1
|
Thi Hong Gam L, Montgomery DW, Laronde DS, Mackinnon R, Richards JG, Brauner CJ. Acute freshwater CO 2 exposure does not impair seawater transfer in three different sizes of Atlantic salmon (Salmo salar) subjected to different photoperiod manipulations. JOURNAL OF FISH BIOLOGY 2024. [PMID: 39377470 DOI: 10.1111/jfb.15957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/11/2024] [Accepted: 09/15/2024] [Indexed: 10/09/2024]
Abstract
There is a growing interest in Atlantic salmon (Salmo salar) aquaculture to extend the time fish are reared in freshwater (FW) recirculating aquaculture systems (RAS), producing larger FW salmon that can then be induced to undergo smoltification before transfer into marine net pens for grow-out and harvest. Smolts can be produced by photoperiod (PT) manipulation in RASs, but little is known about how delaying smoltification to larger body sizes affects susceptibility to elevated CO2 levels (hypercapnia), which can occur at high stocking densities in FW RAS or during transport from FW RAS rearing facilities to marine net pens. To address this, Atlantic salmon were reared from hatch to one of three different sizes (~230, ~580, or ~1300 g) in FW (3 ppt) under continuous light (24:0, light:dark). Once fish reached the desired sizes, a group of salmon were maintained on continuous light 24L:0D to serve as a control salmon. A second group of salmon were exposed to 8 weeks of 12L:12D and then to 4 weeks of 24L:0D to serve as PT treatment salmon, which is the PT manipulation commonly used in Atlantic salmon aquaculture to induce smoltification. At the end of PT manipulation, both control and PT treatment salmon were exposed to 0% or 1.5% CO2 (30 mg/L) for 96 h in FW and then transferred to air-equilibrated seawater (SW, 35 ppt, normocapnia). Salmon were sampled at the end of the 96-h FW CO2 exposure and at 24 h and 7 days in SW for measurements of blood ion/acid-base status, muscle water content (MWC), and gill and kidney Na+/K+ ATPase (NKA) activity. Exposure to 96 h of CO2 in FW resulted in acid-base disturbances in fish from all three size classes, with decreases in blood pH and increases in blood PCO2 and plasma [HCO3 -] but no mortality. Despite these large acid-base disturbances in FW, after transfer to normocapnic SW, there were no significant effects of CO2 exposure on extracellular blood pH, intracellular red blood cell pH, or plasma osmoregulatory status for all three sizes of post-smolt salmon. In general, SW transfer was associated with significant increases in plasma ions and osmolality, as well as gill and kidney NKA activity after 24 h and 1 week in SW with no significant impacts between different sizes of salmon. Thus, exposure to 30 mg CO2/L that mimics levels experienced during transport from FW RAS to an SW transfer site may have minimal effects on Atlantic salmon smolts up to 1300 g.
Collapse
Affiliation(s)
- Le Thi Hong Gam
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel W Montgomery
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel S Laronde
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Rachael Mackinnon
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jeffrey G Richards
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin J Brauner
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Harter TS, Dichiera AM, Esbaugh AJ. The physiological significance of plasma-accessible carbonic anhydrase in the respiratory systems of fishes. J Comp Physiol B 2024; 194:717-737. [PMID: 38842596 DOI: 10.1007/s00360-024-01562-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
Carbonic anhydrase (CA) activity is ubiquitously found in all vertebrate species, tissues and cellular compartments. Most species have plasma-accessible CA (paCA) isoforms at the respiratory surfaces, where the enzyme catalyzes the conversion of plasma bicarbonate to carbon dioxide (CO2) that can be excreted by diffusion. A notable exception are the teleost fishes that appear to lack paCA at their gills. The present review: (i) recapitulates the significance of CA activity and distribution in vertebrates; (ii) summarizes the current evidence for the presence or absence of paCA at the gills of fishes, from the basal cyclostomes to the derived teleosts and extremophiles such as the Antarctic icefishes; (iii) explores the contribution of paCA to organismal CO2 excretion in fishes; and (iv) the functional significance of its absence at the gills, for the specialized system of O2 transport in most teleosts; (v) outlines the multiplicity and isoform distribution of membrane-associated CAs in fishes and methodologies to determine their plasma-accessible orientation; and (vi) sketches a tentative time line for the evolutionary dynamics of branchial paCA distribution in the major groups of fishes. Finally, this review highlights current gaps in the knowledge on branchial paCA function and provides recommendations for future work.
