1
|
Khushbu, Jindal R. Cyclodextrin mediated controlled release of edaravone from pH-responsive sodium alginate and chitosan based nanocomposites. Int J Biol Macromol 2022; 202:11-25. [PMID: 35031316 DOI: 10.1016/j.ijbiomac.2022.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/09/2021] [Accepted: 01/01/2022] [Indexed: 12/18/2022]
Abstract
The objective of the study is to enhance the aqueous solubility and stability of edaravone, a free radical scavenger drug. Inclusion complexes of edaravone with β-cyclodextrin were prepared by microwave irradiation and physical mixture method and confirmation of inclusion complexes were investigated by different analytical techniques such as FT-IR, ROESY, DSC, and 1H NMR. pH-sensitive nanocomposites based on chitosan (CH), sodium alginate (ALG), and bentonite (BN) were synthesized. To get the maximum percentage swelling different reaction parameters that are responsible for the synthesis of the nanocomposite were optimized and characterized by various techniques such as FESEM, EDS, XRD, and FT-IR. To regulate the drug delivery, inclusion complexes were directly loaded into the CH/ALG hydrogel, and CH/ALG/BN nanocomposite and release studies were evaluated at different pH environments. The solubility of edaravone was investigated by phase solubility and the graph results in a typical AL type behavior, suggesting the formation of a 1:1 stoichiometry inclusion complex. The comparative evaluation of drug release was explored by kinetic models. Controlled release of drug was achieved from CH/ALG/BN nanocomposite in comparison to CH/ALG hydrogel. The exploratory kinetic investigation revealed that β-CD plays a critical role in the drug release process by influencing polymer relaxation, resulting in slow release.
Collapse
Affiliation(s)
- Khushbu
- Polymer and Nanomaterial Lab, Department of Chemistry, Dr BR Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.
| | - Rajeev Jindal
- Polymer and Nanomaterial Lab, Department of Chemistry, Dr BR Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.
| |
Collapse
|
2
|
Ellis BW, Traktuev DO, Merfeld-Clauss S, Can UI, Wang M, Bergeron R, Zorlutuna P, March KL. Adipose stem cell secretome markedly improves rodent heart and human induced pluripotent stem cell-derived cardiomyocyte recovery from cardioplegic transport solution exposure. STEM CELLS (DAYTON, OHIO) 2020; 39:170-182. [PMID: 33159685 DOI: 10.1002/stem.3296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/18/2020] [Indexed: 12/21/2022]
Abstract
Heart transplantation is a life-saving therapy for end-stage organ failure. Organ deterioration during transportation limits storage to 4 hours, limiting hearts available. Approaches ameliorating organ damage could increase the number of hearts acceptable for transplantation. Prior studies show that adipose-derived stem/stromal cell secretome (ASC-S) rescues tissues from postischemic damage in vivo. This study tested whether ASC-S preserved the function of mouse hearts and human induced pluripotent stem cell-derived cardiomyocytes (iCM) exposed to organ transportation and transplantation conditions. Hearts were subjected to cold University of Wisconsin (UW) cardioplegic solution ± ASC-S for 6 hours followed by analysis using the Langendorff technique. In parallel, the effects of ASC-S on the recovery of iCM from UW solution were examined when provided either during or after cold cardioplegia. Exposure of hearts and iCM to UW deteriorated contractile activity and caused cell apoptosis, worsening in iCM as a function of exposure time; these were ameliorated by augmenting with ASC-S. Silencing of superoxide dismutase 3 and catalase expression prior to secretome generation compromised the ASC-S cardiomyocyte-protective effects. In this study, a novel in vitro iCM model was developed to complement a rodent heart model in assessing efficacy of approaches to improve cardiac preservation. ASC-S displays strong cardioprotective activity on iCM either with or following cold cardioplegia. This effect is associated with ASC-S-mediated cellular clearance of reactive oxygen species. The effect of ASC-S on the temporal recovery of iCM function supports the possibility of lengthening heart storage by augmenting cardioplegic transport solution with ASC-S, expanding the pool of hearts for transplantation.
