1
|
Yoshino-Hashizawa K, Nishiuchi Y, Hiragochi M, Kihara M, Kobayasi KI, Hiryu S. The distress context of social calls evokes a fear response in the bat Pipistrellus abramus. J Exp Biol 2023; 226:jeb246271. [PMID: 37921105 PMCID: PMC10714146 DOI: 10.1242/jeb.246271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Bats primarily use sound information, including echolocation, for social communication. Bats under stressful conditions, for example when confronted by a predator, will emit aggressive social calls. The presentation of aggressive social calls, including distress calls (DCs), is known to increase heart rate (fH), but how this change in fH is related to the bat's sound perception and how this evokes behaviors such as the fear response is unknown. Herein, we show that the perception of a distress context induces freezing behavior as a fear response in bats. We found that bats responded by freezing and displayed increased fH when they were presented with a conspecific donor bat in a distress situation evoked by gentle poking with a cotton swab. In addition, when we presented two types of auditory oddball paradigms with different probabilities of DCs and echolocation calls (ECs), the bats' fH increased when DCs were presented as deviant or control stimuli within standard ECs but did not increase when DCs were presented as standard stimuli. These results suggest that the situational context created by the frequency of sound presentation, rather than simply a single sound feature, induces fH increases and freezing as fear responses in bats.
Collapse
Affiliation(s)
- Kazuki Yoshino-Hashizawa
- Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe, Kyoto 610-0394, Japan
| | - Yuna Nishiuchi
- Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe, Kyoto 610-0394, Japan
| | - Midori Hiragochi
- Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe, Kyoto 610-0394, Japan
| | - Motoki Kihara
- Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe, Kyoto 610-0394, Japan
| | - Kohta I. Kobayasi
- Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe, Kyoto 610-0394, Japan
| | - Shizuko Hiryu
- Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe, Kyoto 610-0394, Japan
| |
Collapse
|
2
|
Pronounced differences in heart rate and metabolism distinguish daily torpor and short-term hibernation in two bat species. Sci Rep 2022; 12:21721. [PMID: 36522368 PMCID: PMC9755216 DOI: 10.1038/s41598-022-25590-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Torpor, and its differential expression, is essential to the survival of many mammals and birds. Physiological characteristics of torpor appear to vary between those species that express strict daily heterothermy and those capable of multiday hibernation, but comparisons are complicated by the temperature-dependence of variables. Previous reviews have compared these different torpor strategies by measuring the depth and duration of torpor in multiple species. However, direct comparison of multiple physiological parameters under similar thermal conditions are lacking. Here, we quantified three physiological variables; body temperature, metabolic rate (MR) and heart rate (HR) of two small heterothermic bats (daily heterotherm Syconycteris australis, and hibernator Nyctophilus gouldi) under comparable thermal conditions and torpor bout durations. When normothermic and resting both MR and HR were similar for the two species. However, during torpor the minimum HR was more than fivefold higher, and minimum MR was 6.5-fold higher for the daily heterotherm than for the hibernator at the same subcutaneous Tb (16 ± 0.5 °C). The data show that the degree of heterothermy defined using Tb is not necessarily a precise proxy for physiological capacity during torpor in these bats and is unlikely to reveal accurate energy budgets. Our study provides evidence supporting a distinction between daily torpor in a daily heterotherm and short term torpor in a hibernator, at least within the Chiroptera with regard to these physiological variables. This exists even when individuals display the same degree of Tb reduction, which has clear implications for the modelling of their energy expenditure.