Collapse
Affiliation(s)
- Till S Harter
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada.
| | - Angelina M Dichiera
- College of William and Mary, Virginia Institute of Marine Science, Gloucester Point, VA, 23062, USA
| | - Andrew J Esbaugh
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX, 78373, USA
| |
Collapse
|
3
|
Nelson C, Dichiera AM, Jung EH, Brauner CJ. An atlas of plasma-accessible carbonic anhydrase availability in the model teleost, the rainbow trout. J Comp Physiol B 2023; 193:293-305. [PMID: 37029801 DOI: 10.1007/s00360-023-01484-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/28/2023] [Accepted: 03/14/2023] [Indexed: 04/09/2023]
Abstract
The unique teleost oxygenation system that permits enhanced oxygen unloading during stress comprises three main characteristics: pH-sensitive haemoglobin, red blood cell (RBC) intracellular pH (pHi) protection, and a heterogeneous distribution of plasma-accessible carbonic anhydrase (paCA). A heterogeneous distribution of paCA is essential; its presence permits enhanced oxygen unloading during stress, while its absence at the gills maintains conditions for oxygen uptake by pH-sensitive haemoglobins. We hypothesised that paCA would be absent in all four gill arches, as has been previously indicated for arch two, and that paCA would be present in all other tissues. Through a suite of biochemical and molecular methods, we confirmed the absence of paCA from all four arches. We also found evidence for paCA in nine other tissues and a lack of paCA availability in the stomach. Expression was highly variable between tissues and suggests these differences may be associated with their respective metabolic activities. Additionally, we analysed the specific CA-IV isoform expressed within each tissue and showed almost complete separation of expression between tissues; CA-IVa was detected in the heart, brain, anterior intestine, and liver, whereas CA-IVb was detected in all intestine sections, pyloric caeca, kidney, and white muscle. This adds to a growing collection of work suggesting CA-IVa and b play divergent roles in gas exchange and ion/acid-base balance, respectively. The current study represents the first comprehensive atlas of paCA availability within the circulatory system of the model teleost, rainbow trout, and fills important gaps in our knowledge of this unique oxygenation system.
Collapse
Affiliation(s)
| | | | - Ellen H Jung
- University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Colin J Brauner
- University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
4
|
Dichiera AM, De Anda V, Gilmour KM, Baker BJ, Esbaugh AJ. Functional divergence of teleost carbonic anhydrase 4. Comp Biochem Physiol A Mol Integr Physiol 2023; 277:111368. [PMID: 36642322 DOI: 10.1016/j.cbpa.2023.111368] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/14/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
The functional role of membrane-bound carbonic anhydrases (CAs) has been of keen interest in the past decade, and in particular, studies have linked CA in red muscle, heart, and eye to enhanced tissue oxygen extraction in bony fishes (teleosts). However, the number of purported membrane-bound CA isoforms in teleosts, combined with the imperfect system of CA isoform nomenclature, present roadblocks for ascribing physiological functions to particular CA isoforms across different teleost lineages. Here we developed an organizational framework for membrane-bound CAs in teleosts, providing the latest phylogenetic analysis of extant CA4 and CA4-like isoforms. Our data confirm that there are three distinct isoforms of CA4 (a, b, and c) that are conserved across major teleost lineages, with the exception of CA4c gene being lost in salmonids. Tissue distribution analyses suggest CA4a functions in oxygen delivery across teleost lineages, while CA4b may be specialized for renal acid-base balance and ion regulation. This work provides an important foundation for researchers to elucidate the functional significance of CA4 isoforms in fishes.
