1
|
Li L, Wang R, He L, Guo H, Fu L, Wang G, Wang J, Chen Z, Peng X, Lu X, Sui H, Jiang Y, Zang J, Gao L, Zhu Z. Evaluation of Angiotensin-Converting Enzyme 2 Expression In Vivo with Novel 68Ga-Labeled Peptides Originated from the Coronavirus Receptor-Binding Domain. ACS Pharmacol Transl Sci 2024; 7:3119-3130. [PMID: 39416971 PMCID: PMC11475584 DOI: 10.1021/acsptsci.4c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is not only a key to the renin-angiotensin-aldosterone system and related diseases, but also the main entry point on cell surfaces for certain coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. By analyzing the different key binding sites from the receptor-binding domain (RBD) of SARS-CoV and SARS-CoV-2, nine new ACE2-targeting peptides (A1 to A9) were designed, synthesized and connected with a chelator, 1,4,7-triazacyclononane-N,N',N''-triacetic acid (NOTA). NOTA-A1, NOTA-A2, NOTA-A4, NOTA-A5, and NOTA-A8 were successfully labeled with [68Ga]Ga3+ and were used for biological evaluation. [68Ga]Ga-NOTA-A2, [68Ga]Ga-NOTA-A5, and [68Ga]Ga-NOTA-A8 showed specific binding to ACE2 via cell assays, and their binding sites and binding capacity were calculated by molecular docking and molecular dynamics simulations. In tumor-bearing mice, A549 tumors were visualized 60 min postinjection of [68Ga]Ga-NOTA-A2, [68Ga]Ga-NOTA-A5, or [68Ga]Ga-NOTA-A8. These peptides also accumulated in the organs with high-level ACE2 expression, confirmed by immunohistochemical stain. Among them, [68Ga]Ga-NOTA-A5 exhibited the highest tumor uptake and tumor/background ratio, and it successfully tracked the increased ACE2 levels in mice tissues after excessive Losartan treatment. In a first-in-human study, the distribution of [68Ga]Ga-NOTA-A5 was evaluated with positron emission tomography/computed tomography (PET/CT) in three participants without adverse events. 68Ga-labeled peptides originated from the coronavirus RBD, with [68Ga]Ga-NOTA-A5 as a typical representative, seem to be safe and effective for the evaluation of ACE2 expression in vivo with PET/CT, facilitating further mechanism investigation and clinical evaluation of ACE2-related diseases.
Collapse
Affiliation(s)
- Linlin Li
- Department
of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare
Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and
Therapy in Nuclear Medicine, Peking Union Medical College Hospital,
Chinese Academy of Medical Sciences, Peking
Union Medical College, Beijing 100730, China
| | - Rongxi Wang
- Department
of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare
Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and
Therapy in Nuclear Medicine, Peking Union Medical College Hospital,
Chinese Academy of Medical Sciences, Peking
Union Medical College, Beijing 100730, China
| | - Li He
- Key
Laboratory of Theoretical and Computational Photochemistry, Ministry
of Education, College of Chemistry, Beijing
Normal University, Beijing 100875, China
| | - Hua Guo
- State
Key Laboratory of Molecular Oncology, National Cancer Center/National
Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lei Fu
- Key
Laboratory of Theoretical and Computational Photochemistry, Ministry
of Education, College of Chemistry, Beijing
Normal University, Beijing 100875, China
| | - Guochang Wang
- Department
of Nuclear Medicine, The First Affiliated
Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Jiarou Wang
- Department
of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare
Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and
Therapy in Nuclear Medicine, Peking Union Medical College Hospital,
Chinese Academy of Medical Sciences, Peking
Union Medical College, Beijing 100730, China
| | - Ziying Chen
- Key
Laboratory of Theoretical and Computational Photochemistry, Ministry
of Education, College of Chemistry, Beijing
Normal University, Beijing 100875, China
| | - Xingtong Peng
- Eight-Year
Program of Clinical Medicine, Peking Union Medical College Hospital
(PUMCH), Chinese Academy of Medical Sciences
(CAMS) and Peking Union Medical College (PUMC), Beijing 100730, China
| | - Xinyu Lu
- Eight-Year
Program of Clinical Medicine, Peking Union Medical College Hospital
(PUMCH), Chinese Academy of Medical Sciences
