratory traits. We acclimated four isogenic strains of Kryptolebias marmoratus to air for 0, 1, 3 or 7 days. We compared respiratory performance out of water with traits linked to the O2 cascade. Aerial O2 consumption rate was measured over a step-wise decrease in O2 levels. There were significant differences between strains, but time out of water had the largest impact on measured parameters. K ryptolebias marmoratus had improved respiratory performance [lower aerial critical oxygen tension (P crit), higher regulation index (RI)] after only 1 day of air exposure, and these changes were strongly associated with the change in hematocrit and dorsal cutaneous angiogenesis. Additionally, we found that 1 h of air exposure induced the expression of four angiogenesis-associated genes - vegfa, angpt2, pecam-1 and efna1 - in the skin. After 7 days in air, respiratory traits were not significantly linked to the variation in either aerial P crit or RI. Overall, our data indicate that there are two phases involved in the enhancement of aerial respiration: an initial rapid response (1 day) and a delayed response (7 days). We found evidence for the hypothesis that respiratory performance on land in amphibious fishes is the result of rapid flexibility in both O2 uptake and O2 carrying capacity.
Collapse
Affiliation(s)
- Tessa S Blanchard
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Andrew Whitehead
- Department of Environmental Toxicology, University of California Davis, Davis, CA 95616, USA
| | - Yunwei W Dong
- Department of Environmental Toxicology, University of California Davis, Davis, CA 95616, USA.,State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen 361102, People's Republic of China
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| |
Collapse
|
11
|
Martin KE, Ehrman JM, Wilson JM, Wright PA, Currie S. Skin ionocyte remodeling in the amphibious mangrove rivulus fish (Kryptolebias marmoratus
). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 331:128-138. [DOI: 10.1002/jez.2247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Keri E. Martin
- Department of Biology, Mount Allison University; Sackville New Brunswick Canada
| | - James M. Ehrman
- Department of Biology, Mount Allison University; Sackville New Brunswick Canada
| | - Jonathan M. Wilson
- Department of Biology, Wilfrid Laurier University; Waterloo Ontario Canada
| | - Patricia A. Wright
- Department of Integrative Biology, University of Guelph; Guelph Ontario Canada
| | - Suzanne Currie
- Department of Biology, Mount Allison University; Sackville New Brunswick Canada
| |
Collapse
|