Collapse
Affiliation(s)
- Angelina M Dichiera
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Valerie De Anda
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA. https://twitter.com/val_deanda
| | | | - Brett J Baker
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA; Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA. https://twitter.com/archaeal
| | - Andrew J Esbaugh
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA
| |
Collapse
|
5
|
Harter TS, Clifford AM, Tresguerres M. Adrenergically induced translocation of red blood cell β-adrenergic sodium-proton exchangers has ecological relevance for hypoxic and hypercapnic white seabass. Am J Physiol Regul Integr Comp Physiol 2021; 321:R655-R671. [PMID: 34494485 DOI: 10.1152/ajpregu.00175.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
White seabass (Atractoscion nobilis) increasingly experience periods of low oxygen (O2; hypoxia) and high carbon dioxide (CO2, hypercapnia) due to climate change and eutrophication of the coastal waters of California. Hemoglobin (Hb) is the principal O2 carrier in the blood and in many teleost fishes Hb-O2 binding is compromised at low pH; however, the red blood cells (RBC) of some species regulate intracellular pH with adrenergically stimulated sodium-proton-exchangers (β-NHEs). We hypothesized that RBC β-NHEs in white seabass are an important mechanism that can protect the blood O2-carrying capacity during hypoxia and hypercapnia. We determined the O2-binding characteristics of white seabass blood, the cellular and subcellular response of RBCs to adrenergic stimulation, and quantified the protective effect of β-NHE activity on Hb-O2 saturation. White seabass had typical teleost Hb characteristics, with a moderate O2 affinity (Po2 at half-saturation; P50 2.9 kPa) that was highly pH-sensitive (Bohr coefficient -0.92; Root effect 52%). Novel findings from super-resolution microscopy revealed β-NHE protein in vesicle-like structures and its translocation into the membrane after adrenergic stimulation. Microscopy data were corroborated by molecular and phylogenetic results and a functional characterization of β-NHE activity. The activation of RBC β-NHEs increased Hb-O2 saturation by ∼8% in normoxic hypercapnia and by up to ∼20% in hypoxic normocapnia. Our results provide novel insight into the cellular mechanism of adrenergic RBC stimulation within an ecologically relevant context. β-NHE activity in white seabass has great potential to protect arterial O2 transport during hypoxia and hypercapnia but is less effective during combinations of these stressors.
Collapse
Affiliation(s)
- Till S Harter
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California
| | - Alexander M Clifford
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California
| | - Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California
| |
Collapse
|
6
|
Esbaugh AJ, Ackerly KL, Dichiera AM, Negrete B. Is hypoxia vulnerability in fishes a by-product of maximum metabolic rate? J Exp Biol 2021; 224:269306. [PMID: 34184035 DOI: 10.1242/jeb.232520] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The metabolic index concept combines metabolic data and known thermal sensitivities to estimate the factorial aerobic scope of animals in different habitats, which is valuable for understanding the metabolic demands that constrain species' geographical distributions. An important assumption of this concept is that the O2 supply capacity (which is equivalent to the rate of oxygen consumption divided by the environmental partial pressure of oxygen: ) is constant at O2 tensions above the critical O2 threshold (i.e. the where O2 uptake can no longer meet metabolic demand). This has led to the notion that hypoxia vulnerability is not a selected trait, but a by-product of selection on maximum metabolic rate. In this Commentary, we explore whether this fundamental assumption is supported among fishes. We provide evidence that O2 supply capacity is not constant in all fishes, with some species exhibiting an elevated O2 supply capacity in hypoxic environments. We further discuss the divergent selective pressures on hypoxia- and exercise-based cardiorespiratory adaptations in fishes, while also considering the implications of a hypoxia-optimized O2 supply capacity for the metabolic index concept.