(CAMS) and Peking Union Medical College (PUMC), Beijing 100730, China
| | - Huimin Sui
- Department
of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare
Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and
Therapy in Nuclear Medicine, Peking Union Medical College Hospital,
Chinese Academy of Medical Sciences, Peking
Union Medical College, Beijing 100730, China
| | - Yuanyuan Jiang
- Department
of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare
Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and
Therapy in Nuclear Medicine, Peking Union Medical College Hospital,
Chinese Academy of Medical Sciences, Peking
Union Medical College, Beijing 100730, China
| | - Jie Zang
- Department
of Nuclear Medicine, The First Affiliated
Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Lianghui Gao
- Key
Laboratory of Theoretical and Computational Photochemistry, Ministry
of Education, College of Chemistry, Beijing
Normal University, Beijing 100875, China
| | - Zhaohui Zhu
- Department
of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare
Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and
Therapy in Nuclear Medicine, Peking Union Medical College Hospital,
Chinese Academy of Medical Sciences, Peking
Union Medical College, Beijing 100730, China
| |
Collapse
|
2
|
Sun X, Liu Y, Liu Y, Wang H, Liu B, Shi L. Association between red blood cell distribution width and left ventricular hypertrophy in pediatric essential hypertension. Front Pediatr 2023; 11:1088535. [PMID: 36816384 PMCID: PMC9932496 DOI: 10.3389/fped.2023.1088535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
AIM Left ventricular hypertrophy (LVH) is one of the most common types of target organ damage in hypertension. The red blood cell distribution width (RDW) is closely related to many cardiovascular diseases, including hypertension. The aim of this study was to analyze the relationship between the RDW level and LVH in pediatric essential hypertension. MATERIALS AND METHODS A total of 429 untreated children and adolescents with essential hypertension were recruited and divided into an LVH group (n = 114) and non-LVH group (n = 315) according to left ventricular mass index (LVMI) and relative wall thickness (RWT) by color Doppler ultrasound. Spearman correlation analysis was used to determine the relationship between RDW and LVMI, RWT. The effect of RDW on LVH was determined using a multivariate logistic regression analysis. To assess the predictive value of RDW on LVH, the receiver operating characteristic (ROC) curve was used. RESULTS The level of RDW in children with hypertension in the LVH group was significantly higher than that in the non-LVH group (13.0 [12.0, 13.0] vs. 12.4 [12.0, 13.0] %, P = 0.001). The incidence of low and high quantiles of LVH was 21.0% and 32.0%, respectively. Spearman correlation analysis showed that RDW was positively correlated with C-reactive protein (CRP), LVMI, RWT, and red blood cell (RBC) count (P all < 0.05), and negatively correlated with hemoglobin (HGB) level, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC) (P all < 0.05). After adjusting for various confounding factors, a multivariate logistic regression model revealed that RDW was an independent risk factor for LVH (OR = 1.946, 95% CI: 1.324-2.861, P = 0.001). The area under the ROC curve of RDW predicting centripetal hypertrophy was 0.700 (95% CI: 0.541-0.859, P < 0.05) in pediatric essential hypertension. CONCLUSIONS Increased RDW levels are an independent risk factor for LVH in pediatric essential hypertension, and RDW may be a predictor of LVH in untreated pediatric essential hypertension.
Collapse
Affiliation(s)
- Xiaodong Sun
- Capital Institute of Pediatrics, Beijing, China
- Department of Cardiology, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Yang Liu
- Department of Cardiology, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Yanyan Liu
- Department of Cardiology, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Hui Wang
- Department of Cardiology, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Bo Liu
- Department of Cardiology, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Lin Shi
- Capital Institute of Pediatrics, Beijing, China
- Department of Cardiology, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|