Collapse
Affiliation(s)
- Bradley W Ellis
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana, USA
| | - Dmitry O Traktuev
- Division of Cardiovascular Medicine and Center for Regenerative Medicine, University of Florida, Gainesville, Florida, USA.,Malcom Randall Veterans' Affairs Medical Center, Gainesville, Florida, USA
| | - Stephanie Merfeld-Clauss
- Division of Cardiovascular Medicine and Center for Regenerative Medicine, University of Florida, Gainesville, Florida, USA.,Malcom Randall Veterans' Affairs Medical Center, Gainesville, Florida, USA
| | - Uryan Isik Can
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana, USA
| | - Meijing Wang
- The Division of Cardiothoracic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ray Bergeron
- Division of Cardiovascular Medicine and Center for Regenerative Medicine, University of Florida, Gainesville, Florida, USA
| | - Pinar Zorlutuna
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana, USA.,Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana, USA
| | - Keith L March
- Division of Cardiovascular Medicine and Center for Regenerative Medicine, University of Florida, Gainesville, Florida, USA.,Malcom Randall Veterans' Affairs Medical Center, Gainesville, Florida, USA
| |
Collapse
|
3
|
Wang X, Lai R, Su X, Chen G, Liang Z. Edaravone attenuates lipopolysaccharide-induced acute respiratory distress syndrome associated early pulmonary fibrosis via amelioration of oxidative stress and transforming growth factor-β1/Smad3 signaling. Biochem Biophys Res Commun 2018; 495:706-712. [DOI: 10.1016/j.bbrc.2017.10.165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 10/29/2017] [Indexed: 12/12/2022]
|
4
|
Deussen A. Klinische Relevanz des Energiestoffwechsels im Herzen. ZEITSCHRIFT FUR HERZ THORAX UND GEFASSCHIRURGIE 2017. [DOI: 10.1007/s00398-017-0178-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Ji L, Liu Y, Zhang Y, Chang W, Gong J, Wei S, Li X, Qin L. The antioxidant edaravone prevents cardiac dysfunction by suppressing oxidative stress in type 1 diabetic rats and in high-glucose-induced injured H9c2 cardiomyoblasts. Can J Physiol Pharmacol 2016; 94:996-1006. [PMID: 27376621 DOI: 10.1139/cjpp-2015-0587] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Edaravone, a radical scavenger, has been recognized as a potential protective agent for cardiovascular diseases. However, little is known about the effect of edaravone in cardiac complications associated with diabetes. Here, we have demonstrated that edaravone prevents cardiac dysfunction and apoptosis in the streptozotocin-induced type 1 diabetic rat heart. Mechanistic studies revealed that edaravone treatment improved cardiac function and restored superoxide dismutase levels. In addition, treatment of diabetic animals by edaravone increased protein expressions of sirtuin-1 (SIRT-1), peroxisome proliferator activated receptor γ coactivator α (PGC-1α), nuclear factor like-2 (NRF-2), and B cell lymphoma 2 (Bcl-2), and reduced protein expressions of Bax and Caspase-3 compared to the control group. High glucose incubation resulted in the production of reactive oxygen species (ROS) and cell death. Treatment of high-glucose-incubated H9c2 cells by edaravone reduced ROS production and cell death. In addition, the treatment of high-glucose-incubated H9c2 cells by edaravone increased the activity of antioxidative stress by increasing SIRT-1, PGC-1α, and NRF-2, and this treatment also reduced apoptosis by increasing Bcl-2 expression and reducing Bax and Caspase-3 expressions. Knockdown SIRT-1 with small interferer RNA abolished the effects of edaravone. Overall, our data demonstrated that edaravone may be an effective agent against the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Lei Ji
- Department of Cardiology, First Hospital of Jilin University, Changchun 130021, China
- Department of Cardiology, Changchun Central Hospital, Changchun 130051, China
| | - Yingying Liu
- Department of Nephrology, China–Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Ying Zhang
- Department of Neurology, First Hospital of Jilin University, Changchun 130021, China
| | - Wenguang Chang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Junli Gong
- Department of Cardiology, Changchun Central Hospital, Changchun 130051, China
| | - Shengnan Wei
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xudong Li
- Department of Cardiology, Changchun Central Hospital, Changchun 130051, China
| | - Ling Qin
- Department of Cardiology, First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
6
|
Rong WT, Lu YP, Tao Q, Guo M, Lu Y, Ren Y, Yu SQ. Hydroxypropyl-Sulfobutyl-β-Cyclodextrin Improves the Oral Bioavailability of Edaravone by Modulating Drug Efflux Pump of Enterocytes. J Pharm Sci 2014; 103:730-42. [DOI: 10.1002/jps.23807] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 11/08/2013] [Accepted: 11/14/2013] [Indexed: 11/08/2022]