Collapse
Affiliation(s)
- Andrew J Esbaugh
- University of Texas at Austin, Marine Science Institute, Port Aransas, TX 78373, USA
| | - Kerri L Ackerly
- University of Texas at Austin, Marine Science Institute, Port Aransas, TX 78373, USA
| | - Angelina M Dichiera
- University of Texas at Austin, Marine Science Institute, Port Aransas, TX 78373, USA
| | - Benjamin Negrete
- University of Texas at Austin, Marine Science Institute, Port Aransas, TX 78373, USA
| |
Collapse
|
7
|
Abstract
The diversity of fish hemoglobins and the association with oxygen availability and physiological requirements during the life cycle has attracted scientists since the first report on multiple hemoglobin in fishes (Buhler and Shanks 1959). The functional heterogeneity of the fish hemoglobins enables many species to tolerate hypoxic conditions and exhausting swimming, but also to maintain the gas pressure in the swim bladder at large depths. The hemoglobin repertoire has further increased in various species displaying polymorphic hemoglobin variants differing in oxygen binding properties. The multiplicity of fish hemoglobins as particularly found in the tetraploid salmonids strongly contrasts with the complete loss of hemoglobins in Antarctic icefishes and illustrates the adaptive radiation in the oxygen transport of this successful vertebrate group.
Collapse
Affiliation(s)
- Øivind Andersen
- Norwegian Institute of Food, Fisheries and Aquaculture Research (NOFIMA), PO BOX 210,1431, Ås, Norway.
| |
Collapse
|
8
|
Nikinmaa M, Berenbrink M, Brauner CJ. Regulation of erythrocyte function: Multiple evolutionary solutions for respiratory gas transport and its regulation in fish. Acta Physiol (Oxf) 2019; 227:e13299. [PMID: 31102432 DOI: 10.1111/apha.13299] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/03/2019] [Accepted: 05/13/2019] [Indexed: 01/01/2023]
Abstract
Gas transport concepts in vertebrates have naturally been formulated based on human blood. However, the first vertebrates were aquatic, and fish and tetrapods diverged hundreds of millions years ago. Water-breathing vertebrates live in an environment with low and variable O2 levels, making environmental O2 an important evolutionary selection pressure in fishes, and various features of their gas transport differ from humans. Erythrocyte function in fish is of current interest, because current environmental changes affect gas transport, and because especially zebrafish is used as a model in biomedical studies, making it important to understand the differences in gas transport between fish and mammals to be able to carry out meaningful studies. Of the close to thirty thousand fish species, teleosts are the most species-numerous group. However, two additional radiations are discussed: agnathans and elasmobranchs. The gas transport by elasmobranchs may be closest to the ancestors of tetrapods. The major difference in their haemoglobin (Hb) function to humans is their high urea tolerance. Agnathans differ from other vertebrates by having Hbs, where cooperativity is achieved by monomer-oligomer equilibria. Their erythrocytes also lack the anion exchange pathway with profound effects on CO2 transport. Teleosts are characterized by highly pH sensitive Hbs, which can fail to become fully O2 -saturated at low pH. An adrenergically stimulated Na+ /H+ exchanger has evolved in their erythrocyte membrane, and plasma-accessible carbonic anhydrase can be differentially distributed among their tissues. Together, and differing from other vertebrates, these features can maximize O2 unloading in muscle while ensuring O2 loading in gills.
Collapse
Affiliation(s)
| | - Michael Berenbrink
- Institute of Integrative Biology, Department of Evolution, Ecology and Behaviour University of Liverpool Liverpool UK
| | - Colin J. Brauner
- Department of Zoology University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
9
|
Harter TS, Zanuzzo FS, Supuran CT, Gamperl AK, Brauner CJ. Functional support for a novel mechanism that enhances tissue oxygen extraction in a teleost fish. Proc Biol Sci 2019; 286:20190339. [PMID: 31138074 DOI: 10.1098/rspb.2019.0339] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A successful spawning migration in salmon depends on their athletic ability, and thus on efficient cardiovascular oxygen (O2) transport. Most teleost fishes have highly pH-sensitive haemoglobins (Hb) that can release large amounts of O2 when the blood is acidified at the tissues. We hypothesized that plasma-accessible carbonic anhydrase (paCA; the enzyme that catalyses proton production from CO2) is required to acidify the blood at the tissues and promote tissue O2 extraction. Previous studies have reported an elevated tissue O2 extraction in hypoxia-acclimated teleosts that may also be facilitated by paCA. Thus, to create experimental contrasts in tissue O2 extraction, Atlantic salmon were acclimated to normoxia or hypoxia (40% air saturation for more than six weeks), and the role of paCA in enhancing tissue O2 extraction was tested by inhibiting paCA at rest and during submaximal exercise. Our results show that: (i) in both acclimation groups, the inhibition of paCA increased cardiac output by one-third, indicating a role of paCA in promoting tissue O2 extraction during exercise, recovery and at rest; (ii) the recruitment of paCA was plastic and increased following hypoxic acclimation; and (iii) maximal exercise performance in salmon, and thus a successful spawning migration, may not be possible without paCA.