Collapse
|
3
|
Wu J, Zhang L, Shen C, Sin SYW, Lei C, Zhao H. Comparative transcriptome analysis reveals molecular adaptations underlying distinct immunity and inverted resting posture in bats. Integr Zool 2022; 18:493-505. [PMID: 36049759 DOI: 10.1111/1749-4877.12676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding how natural selection shapes unique traits in mammals is a central topic in evolutionary biology. The mammalian order Chiroptera (bats) is attractive for biologists as well as the general public due to their specific traits of extraordinary immunity and inverted resting posture. However, genomic resources for bats that occupy key phylogenetic positions are not sufficient, which hinders comprehensive investigation of the molecular mechanisms underpinning the origin of specific traits in bats. Here, we sequenced the transcriptomes of five bats that are phylogenetically divergent and occupy key positions in the phylogenetic tree of bats. In combination with the available genomes of 19 bats and 21 other mammals, we built a database consisting of 10,918 one-to-one ortholog genes and reconstructed phylogenetic relationships of these mammals. We found that genes related to immunity, bone remodeling and cardiovascular system are targets of natural selection along the ancestral branch of bats. Further analyses revealed that the T cell receptor signaling pathway involved in immune adaptation is specifically enriched in bats. Moreover, molecular adaptations of bone remodeling, cardiovascular system, and balance sensing may help to explain the reverted resting posture in bats. Our study provides valuable transcriptome resources, enabling us to tentatively identify genetic changes associated with bat-specific traits. This work is among the first to advance our understanding of molecular underpinnings of inverted resting posture in bats, which could provide insight into healthcare applications such as hypertension in humans. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jinwei Wu
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region of Ministry of Education, China Three Gorges University, Yichang, China
| | - Libiao Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Chao Shen
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Simon Yung Wa Sin
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
| | - Caoqi Lei
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Huabin Zhao
- College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Offerhaus JA, Snelderwaard PC, Algül S, Faber JW, Riebel K, Jensen B, Boukens BJ. High heart rate associated early repolarization causes J-waves in both zebra finch and mouse. Physiol Rep 2021; 9:e14775. [PMID: 33709567 PMCID: PMC7953022 DOI: 10.14814/phy2.14775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/22/2021] [Accepted: 02/04/2021] [Indexed: 11/24/2022] Open
Abstract
High heart rates are a feature of small endothermic—or warm‐blooded—mammals and birds. In small mammals, the QT interval is short, and local ventricular recordings reveal early repolarization that coincides with the J‐wave on the ECG, a positive deflection following the QRS complex. Early repolarization contributes to short QT‐intervals thereby enabling brief cardiac cycles and high heart rates. We therefore hypothesized high hearts rates associate with early repolarization and J‐waves on the ECG of endothermic birds. We tested this hypothesis by comparing isolated hearts of zebra finches and mice and recorded pseudo‐ECGs and optical action potentials (zebra finch, n = 8; mouse, n = 8). In both species, heart rate exceeded 300 beats per min, and total ventricular activation was fast (QRS < 10 ms). Ventricular activation progressed from the left to the right ventricle in zebra finch, whereas it progressed from apex‐to‐base in mouse. In both species, the early repolarization front followed the activation front, causing a positive J‐wave in the pseudo‐ECG. Inhibition of early repolarization by 4‐aminopyridine reduced J‐wave amplitude in both species. Action potential duration was similar between ventricles in zebra finch, whereas in mouse the left ventricular action potential was longer. Accordingly, late repolarization had opposite directions in zebra finch (left‐right) and mouse (right‐left). This caused a similar direction for the zebra finch J‐wave and T‐wave, whereas in the mouse they were discordant. Our findings demonstrate that early repolarization and the associated J‐wave may have evolved by convergence in association with high heart rates.