|
7
|
Kikuchi K, Tancharoen S, Takeshige N, Yoshitomi M, Morioka M, Murai Y, Tanaka E. The efficacy of edaravone (radicut), a free radical scavenger, for cardiovascular disease. Int J Mol Sci 2013; 14:13909-30. [PMID: 23880849 PMCID: PMC3742225 DOI: 10.3390/ijms140713909] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 06/19/2013] [Accepted: 06/21/2013] [Indexed: 02/07/2023] Open
Abstract
Edaravone was originally developed as a potent free radical scavenger, and has been widely used to treat acute ischemic stroke in Japan since 2001. Free radicals play an important role in the pathogenesis of a variety of diseases, such as cardiovascular diseases and stroke. Therefore, free radicals may be targets for therapeutic intervention in these diseases. Edaravone shows protective effects on ischemic insults and inflammation in the heart, vessel, and brain in experimental studies. As well as scavenging free radicals, edaravone has anti-apoptotic, anti-necrotic, and anti-cytokine effects in cardiovascular diseases and stroke. Edaravone has preventive effects on myocardial injury following ischemia and reperfusion in patients with acute myocardial infarction. Edaravone may represent a new therapeutic intervention for endothelial dysfunction in the setting of atherosclerosis, heart failure, diabetes, or hypertension, because these diseases result from oxidative stress and/or cytokine-induced apoptosis. This review evaluates the potential of edaravone for treatment of cardiovascular disease, and covers clinical and experimental studies conducted between 1984 and 2013. We propose that edaravone, which scavenges free radicals, may offer a novel option for treatment of cardiovascular diseases. However, additional clinical studies are necessary to verify the efficacy of edaravone.
Collapse
Affiliation(s)
- Kiyoshi Kikuchi
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, 6 Yothe Road, Rajthevee, Bangkok 10400, Thailand; E-Mails: (K.K.); (S.T.)
- Division of Brain Science, Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan; E-Mail:
- Department of Neurosurgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan; E-Mails: (N.T.); (M.Y.); (M.M.)
| | - Salunya Tancharoen
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, 6 Yothe Road, Rajthevee, Bangkok 10400, Thailand; E-Mails: (K.K.); (S.T.)
| | - Nobuyuki Takeshige
- Department of Neurosurgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan; E-Mails: (N.T.); (M.Y.); (M.M.)
| | - Munetake Yoshitomi
- Department of Neurosurgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan; E-Mails: (N.T.); (M.Y.); (M.M.)
| | - Motohiro Morioka
- Department of Neurosurgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan; E-Mails: (N.T.); (M.Y.); (M.M.)
| | - Yoshinaka Murai
- Division of Brain Science, Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan; E-Mail:
| | - Eiichiro Tanaka
- Division of Brain Science, Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan; E-Mail:
- Author to whom correspondence should be addressed. E-Mail: ; Tel.: +81-942-31-7542; Fax: +81-942-31-7695
| |
Collapse
|
8
|
Zhang W, Guo Y, Yu S, Wei J, Jin J. Effects of edaravone on the expression of β-defensin-2 mRNA in lung tissue of rats with myocardial ischemia reperfusion. Mol Med Rep 2013; 7:1683-7. [PMID: 23525405 DOI: 10.3892/mmr.2013.1393] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 03/01/2013] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to investigate the effects of edaravone on lung injury caused by myocardial ischemia reperfusion (I/R) in rats. Wistar rats (n=24) were randomly divided into 4 groups: the sham operation (S group) and myocardial I/R groups (C group) and two edaravone‑treated groups (E1 and E2 groups). Rats in the E1 and E2 groups were injected with 3 or 10 mg/kg edaravone, respectively, 1 min before reperfusion. The rats were sacrificed and the lung tissue, bronchoalveolar lavage (BAL) fluid and serum were obtained. The concentration of serum creatine kinase isoenzyme (CK-MB) was determined, the lung permeability index (PPI) was calculated and β-defensin-2 (BD-2) mRNA expression in the lung tissue and BD-2 and TNF-α protein content levels were determined. Serum CK-MB activity and the PPI were increased, while BD-2 mRNA and BD‑2 and TNF-α protein levels in the lung tissue were upregulated in the C, E1 and E2 groups compared with the S group. The above‑mentioned indicators were decreased in the E1 and E2 groups compared with the IR group. The level of the decrease for indicators in the E2 group was significantly different compared with that in the E1 group. In conclusion, edaravone reduced the lung injury caused by myocardial I/R in rats. Its mechanism of action was not only oxygen free radical scavenging, but was also associated with a suppression of the inflammatory response of the lung tissue.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Anesthesiology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | | | | | | | | |
Collapse
|
9
|
A hypothesis: Edaravone exert cardioprotection partly via modulation of adiponectin. Med Hypotheses 2012; 79:141-2. [DOI: 10.1016/j.mehy.2012.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 04/01/2012] [Accepted: 04/03/2012] [Indexed: 11/22/2022]
|
10
|
Kikuchi K, Takeshige N, Miura N, Morimoto Y, Ito T, Tancharoen S, Miyata K, Kikuchi C, Iida N, Uchikado H, Miyagi N, Shiomi N, Kuramoto T, Maruyama I, Morioka M, Kawahara KI. Beyond free radical scavenging: Beneficial effects of edaravone (Radicut) in various diseases (Review). Exp Ther Med 2011; 3:3-8. [PMID: 22969835 DOI: 10.3892/etm.2011.352] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 09/13/2011] [Indexed: 12/19/2022] Open
Abstract
Free radicals play an important role in the pathogenesis of a variety of diseases; thus, they are an attractive target for therapeutic intervention in these diseases. Compounds capable of scavenging free radicals have been developed for this purpose and some, developed for the treatment of cerebral ischemic stroke, have progressed to clinical trials. One such scavenger, edaravone, is used to treat patients within 24 h of stroke. Edaravone, which can diffuse into many disease-affected organs, also shows protective effects in the heart, lung, intestine, liver, pancreas, kidney, bladder and testis. As well as scavenging free radicals, edaravone has anti-apoptotic, anti-necrotic and anti-cytokine effects in various diseases. Here, we critically review the literature on its clinical efficacy and examine whether edaravone should be considered a candidate for worldwide development, focusing on its effects on diseases other than cerebral infarction. Edaravone has been safely used as a free radical scavenger for more than 10 years; we propose that edaravone may offer a novel treatment option for several diseases.
Collapse
Affiliation(s)
- Kiyoshi Kikuchi
- Department of Neurosurgery, Yame Public General Hospital, Yame 834-0034
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhi Q, Sun H, Qian X, Yang L. Edaravone, a novel antidote against lung injury and pulmonary fibrosis induced by paraquat? Int Immunopharmacol 2011; 11:96-102. [DOI: 10.1016/j.intimp.2010.10.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 10/13/2010] [Accepted: 10/14/2010] [Indexed: 01/17/2023]
|
12
|
Bagatini MD, Martins CC, Battisti V, Gasparetto D, da Rosa CS, Spanevello RM, Ahmed M, Schmatz R, Schetinger MRC, Morsch VM. Oxidative stress versus antioxidant defenses in patients with acute myocardial infarction. Heart Vessels 2010; 26:55-63. [DOI: 10.1007/s00380-010-0029-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 01/29/2010] [Indexed: 10/18/2022]
|
13
|
Heart surgery in patients on chronic dialysis: is there still room for improvement in early and long-term outcome? Heart Vessels 2010; 26:46-54. [DOI: 10.1007/s00380-010-0024-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 01/21/2010] [Indexed: 10/19/2022]
|
14
|
Mitochondrial involvement in cardiac apoptosis during ischemia and reperfusion: can we close the box? Cardiovasc Toxicol 2010; 9:211-27. [PMID: 19855945 DOI: 10.1007/s12012-009-9055-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Myocardial ischemia is the main cause of death in the Western societies. Therapeutic strategies aimed to protect the ischemic myocardium have been extensively studied. Reperfusion is the definitive treatment for acute coronary syndromes, especially acute myocardial infarction; however, reperfusion has the potential to exacerbate tissue injury, a process termed reperfusion injury. Ischemia/reperfusion (I/R) injury may lead to cardiac arrhythmias and contractile dysfunction that involve apoptosis and necrosis in the heart. The present review describes the mitochondrial role on cardiomyocyte death and some potential pharmacological strategies aimed at preventing the opening of the box, i.e., mitochondrial dysfunction and membrane permeabilization that result into cell death. Data in the literature suggest that mitochondrial disruption during I/R can be avoided, although uncertainties still exist, including the fact that the optimal windows of treatment are still fairly unknown. Despite this, the protection of cardiac mitochondrial function should be critical for the patient survival, and new strategies to avoid mitochondrial alterations should be designed to avoid cardiomyocyte loss.
Collapse
|
15
|
Oyama JI, Satoh S, Suematsu N, Kadokami T, Maeda T, Sugano M, Makino N. Scavenging free radicals improves endothelial dysfunction in human coronary arteries in vivo. Heart Vessels 2010; 25:379-85. [DOI: 10.1007/s00380-009-1221-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 11/06/2009] [Indexed: 10/19/2022]
|