Collapse
Affiliation(s)
- T S Harter
- 1 Department of Zoology, The University of British Columbia , Vancouver, British Columbia, Canada V6T 1Z4
| | - F S Zanuzzo
- 2 Department of Ocean Sciences, Memorial University of Newfoundland , St John's, Newfoundland, Canada A1C 5S7
| | - C T Supuran
- 3 NEUROFARBA Department, Università degli Studi di Firenze , Florence , Italy
| | - A K Gamperl
- 2 Department of Ocean Sciences, Memorial University of Newfoundland , St John's, Newfoundland, Canada A1C 5S7
| | - C J Brauner
- 1 Department of Zoology, The University of British Columbia , Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
10
|
Harter TS, May AG, Federspiel WJ, Supuran CT, Brauner CJ. Time course of red blood cell intracellular pH recovery following short-circuiting in relation to venous transit times in rainbow trout, Oncorhynchus mykiss. Am J Physiol Regul Integr Comp Physiol 2018; 315:R397-R407. [PMID: 29641235 DOI: 10.1152/ajpregu.00062.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Accumulating evidence is highlighting the importance of a system of enhanced hemoglobin-oxygen (Hb-O2) unloading for cardiovascular O2 transport in teleosts. Adrenergically stimulated sodium-proton exchangers (β-NHE) create H+ gradients across the red blood cell (RBC) membrane that are short-circuited in the presence of plasma-accessible carbonic anhydrase (paCA) at the tissues; the result is a large arterial-venous pH shift that greatly enhances O2 unloading from pH-sensitive Hb. However, RBC intracellular pH (pHi) must recover during venous transit (31-90 s) to enable O2 loading at the gills. The halftimes ( t1/2) and magnitudes of RBC β-adrenergic stimulation, short-circuiting with paCA and recovery of RBC pHi, were assessed in vitro, on rainbow trout whole blood, and using changes in closed-system partial pressure of O2 as a sensitive indicator for changes in RBC pHi. In addition, the recovery rate of RBC pHi was assessed in a continuous-flow apparatus that more closely mimics RBC transit through the circulation. Results indicate that: 1) the t1/2 of β-NHE short-circuiting is likely within the residence time of blood in the capillaries, 2) the t1/2 of RBC pHi recovery is 17 s and within the time of RBC venous transit, and 3) after short-circuiting, RBCs reestablish the initial H+ gradient across the membrane and can potentially undergo repeated cycles of short-circuiting and recovery. Thus, teleosts have evolved a system that greatly enhances O2 unloading from pH-sensitive Hb at the tissues, while protecting O2 loading at the gills; the resulting increase in O2 transport per unit of blood flow may enable the tremendous athletic ability of salmonids.
Collapse
Affiliation(s)
- Till S Harter
- Department of Zoology, University of British Columbia , Vancouver, BC , Canada
| | - Alexandra G May
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William J Federspiel
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,ALung Technologies, Inc. , Pittsburgh, Pennsylvania
| | - Claudiu T Supuran
- NEUROFARBA Department, Università degli Studi di Firenze , Florence , Italy
| | - Colin J Brauner
- Department of Zoology, University of British Columbia , Vancouver, BC , Canada
| |
Collapse
|