Collapse
Affiliation(s)
- Joost A Offerhaus
- Department of Experimental Cardiology, Academic Medical Center, Amsterdam University Medical Center, Amsterdam, Netherlands
| | | | - Sila Algül
- Department of Medical Biology, Academic Medical Center, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Jaeike W Faber
- Department of Medical Biology, Academic Medical Center, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Katharina Riebel
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Bjarke Jensen
- Department of Medical Biology, Academic Medical Center, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Bastiaan J Boukens
- Department of Experimental Cardiology, Academic Medical Center, Amsterdam University Medical Center, Amsterdam, Netherlands.,Department of Medical Biology, Academic Medical Center, Amsterdam University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
5
|
Geiser F. Seasonal Expression of Avian and Mammalian Daily Torpor and Hibernation: Not a Simple Summer-Winter Affair †. Front Physiol 2020; 11:436. [PMID: 32508673 PMCID: PMC7251182 DOI: 10.3389/fphys.2020.00436] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/08/2020] [Indexed: 12/17/2022] Open
Abstract
Daily torpor and hibernation (multiday torpor) are the most efficient means for energy conservation in endothermic birds and mammals and are used by many small species to deal with a number of challenges. These include seasonal adverse environmental conditions and low food/water availability, periods of high energetic demands, but also reduced foraging options because of high predation pressure. Because such challenges differ among regions, habitats and food consumed by animals, the seasonal expression of torpor also varies, but the seasonality of torpor is often not as clear-cut as is commonly assumed and differs between hibernators and daily heterotherms expressing daily torpor exclusively. Hibernation is found in mammals from all three subclasses from the arctic to the tropics, but is known for only one bird. Several hibernators can hibernate for an entire year or express torpor throughout the year (8% of species) and more hibernate from late summer to spring (14%). The most typical hibernation season is the cold season from fall to spring (48%), whereas hibernation is rarely restricted to winter (6%). In hibernators, torpor expression changes significantly with season, with strong seasonality mainly found in the sciurid and cricetid rodents, but seasonality is less pronounced in the marsupials, bats and dormice. Daily torpor is diverse in both mammals and birds, typically is not as seasonal as hibernation and torpor expression does not change significantly with season. Torpor in spring/summer has several selective advantages including: energy and water conservation, facilitation of reproduction or growth during development with limited resources, or minimisation of foraging and thus exposure to predators. When torpor is expressed in spring/summer it is usually not as deep and long as in winter, because of higher ambient temperatures, but also due to seasonal functional plasticity. Unlike many other species, subtropical nectarivorous blossom-bats and desert spiny mice use more frequent and pronounced torpor in summer than in winter, which is related to seasonal availability of nectar or water. Thus, seasonal use of torpor is complex and differs among species and habitats.
Collapse
Affiliation(s)
- Fritz Geiser
- Centre for Behavioural and Physiological Ecology, Zoology CO2, University of New England, Armidale, NSW, Australia
| |
Collapse
|
6
|
The electrocardiogram of vertebrates: Evolutionary changes from ectothermy to endothermy. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 144:16-29. [DOI: 10.1016/j.pbiomolbio.2018.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022]
|
7
|
Geiser F, Bondarenco A, Currie SE, Doty AC, Körtner G, Law BS, Pavey CR, Riek A, Stawski C, Turbill C, Willis CKR, Brigham RM. Hibernation and daily torpor in Australian and New Zealand bats: does the climate zone matter? AUST J ZOOL 2019. [DOI: 10.1071/zo20025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We aim to summarise what is known about torpor use and patterns in Australian and New Zealand (ANZ) bats from temperate, tropical/subtropical and arid/semiarid regions and to identify whether and how they differ. ANZ bats comprise ~90 species from 10 families. Members of at least nine of these are known to use torpor, but detailed knowledge is currently restricted to the pteropodids, molossids, mystacinids, and vespertilionids. In temperate areas, several species can hibernate (use a sequence of multiday torpor bouts) in trees or caves mostly during winter and continue to use short bouts of torpor for the rest of the year, including while reproducing. Subtropical vespertilionids also use multiday torpor in winter and brief bouts of torpor in summer, which permit a reduction in foraging, probably in part to avoid predators. Like temperate-zone vespertilionids they show little or no seasonal change in thermal energetics during torpor, and observed changes in torpor patterns in the wild appear largely due to temperature effects. In contrast, subtropical blossom-bats (pteropodids) exhibit more pronounced daily torpor in summer than winter related to nectar availability, and this involves a seasonal change in physiology. Even in tropical areas, vespertilionids express short bouts of torpor lasting ~5 h in winter; summer data are not available. In the arid zone, molossids and vespertilionids use torpor throughout the year, including during desert heat waves. Given the same thermal conditions, torpor bouts in desert bats are longer in summer than in winter, probably to minimise water loss. Thus, torpor in ANZ bats is used by members of all or most families over the entire region, its regional and seasonal expression is often not pronounced or as expected, and it plays a key role in energy and water balance and other crucial biological functions that enhance long-term survival by individuals.
Collapse
|